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Abstract

Implicit particle-in-cell codes offer advantages over their explicit counterparts
in that they suffer weaker stability constraints on the need to resolve the higher
frequency modes of the system. This feature may prove particularly valuable for
modeling the interaction of high-intensity laser pulses with overcritical plasmas,
in the case where the electrostatic modes in the denser regions are of negligi-
ble influence on the physical processes under study. To this goal, we have de-
veloped the new two-dimensional electromagnetic code ELIXIRS (standing for
ELectromagnetic Implicit X-dimensional Iterative Relativistic Solver) based on
the relativistic extension of the so-called Direct Implicit Method [D. Hewett and
A. B. Langdon, J. Comp. Phys. 72, 121(1987)]. Dissipation-free propagation of
light waves into vacuum is achieved by an adjustable-damping electromagnetic
solver. In the high-density case where the Debye length is not resolved, satisfac-
tory energy conservation is ensured by the use of high-order weight factors. In
this paper, we first present an original derivation of the electromagnetic direct
implicit method within a Newton iterative scheme. Its linear properties are then
investigated through numerically solving the relation dispersions obtained for
both light and plasma waves, accounting for finite space and time steps. Finally,
our code is successfully benchmarked against explicit particle-in-cell simulations
for two kinds of physical problems: plasma expansion into vacuum and relativis-
tic laser-plasma interaction. In both cases, we will demonstrate the robustness
of the implicit solver for crude discretizations, as well as the gains in efficiency
which can be realized over standard explicit simulations.
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1. Introduction

Particle-in-cell (PIC) codes have become widely used plasma simulation tools
owing to their ability to mimic real plasma behavior. Yet the standard PIC algo-
rithm employs an explicit time-differencing, and hence suffers from strict stability
constraints on the time step, which needs to resolve the highest-frequency modes
of the system [1]. Furthermore, the mesh size must be comparable to the Debye
length λD in order to prevent the finite-grid instability [1]. As a consequence, ex-
plicit PIC codes may find it difficult to cope with the large spatial and temporal
scales associated with a number of physical scenarios, thus requiring massively
parallel computing facilities [2]. Several alternatives have been developed over the
past decades to relax these constraints so that the choice of the space and time
steps can be dictated by physical accuracy rather than stability conditions. The
simplest way to do so is to suppress high-frequency processes within the mathe-
matical model itself. Codes based on the Darwin-field approximation [3, 4], gy-
rokinetic equations [5] or hybrid particle-fluid models [6, 7, 8, 9, 10] rely precisely
on such an approach. The shortcoming inherent in these codes is the somewhat
uncertain domain of validity of their basic assumptions. A second, more involved
numerically, possibility retains a fully kinetic and electromagnetic description by
using an implicit scheme for the entire Vlasov-Maxwell set of equations. This is
the approach dealt with in this work.

The main feature, and difficulty, of a fully implicit PIC scheme is the pre-
diction of the future particles’ charge and current densities as functions of the
future electromagnetic fields. Two main techniques have been designed to this
goal. The first one to be published, the so-called moment method, makes use of
the fluid equations to predict future source terms [11, 12, 13, 14, 15, 16]. and
has been recently extended to the relativistic regime [17]. The present article
will focus on the alternate approach, referred to as the direct implicit method,
which is based on a direct linearization of the Lorentz equations [18, 19, 20, 21].
Most implementations of the direct implicit method start with the so-called D1

discretization of the Lorentz equation, first presented in Ref. [22]. The rela-
tivistic formulation, originally derived in Ref. [23], was implemented, albeit in a
simplified form, in the LSP code [24, 25, 26, 27, 28].

The direct implicit method proceeds as follows. First, particles’ momenta and
positions are advanced to an intermediate time level using known fields, yielding
predicted charge and current densities. Second, by linearizing the latter quantities
around the predicted momenta and positions, we can express correction terms as
functions of the future fields and thus derive an implicit wave equation. Once
this equation is solved, the particles’ quantities are updated. Here we will show
that the direct method can be derived as a simplified Newton scheme.

Our main motivation is the simulation of the interaction of an ultra-intense
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laser pulse with solid-density plasma slabs. The energetic particle beams originat-
ing from this interaction stir great interest in many fields spanning inertial con-
finement fusion [29, 26, 30, 31, 32, 33], high energy density physics [34, 35, 36, 37],
nuclear physics [38, 39] or medical physics [40]. For the high plasma densities
considered, the electron plasma frequency ωp largely exceeds the laser frequency.
Using an explicit PIC code, the space and time steps should resolve the high-
frequency electron plasma modes of the plasma bulk. However, these modes are
of no interest for the problem since they do not affect the laser-plasma inter-
action nor other potentially important related processes as the subsequent, fast
electron-driven ion expansion. By contrast, resorting to an implicit scheme would
allow a significantly increased time step, that is, determined only by the need to
resolve the incoming laser wave. In this respect, one should realize that the strong
wave damping inherent with implicit methods may be harmful in the context of
laser-plasma interaction, for which light waves have to travel over many wave-
lengths. This prompted us to develop an electromagnetic solver with adjustable
damping, based on a generalization of the scheme initially proposed by Friedman
[41] for the Lorentz equation. We will demonstrate that our adjustable damping
scheme tolerates abrupt spatial jumps in the controlling parameter. Our code
therefore allows for dissipation-free laser propagation into vacuum, along with
strong damping of undesirable plasma waves into the densest part of the target.

As explicit codes, implicit codes suffer from the artificial heating arising from
a crude discretization of the Debye length, as is commonplace when handling
large-scale, high-density plasmas. This detrimental effect is generally attributed
to the so-called grid-instability [1]. To keep it at an acceptable level, we will
exploit the well-known mitigating influence of high-order weight factors [42, 43]
by using quadratic weight factors. We will also take advantage of the stabilizing
effect of the large time steps allowed by the implicit scheme.

The paper is organized as follows. In Sec. 2, we recall the basic princi-
ples of the PIC technique, give the implicit time-discretized equations to solve,
and derive within a simplified Newton formalism the relativistic direct implicit
method. In Sec. 3, we outline the numerical resolution of the wave equation
as implemented in our newly developed, 2Dx-3Dv code ELIXIRS (ELectromag-
netic Implicit X-dimensionnal Iterative Relativistic Solver). The introduction of
implicit injecting/outgoing boundary conditions for the electromagnetic field is
also discussed. Sec. 4 is devoted to the linear properties of the direct implicit
method through the resolution of the electromagnetic and electrostatic disper-
sion relations. The effects of finite space and time steps, adjustable damping and
high-order weight factors will be accounted for. Finally, in Sec. 5, our code is
benchmarked against explicit simulations for two kinds of physical problems: the
expansion of a plasma slab in vacuum, and the interaction of an ultra-intense
laser pulse with an overcritical plasma target. The sensitivity of the simulation
results to the damping parameter and the number of macro-particules will be
addressed.
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2. The relativistic direct implicit method as a simplified Newton scheme

In contrast to Ref. [23], we present here a derivation of the electromag-
netic direct implicit method for the relativistic case within a Newton iterative
scheme and a weak formulation of Maxwell’s equations. Anticipating our need of
a dissipation-free propagation of light waves inside the vacuum region of the sim-
ulation domain, we introduce a generalization of the adjustable damping scheme
proposed and used in the electrostatic regime by Friedman [41].

2.1. Basic equations

Consider Maxwell’s equations

∇× E = −∂B
∂t

, (1)

∇× B = µ0j +
1

c2
∂E

∂t
, (2)

and the collisionless Vlasov equation for the distribution function fs(x,u, t) of
the sth particle species

∂fs

∂t
+

u

γ

∂fs

∂x
+

qs
ms

(
E +

u

γ
× B

)
· ∂fs

∂u
= 0 . (3)

Here qs and ms are the charge and the rest mass of the sth particle species,
respectively. u denotes the relativistic momentum normalized by ms. The rel-

ativistic factor then writes γ = (1 + u2/c2)
1/2

. The particle method consists in
describing the distribution function fs as an ensemble of macro-particles in the
form

fs(x,u, t) =

Ns∑

p=1

S(x −Xp(t))δ(u −Up(t)) , (4)

where S is the shape function [1], Ns the total number of particles of the sth
species, and δ the Dirac distribution. The relativistic motion of each macro-
particle obeys the following equations:

dXp(t)

dt
= Vp(t) =

Up(t)

γp(t)
, (5)

dUp(t)

dt
=

qs
ms

{
E [Xp(t), t] +

Up(t)

γp(t)
× B [Xp(t), t]

}
. (6)

We now make use of the implicit scheme with adjustable damping proposed
by Friedman [41] for an electrostatic problem, which generalizes the so-called D1-
scheme of Langdon et al. [18, 19, 20, 23]. The equations of motion are discretised
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as

Xn+1 = Xn + ∆t
Un+1/2

γn+1/2

, (7)

Un+1/2 = Un−1/2 +
∆t

2
(an+1 + Ān−1) +

qs∆t

2ms

(
Un+1/2 + Un−1/2

γn

)
×Bn(Xn) ,

(8)

Ān−1 =
θf

2
an +

(
1 − θf

2

)
ān−2 , (9)

ān−1 =

(
1 − θf

2

)
an +

θf

2
ān−2 , (10)

where the index n denotes the time step index and we have defined

an =
qs
ms

En , (11)

γn =

{
1 +

1

c2

[
Un−1/2 +

∆t

4

(
an+1 + Ān−1

)]2
}1/2

, (12)

γn+1/2 =

(
1 +

U2
n+1/2

c2

)1/2

. (13)

Friedman’s scheme can be readily applied to Maxwell’s equations, which yields

En+1 = En + c2∆t∇× Bn+1/2 −
∆t

ǫ0
jn+1/2 , (14)

Bn+1/2 = Bn−1/2 −
∆t

2
∇×

(
En+1 + ¯̄En−1

)
, (15)

Bn = Bn−1/2 −
∆t

2
∇×En , (16)

¯̄En−1 =
θf

2
En +

(
1 − θf

2

)
Ēn−2 , (17)

Ēn−1 =

(
1 − θf

2

)
En +

θf

2
Ēn−2 . (18)

where j denotes the current density.
As will be demonstrated in Sec. 4, this scheme allows, via the parameter

θf , a flexible control of the damping of the high-frequency (electrostatic and
electromagnetic) waves of the system. This property is of major interest for
applications such as laser-plasma interaction involving a traveling electromagnetic
wave into vacuum, for which the numerical damping associated with the standard
D1 method may prove too severe. It is worth noting that, even though referred to
uniquely as θf , the damping parameters involved in the electromagnetic scheme
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and the particle pusher may assume distinct values. The next sections will be
devoted to the solution of the set of Eqs. (7)-(18) within a Newton iterative
scheme. We will show that for a proper choice of the initial conditions, this
scheme reduces to the direct implicit method developed in Refs. [20, 23].

2.2. Weak formulation of the electric field equation

By replacing Eq. (15) into Eq. (14), one obtains the following wave equation

En+1 +
c2∆t2

2
∇×∇× En+1 +

∆t

ǫ0
jn+1/2 = Q′ , (19)

with the (known) source term

Q′ = En + c2∆t∇× Bn−1/2 −
c2∆t2

2
∇×∇× ¯̄En−1 . (20)

For any test function ψ, we assume the following weak formulation of the current
density
∫

jn+1/2(x)ψ(x)dx

=
∑

s

qs
2

∫
fs,0(x,u)Vn+1/2(x,u) [ψ (Xn+1(x,u)) + ψ (Xn(x,u))] dxdu , (21)

where fs,0 = fs(x,u, 0) is the initial particle distribution function and Vn+1/2 =
Un+1/2/γn+1/2.

The problem then consists in finding (En+1,Xn+1,Un+1/2) which solve

∫
En+1(x)ψ(x)dx +

c2∆t2

2

∫
∇×∇× En+1(x)ψ(x)dx

+
∆t

ǫ0

∫
jn+1/2(x)ψ(x)dx =

∫
Q′(x)ψ(x)dx (22)

together with Eqs. (7)-(13). We employ the Newton method to solve this system:
for each quantity of interest Y , we introduce the ansatz

Y
(k+1)
n+α = Y

(k)
n+α + δY

(k)
n+α k = 0, 1, . . . (23)

where α = (1/2, 1) depending on whether Y is centered at full or half time steps.
The subscript n+ 1 will be hereafter omitted for clarity. Substituting the above
ansatz into Eq. (20) yields

∫ [
E(k)(x) + δE(k)(x)

]
ψ(x)dx +

c2∆t2

2

∫
∇×∇×

[
E(k)(x) + δE(k)(x)

]
ψ(x)dx

+
∆t

ǫ0

∫
j(k+1)(x)ψ(x)dx =

∫
Q′(x)ψ(x)dx . (24)
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The term involving j(k+1) is calculated with positions X(k+1) and velocities V(k+1)

∫
j(k+1)ψ(x)dx =

∑

s

qs
2

∫
fs,0(x,u)V(k)

[
ψ(X(k)) + ψ(Xn)

]
dxdu

+
∑

s

qs
2

∫
fs,0(x,u)δV(k)

[
ψ(X(k)) + ψ(Xn)

]
dxdu

+
∑

s

qs
2

∫
fs,0(x,u)V(k)

[
∇ψ(X(k)) · δX(k)

]
dxdu . (25)

To obtain the equation solved for the electric field, we need to express the
terms X(k), δX(k), V(k) and δV(k) as functions of the electric field. Before pro-
ceeding, let us first define the following quantities

γ(k) =

(
1 +

U(k)2

c2

)1/2

, (26)

Γ(k) =

{
1 +

1

c2

[
Un−1/2 +

∆t

4

(
qs
ms

E(k)(X(k)) + Ān−1

)]2
}1/2

, (27)

θ(Xn) =
qs∆t

2msΓ(k)
Bn(Xn) , (28)

R(Xn) =
2

1 + θ2
(I + θ ⊗ θ − θ × I) − I , (29)

M(U(k)) =
1

γ(k)

(
I − U(k) ⊗ U(k)

γ(k)2c2

)
, (30)

N
(
E(k)(X(k)),U(k)

)
=

qs∆t

4msc2

[
Un−1/2 + U(k)

Γ(k)3
× Bn(Xn)

]

⊗
[
Un−1/2 +

∆t

4

(
qs
ms

E(k)(X(k)) + Ān−1

)]
, (31)

with I the identity matrix. Straightforward calculations then yield

X(k) = Xn +
∆tU(k)

γ(k)
, (32)

δX(k) = ∆tMδU(k) , (33)

V(k) =
U(k)

γ(k)
, (34)

δV(k) = MδU(k) , (35)

Using the above expressions and the Newton ansatz (23), the Lorentz equation
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becomes

U(k) + δU(k) = Un−1/2 +
qs∆t

2ms

[
E(k)(X(k)) + ∇E(k)(X(k))δX(k) + δE(k)(X(k))

]

+
∆t

2
Ān−1 +

qs∆t

2ms

(
U(k) + δU(k) + Un−1/2

Γ(k)

)
× Bn(Xn)

− qs∆t

2ms
N(E(k)(X(k)),U(k))∇E(k)(X(k))δX(k)

− qs∆t

2ms
N(E(k)(X(k)),U(k))δE(k)(X(k)) , (36)

where we have dropped second-order terms. Assuming the electric field gradient
term is negligible, this equation further simplifies as

U(k) + δU(k) = Un−1/2 +
∆t

4
[I + R(Xn)]

[
Ān−1 +

qs
ms

E(k)(X(k))

]

+
∆tqs
4ms

[I + R(Xn)]
[
I − N

(
E(k)(X(k)),U(k)

)]
δE(k)(X(k)) . (37)

The set of equations (22)-(38) constitutes the weak formulation of the problem.
We will now show how to recover the direct implicit method as a simplified
Newton algorithm.

2.2.1. The direct implicit method

The simplest scheme consists in considering only one iteration in the above
system and choosing the following initial values





X(0) = X̃n+1

U(0) = Ũn+1/2

E(0) = 0





δX(0) = δX
δU(0) = δU
δE(0) = E(1) = En+1 ,

(38)

where we have introduced the predicted position and momentum X̃n+1 and Ṽn+ 1

2

computed from the known fields Ān−1 and Bn. We have

X̃n+1 = Xn + ∆t
Ũn+1/2

γ̃n+1/2

, (39)

Ũn+1/2 = R(Xn)Un−1/2 +
∆t

4
[I + R(Xn)] Ān−1 . (40)

with γ̃n+1/2 = γ(0). The correction terms then write

δU =
qs∆t

4ms
[I + R(Xn)][I − N(Ũn+1/2)]En+1(X̃n+1) , (41)

δV = MδU , (42)

δX = ∆tMδU , (43)
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where we have defined

µ(Ũn+1/2) = N(0, Ũn+1/2)

=
qs∆t

4msc2

[
Un−1/2 + Ũn+1/2

γ̃3
n

× Bn(Xn)

]
⊗
(
Un−1/2 +

∆t

4
Ān−1

)
, (44)

and γ̃n = Γ(0). After substituting the above equations into (25), using Xn =

X̃n+1 − ∆tṼn+1/2 and replacing the resulting expression into (24), we obtain

∫
En+1(x)ψ(x)dx +

c2∆t2

2

∫
∇×∇× En+1(x)ψ(x)dx

+
∑

s

qs∆t

2ǫ0

∫
fs,0(x,u)Ṽn+1/2(x,u)

[
ψ(X̃n+1 (x,u)) + ψ(Xn (x,u))

]
dxdu

+
∑

s

qs∆t

ǫ0

∫
fs,0(x,u)δV(x,u)ψ(X̃n+1(x,u))dxdu

+
∑

s

qs∆t

2ǫ0

∫
fs,0(x,u)

[
δX ⊗ Ṽn+1/2 − Ṽn+1/2 ⊗ δX

]
∇ψ(X̃n+1)dxdu

=

∫
Q′(x)ψ(x)dx . (45)

From Eq. (21), we identify

∑

s

qs∆t

2ǫ0

∫
fs,0(x,u)Ṽn+1/2(x,u)

[
ψ(X̃n+1 (x,u)) + ψ(Xn (x,u))

]
dxdu

=
∆t

ǫ0

∫
j̃n+1/2(x)ψ(x)dx . (46)

To reduce the next integral, it is convenient to introduce the weak formulation
of the predicted charge density

∫
ρ̃s(x)ψ(x)dx = qs

∫
fs,0(x,u)ψ

(
X̃n+1(x,u)

)
dxdu .

Approximating R(Xn) ≈ R(X̃n+1), we obtain

qs∆t

ǫ0

∫
fs,0δVψ(X̃n+1)dxdu

=
qs∆t

2

4msǫ0

∫
ρ̃(x)M(x)(I + R(x)) [I −N(x)]En+1(x)dx . (47)

Defining the implicit susceptibility χ as

χ(x) =
∑

s

qs∆t
2

4msǫ0
M(x)(I + Rs,n(x)) [I − N(x)] ρ̃s(x) , (48)
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we have

∑

s

qs∆t

ǫ0

∫
fs,0(x,u)δV(x,u)ψ(X̃n+1(x,u))dxdu =

∫
ψ(x)χ(x)En+1(x)dx .

(49)

We treat the remaining integral by introducing the modified current j̃+s
∫

j̃+s (x)ψ(x)dx = qs

∫
fs,0(x,u)Ṽn+1/2 (x,u)ψ

(
X̃n+1(x,u)

)
dxdu .

We then have

qs∆t

2ǫ0

∫
fs,0(x,u)

[
δX ⊗ Ṽn+1/2 − Ṽn+1/2 ⊗ δX

]
∇ψ(X̃n+1)dxdu

= − qs∆t
3

8msǫ0

∫
∇×

{[
j̃+s (x) × M(x) [I + R(x)] [I − N(x)]

]
En+1(x)

}
ψ(x)dx

= − qs∆t
3

8msǫ0

∫
∇×

{[
j̃+s (x)

γ̃n+1/2(x)
× [I + R(x)] [I − N(x)]

]
En+1(x)

}
ψ(x)dx

(50)

where use has been made of the identity U × U ⊗ U = 0. We are then led to
define the tensor ζ as

ζ(x) =
∆t2

8ǫ0

∑

s

qs
ms

j̃+s
γ̃n+1/2

× [I + R(x)] [I − N(x)] . (51)

There follows

qs∆t

2ǫ0

∫
fs,0

(
δX ⊗ Ṽn+1/2 − Ṽn+1/2 ⊗ δX

)
∇ψdxdu = −∆t

∫
∇× (ζEn+1)dx .

(52)
Equation (25) supplemented by Eqs. (46), (49) and (52) should be satisfied for
any test function ψ. As a result, we have to solve the local field equation

En+1 +
c2∆t2

2
∇×∇×En+1 + χEn+1 − ∆t∇×

(
ζEn+1

)
= Q , (53)

where the source term now reads

Q = En − ∆t

ǫ0
j̃n+1/2 + c2∆t∇×Bn−1/2 −

c2∆t2

2
∇×∇× ¯̄En−1 . (54)

We have thus recovered the relativistic implicit method based on the D1 scheme
which was presented in Ref. [23], with the only difference that the source term

now involves the time-averaged field ¯̄En−1. It then appears that the direct implicit
method can be derived as a one-iteration Newton method with the starting values
X(0) = X̃n+1, U(0) = Ũn+1/2 and E(0) = 0.
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3. Numerical resolution

3.1. Resolution of the field equation

In this section, we sketch the numerical procedure used to solve Eq. (53) in
the case of a 2Dx-3Dv phase space with periodic boundary conditions along the
transverse y axis. We have first to evaluate the implicit susceptibilities. These
terms are computed for each macroparticle, yielding χ(Xp,Up) and ζ(Xp,Up),
before being projected onto the (x, y) grid through the usual formulas:

χ(x) =
∑

s

∑

p

S(Xp − x)χ(Xp,Up) , (55)

ζ(x) =
∑

s

∑

p

S(Xp − x)ζ(Xp,Up) . (56)

We then apply the iterative method of Concus and Golub [44] to solve the elliptic
system defined by Eq. (53), which reads in the present case

E(m+1) +
c2∆t2

2
∇×∇×E(m+1) + χE(m+1) − ∆t∇×

(
ζE(m+1)

)
= Q̃(m) (57)

The right-hand side of Eq. (57) is given by

Q̃(m) = Q − (χ− χ0)E(m) + ∆t∇×
[(
ζ − ζ0

)
E(m)

]
(58)

where m is the iteration index and χ0 and ζ0 denote the y-averaged susceptibil-
ities. The fast convergence of the scheme implies, in principle, slow variations
of the field quantities in the y direction, but this has not proved particularly
constraining for the physical situations we have considered.

As is usual in electromagnetic PIC codes, two interleaved meshes are used for
the spatial differencing of the grid quantities. The fields are discretized as fol-
lows: ρi,j , Jz,i,j, Ez,i,j, Jx,i+1/2,j, Ex,i+1/2,j, By,i+1/2,j , Jy,i,j+1/2, Ey,i,j+1/2, Bx,i,j+1/2

and Bz,i+1/2,j+1/2. The χ and ζ are stored at (i, j) except for χ11, ζ11, ζ21, ζ31,
which are located at (i + 1/2, j), and χ22, ζ12, ζ22, ζ32, located at (i, j + 1/2).
Once space-discretized, the above equations are Fourier transformed along the y
direction. Considering Ny grid cells, we obtain Ny one-dimensional equations to
solve. Considering Nx grid cells in the x direction, each equation gives a 6Nx sys-
tem of equations. These systems have a band-diagonal structure and are solved
by a standard LU technique, using routines bandec and banbks of the numerical
recipes library [45]. Details on spatial discretisations and Fourier transformations
used to solve Eq. (57) are given in Appendix A.

3.2. Charge correction

Our method to accumulate charge and current densities [Eqs. (21) and (47)]
does not satisfy charge conservation, which results into the violation of Poisson’s
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equation. This is a common flaw of early electromagnetic PIC codes [1] which
may be corrected by a more sophisticated projection scheme [46, 47]. A well-
known alternative approach, which will be implemented here, is to correct the
electrostatic part of the electric field En+1 solution of Eq. (53) so that it fulfills
Poisson’s equation [1]. Using normalized quantities, our best statement of Gauss’s
law is

∇ · E∗
n+1 = ρn+1 , (59)

where E∗
n+1 represents the sought-for electric field. Using ρn+1 = ρ̃n+1 − ∇ ·(

χE∗
n+1

)
, this can be reformulated as

∇ ·
[
(1 + χ)E∗

n+1

]
= ρ̃n+1 . (60)

Now, taking the divergence of Eq. (53) yields

∇ · [(1 + χ)En+1] = ∇ · Q (61)

with generally ∇·Q 6= ρ̃n+1. We may first think of introducing a potential ψ such
that Q∗ = Q −∇ψ fulfills ∇ · Q∗ = ρ̃n+1, but this correction has been shown to
cause spurious effects [20]. A proper correction makes use of the following form
[20]

Q∗ = Q − (I + χ)∇ψ , (62)

There follows
∇ · [(1 + χ)∇ψ] = ∇ · Q − ρ̃n+1 , (63)

which is equivalent to

∇ · [(1 + χ)∇ψ] = ∇ · [(1 + χ)En+1] − ρ̃n+1 , (64)

where the only unknown is the scalar field ψ. Eventually, the corrected field
E∗

n+1 ensuring Eq. (60) is given by E∗
n+1 = En+1 −∇ψ. Details on the numerical

resolution of Eq. (64) are given in Appendix B.

3.3. Electromagnetic boundary conditions

In this section we describe the implementation of injecting/outgoing boundary
conditions on both sides of the simulation box. Incident and scattered electro-
magnetic waves are assumed linearly polarized and depending on the phase term
k · x − ωt only. Waves polarized in the (x, y) plane then verify

Einc
y = Binc

z cos θi , (65)

Escat
y = −Bscat

z cos θs , (66)

where θi and θs denote respectively the incident and scattered angles. The total
field becomes

Etot
y = Escat

y + Einc
y (67)

= −Btot
z cos θs +

Einc
y

cos θi
(cos θi + cos θs) (68)
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Discretizing with centered finite differences in space and time gives

1

4

(
En+1

y,1,j+1/2 + En+1
y,0,j+1/2 + En

y,1,j+1/2 + En
y,0,j+1/2

)
= −Bn+1/2

z,1/2,j+1/2 cos θs

+ E
inc,n+1/2
y,1/2,j+1/2

(cos θi + cos θs)

cos θi

. (69)

Using Maxwell-Faraday’s equation, we can express En+1
y,0,j+1/2 as a function of the

field values at inner grid points and previous time steps. We have

En+1
y,0,j+1/2 = AEn+1

y,1,j+1/2

(
2 ∆t

∆x
cos θs − 1

)
− 2A∆t

∆y
cos θs

(
En+1

x,1/2,j+1 − En+1
x,1/2,j

)

− 4A cos θsB
n−1/2
z,1/2,j+1/2 +

2A∆t

∆x
cos θs

(
¯̄En−1

y,1,j+1/2 − ¯̄En−1
y,0,j+1/2

)

− 2A∆t

∆y
cos θs

(
¯̄En−1

x,1/2,j+1 − ¯̄En−1
x,1/2,j

)
+

4A

cos θi

(cos θi + cos θs)E
inc,n+1/2
y,1/2,j+1/2

−A
(
En

y,1,j+1/2 + En
y,0,j+1/2

)
, (70)

where the coefficient A is given by

A =

(
1 + 2

∆t

∆x
cos θs

)−1

. (71)

A similar equation can be established for z-polarized waves, which reads

En+1
z,0,j = BEn+1

z,1,j

(
2∆t

∆x cos θs
− 1

)

−B(En
z,0,j + En

z,1,j) +
4B

cos θs

B
n−1/2
y,1/2,j +

2B∆t

∆x cos θs

(
¯̄En−1

z,1,j − ¯̄En−1
z,0,j

)

+ 4BE
inc,n+1/2
z,1/2,j

(
1 +

cos θs

cos θi

)
, (72)

where we have defined the coefficient B as

B =

(
1 +

2∆t

∆x cos θs

)−1

. (73)

Note that the above equations only apply in vacuum. This is realized in
practice by imposing boundary conditions on particles a few grid cells away from
the outer boundaries of the computational domain.

4. Numerical analysis of the adjustable-damping, direct implicit method

4.1. Dispersion relation of electromagnetic waves in vacuum

Our aim here is to quantify the error in phase velocity and the damping
associated with electromagnetic waves as functions of the space and time steps.
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In particular, we will demonstrate the possibility to control the wave damping by
adjusting the parameter θf .

Combining Maxwell-Ampère’s (14) and Maxwell-Faraday’s (15) equations and
assuming propagation in vacuum yield the wave equation

En+1 = 2En −En−1 −
c2∆t2

2
∇×∇×

(
En+1 + ¯̄En−1

)
. (74)

The time-filtered term involves the adjustable damping parameter θf [Eq. (17)]
and can be expanded as

En+1 + ¯̄En−1 = En+1 +
θf

2
En +

(
1 − θf

2

)2

En−1 +

(
1 − θf

2

)2
θf

2
En−2

+

(
1 − θf

2

)2(
θf

2

)2

En−3 + . . . (75)

In a 2-D geometry, taking the electric field in the form En = E0Φ(x, y)zn with
z = exp(−iω∆t) and i =

√
−1, Eq. (75) becomes

En+1 + ¯̄En−1 = E0Φ(x, y)

{
z−1

[(
1 − θf

2

)2

+
θf

2
z + z2

]

+

(
1 − θf

2

)2
θf

2
z−2

[
1 +

θf

2
z−1 +

(
θf

2

)2

z−2 + . . .

]}
zn . (76)

where the adjustable damping parameter θf ∈ [0, 1]. Simplifying the series in the
right-hand side of Eq. (76) yields

En+1 + ¯̄En−1 = E0Φ(x, y)

{
z−1

[(
1 − θf

2

)2

+
θf

2
z + z2

]

+

(
1 − θf

2

)2
θf

2

2z−1

2z − θf

}
zn . (77)

The electromagnetic wave is assumed polarized in the (x, y) plane with a harmonic
dependence Φ(x, y) = exp [i(kxx+ kyy)]. Substituting Eq. (77) into Eq.(74) and
space-differencing the Laplacian leads, we get after some straightforward algrebra
the following third degree polynomial equation

z2 = 2z − 1 −
{[(

1 − θf

2

)2

+
θf

2
z + z2

]
+

(
1 − θf

2

)2
θf

2z − θf

}
Ω2

2
, (78)

where we have introduced

Ω2 = 4

{
c2∆t2

∆x2
sin2

(
kx∆x

2

)
+
c2∆t2

∆y2
sin2

(
ky∆y

2

)}
. (79)
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Equation (78) simplifies as

z3(2 + Ω2) − z2(4 + θf) + z
[
2 + Ω2(1 − θf ) + 2θf

]
− θf = 0 . (80)

Let us first examine the special case θf = 0. The roots of interest are solutions
of

z2(2 + Ω2) − 4z + (2 + Ω2) = 0 (81)

The discriminant ∆ = 4 − (2 + Ω2)2 being always negative, we get the roots
z± = (2 ± i

√
−∆)/(2 + Ω2), which statisfy |z+| = |z−| = 1. We have there-

fore demonstrated the absence of damping when θf = 0. Figure 1 plots the
normalized phase velocity vφ = ℜω

kc
(where k =

√
k2

x + k2
y) for different values

of c∆t/∆x = c∆t/∆y. The phase velocity error grows for increasing ∆x and
∆t/∆x. A value c∆t/∆x > 1, that is, violating the stability constraint of the
standard explicit scheme, therefore implies a moderate spatial step kx∆x . 0.38
(c∆t/∆x = 1.27) so as to avoid excessive (> 5%) phase velocity error, which, in
presence of relativistic particles, may cause unphysical Cerenkov radiation [48].

Let us now address the case of nonzero θf . Figures 2 and 3 plot the normalized
phase velocity vφ/c (left) and damping rate ℑω∆t (right) of the least damped root
of Eq. (80) as functions of (kx∆x, ky∆y) for θf = 1. Cuts of these two quantities
in the plane ky = 0 are represented in Figures 4 and 5 respectively. Again the
phase velocity error grows for increasing ∆x and ∆t/∆x. A value c∆t/∆x > 1,
therefore implies a reduced spatial step kx∆x . 0.28 (c∆t/∆x = 1.27) so as to
keep phase velocity error below 5%. In this case the damping rate, which also
increases with ∆x and ∆t/∆x, proves much too strong for applications relying
on the propagation of an electromagnetic wave over several wavelengths. For
example, assuming kx∆x = 0.2 and c∆t/∆x = 1, a typical travel time of 200∆t
requires |ℑω|∆t < 2.5 × 10−4 for a tolerable wave dissipation (< 5%). As seen
in Fig. 5(right), this condition cannot be fulfilled when θf = 1, which further
demonstrates the need for an adjustable-damping scheme for a proper modeling
of laser-plasma interaction.

4.2. Dispersion relation of electrostatic plasma waves

We will now focus on the numerical relation dispersion of the electron plasma
fluctuations in the case of a uniform, nonrelativistic Maxwellian plasma with a
fixed neutralizing background. For this purpose, we shall adopt the formalism of
Langdon [49] that accounts for both finite space and time steps, as well as allows
for an arbitrary time-differencing scheme of the Lorentz equation. An infinite
number of macroparticles is assumed, yielding a continuous velocity distribution
function (taken in the Maxwellian form). In this framework, as detailed in Ap-
pendix C, the present adjustable-damping, direct implicit algorithm can be easily
managed. The relation dispersion yielding the complex frequency ω as a function
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Figure 1: Phase velocity of the least damped root of Eq. (80) as a function of (kx∆x, ky∆y),
for different values of c∆t/∆x = c∆t/∆y ∈ {0.05, 0.66, 1.28, 1.9, 2.5} (from top to bottom) and
θf = 0. A narrower (kx∆x, ky∆y) range is represented on the right.
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Figure 2: Phase velocity (left) and damping rate ℑω∆t (right) of the least damped root
of Eq. (80) as a function of (kx∆x, ky∆y), for different values of c∆t/∆x = c∆t/∆y ∈
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and θf = 1.
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of the wave number k then reads

1 +
(∆x/λD)2

(k∆x)2
[

sin(k∆x/2)
k∆x/2

]2
+∞∑

p=−∞

[
sin (kp∆x/2)

kp∆x/2

]2m+2
sin(kp∆x)

kp∆x

+∞∑

q=−∞
[1 + ξqZ(ξq)]

+
(ωp∆t)

2/2

(k∆x)2
[

sin(k∆x/2)
k∆x/2

]2
+∞∑

p=−∞
(kp∆x)

2

[
sin (kp∆x/2)

kp∆x/2

]2m+2
sin(kp∆x)

kp∆x
S(θf ) = 0 ,

(82)

where m is the order of the shape factor [1]. kp = k − 2πp/∆x and ωq =
ω − 2πq/∆t are the aliased wave number and frequency, respectively. Z denotes
the plasma dispersion function [50] whose argument is ξq = ωq/

√
2kpvt (where vt

is the electron thermal velocity). Moreover, we have defined the function S as

S(θf ) =

+∞∑

s=0

ei(ω/ωp)s(ωp∆t)

(2/θf)s
e−

1

2
(λD/∆x)2s2(k∆x)2(ωp∆t)2 , (83)

with the value S(0) = 1. We have numerically solved Eq. (82) using the nonlinear
solver STRSCNE developed in Ref. [51] and the algorithm of Ref. [52] to compute
the Z function. We will restrict the following analysis to systems characterized
by a crude resolution of the Debye length (∆x/λD > 1), as is commonplace in
simulations of large-scale, high-density plasmas.

Figure 6 displays the k-dependence of the complex frequency of the fastest
growing (or least damped) mode solution of Eq. (82) for θf = 1, ωp∆t = 2
and various values of ∆x/λD. For ∆x/λD = 32 (i.e., vt∆t/∆x = 0.06), most
of the k-spectrum is damped except for a bounded unstable region located near
k∆x ∼ 2.6 with a maximum growth rate ℑω/ωp ∼ 0.011. This corresponds
to the well-known finite-grid instability [1] commonly afflicting PIC simulations
with ∆x/λD ≫ 1, and responsible for nonphysical field energy growth and plasma
heating. This instability originates from the interplay of the aliased wave num-
bers in Eq. (82). Note also the nonphysical k-dependence of the real frequency
obtained at large ωp∆t : ℜω is significantly below ωp at k = 0 and further drops
with increasing k∆x. As seen in Fig. 6, decreasing ∆x/λD eventually leads to a
complete stabilization of the system along with a displacement of the dominant
mode towards low k values. For ∆x/λD = 4 (i.e., vt∆t/∆x = 0.5), the least
damped mode is thus located at k∆x = 0.76 with ℑω/ωp ∼ −0.1. This evolution
points to a transition between spatial step-dominated and time-step-dominated
regimes.

The dependence of the characteristics of the dominant mode on the ratio
∆x/λD ≫ 1 and the weight factor order is summarized in Table 1 for θf = 1 and
ωp∆t = 2. The benefit of a high-order interpolation scheme is clearly evidenced:
the system turns out to be entirely stabilized up to ∆x/λD = 32 with a quadratic
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Figure 6: Real frequency (blue) and growth rate (red) vs k∆x of the dominant mode solving
Eq. (82) with ωp∆t = 2, θf = 1 and a linear weight factor (n = 1): ∆x/λD = 32 (left), 20
(center) and 4 (right).

∆x/λD 14.3 22.6 32 64
linear -0.024 3.3 × 10−3 0.011 0.01

(2.11) (2.42) (2.58) (2.85)
quadratic -0.04 -0.015 −3.7 × 10−3 2.8 × 10−3

(1.96) (2.30) (2.48) (2.70)
cubic -0.039 -0.018 −8.6 × 10−3 −2 × 10−4

(1.84) (2.14) (2.36) (2.67)

Table 1: Imaginary frequency ℑω/ωp (wavenumber k∆x) of the dominant mode as a function
of the ratio ∆x/λD and the weight factor order for ωp∆t = 2 and θf = 1.

weight factor, and ∆x/λD = 64 with a cubic weight factor. In addition, the
wavenumber of the increasingly damped dominant mode is shifted downward.

A connection between the present calculations and previously published simu-
lation results [13, 21] is provided by Tables 2 and 3, which display the dependence
of the dominant mode on the ratio vt∆t/∆x = ωp∆t/(∆x/λD), as well as on the
damping parameter (the time step being fixed to ωp∆t = 2). An extensive set
of implicit electrostatic PIC simulations using the D1 scheme (i.e., θf = 1) and
linear interpolation has indeed revealed that satisfactory energy conservation can
be achieved in the range [13, 21]

0.1 . vt
∆t

∆x
. 1 (84)

Even though the present stability analysis alone is not expected to account for
the complex issue of numerical self-heating [1, 53], the results of Table 2 are found
in reasonable agreement with the lower bound of the above heuristic range, as
they indicate a complete stabilization of the system for vt∆t/∆x & 0.1 in case
of a linear weigth factor and θf = 1. For lower θf values, stabilization is reached
for increased vt∆t/∆x. Moreover, Table 3 shows that the use of a quadratic
weight factor permits to suppress the finite-grid instability at reduced vt∆t/∆x
(& 0.06 for θf = 1). Similarly to Fig. 6, a clear transition from the high-k spatial
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θf 0 0.1 0.5 1
vt∆t/∆x
0.05 0.0166 0.016 0.0150 0.012

(2.64) (2.64) (2.67) (2.67)
0.0625 0.0192 0.0187 0.0161 0.011

(2.51) (2.51) (2.54) (2.58)
0.1 0.0204 0.0185 0.01 −1.8 × 10−3

(2.18) (2.18) (2.27) (2.33)
0.25 8 × 10−4 −7.4 × 10−3 -0.04 -0.08

(1.05) (1.11) (1.28) (1.46)
0.5 0 -0.01 -0.0508 -0.105

(0.39) (0.54) (0.63) (0.76)
1 0 -0.0102 -0.0532 -0.112

(0.14) (0.27) (0.33) (0.39)

Table 2: Imaginary frequency ℑω/ωp (wave number k∆x) of the dominant mode as a function
of the ratio vt∆t/∆x and the damping parameter θf for ωp∆t = 2 and a linear weight factor.

regime to the low-k temporal regime is evidenced when raising vt∆t/∆x. As
expected, a high-order (m > 1) weight factor, which enables to filter out high
spatial frequencies, proves beneficial only in the high-k, grid-instability regime
(for vt∆t/∆x . 0.25). Note that we have not considered values vt∆t/∆x > 1
since, in the present case, this would imply ∆x/λD < 2, a parameter range of
little practical interest for the aforementioned applications.

Further insight into the stability properties of the adjustable-damping scheme
is given by fixing the ratio vt∆t/∆x = 0.09 and varying accordingly the space
and time steps. Equivalently, within the laser-plasma context which we propose
to address, this can be achieved by fixing the parameters ω0∆x/c and ω0∆t
(where ω0 is the incident laser frequency) and varying the plasma density. The
resulting data is displayed in Table 4 in the ranges 1.26 ≤ ωpt ≤ 8.94 and
14.3 ≤ ∆x/λD ≤ 101.1. One can see that a linear shape factor proves rather
inappropriate for most of the parameter range considered. By contrast, complete
stabilization is achieved for n ≥ 2 weight factors. It is worth noting that, in
terms of laser-plasma parameters, the rightmost column of Table 4 corresponds
to a 2000nc, 1 keV plasma (where nc is the critical density at the laser frequency
ω0) discretized with ω0∆t = 0.2 and ω0∆x/c = 0.1. In addition to accessing
such extreme plasma conditions, employing a cubic weight factor may give the
opportunity to reduce the damping parameter θf .
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θf 0 0.1 0.5 1
vt∆t/∆x
0.05 5.3 × 10−3 5 × 10−3 3.5 × 10−3 10−4

(2.54) (2.54) (2.58) (2.61)
0.0625 5.4 × 10−3 4.8 × 10−3 1.8 × 10−3 −3.7 × 10−3

(2.39) (2.39) (2.45) (2.48)
0.1 3.2 × 10−3 1.1 × 10−3 −8 × 10−3 -0.0207

(1.99) (2.02) (2.14) (2.24)
0.25 0 −8.1 × 10−3 -0.039 -0.078

(0.81) (1.05) (1.22) (1.4)
0.5 0 −9.7 × 10−3 -0.05 -0.103

(0.33) (0.54) (0.64) (0.76)
1 0 -0.01 -0.053 -0.11

(0.14) (0.27) (0.33) (0.39)

Table 3: Imaginary frequency ℑω/ωp (wave number k∆x) of the dominant mode as a function
of the ratio vt∆t/∆x and the damping parameter θf for ωp∆t = 2 and a quadratic (n = 2)
weight factor.

ωp∆t 1.26 2 2.83 3.46 4 5.66 6.32 8.94
∆x/λD 14.3 22.6 32 39.1 45.2 64 71.5 101
linear -0.0036 0.0034 0.0048 0.0047 0.0044 0.0036 0.0033 0.0024

(2.09) (2.41) (2.59) (2.67) (2.74) (2.85) (2.87) (2.96)
quadratic -0.021 -0.015 -0.01 -0.0078 -0.0066 -0.0044 -0.0039 -0.0026

(1.95) (2.3) (2.5) (2.62) (2.68) (2.82) (2.85) (2.92)
cubic -0.022 -0.019 -0.015 -0.013 -0.011 -0.0079 -0.0071 -0.0051

(1.83) (2.16) (2.36) (2.48) (2.56) (2.7) (2.76) (2.85)

Table 4: Imaginary frequency ℑω/ωp (wave number k∆x) of the dominant mode as a function
of the space and time steps and the weight factor order, for a fixed ratio vt∆t/∆x = 0.09 and
θf = 1.
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Figure 7: Propagation of a plane wave with θf = 1 (top, left), θf = 0 (top, right), and a
spatially varying θf profile according to Eq. (85) (bottom).

5. Numerical applications

5.1. Wave propagation in vacuum

Here, we illustrate the capability of the adjustable damping, implicit scheme
implemented in the code ELIXIRS to manage the propagation of electromagnetic
waves in vacuum. Let us consider a plane wave, with normalized vector potential
a0 = 3 and frequency ω0, entering the left-hand side of a 1024∆x × 4∆y box,
with ∆x = 0.2c/ω0, ∆y = 0.8c/ω0 and ∆t = 0.2ω−1

0 . The wave is injected and
absorbed using the procedure detailed in 3.3. Figure 7(left) shows the expected
monotonous damping of the incident wave induced when a spatially uniform
damping parameter θf = 1 is applied. After propagating across the simulation
box, the wave amplitude is measured to be 46% of the initial value, which is close
to the theoretical value (49%). The opposite, dissipation-free case corresponding
to θf = 0 is displayed in Fig. 7(right). Finally, with the problem of laser plasma
interaction in mind, we address the case of a spatially varying θf profile in the
form 





θf = 0, 0 < ω0x/c < 51.2
θf = 1, 51.2 < ω0x/c < 153.6
θf = 0, 153.6 < ω0x/c < 204.8

(85)

Figure 7(center) shows that the discontinuity in θf does not cause significant
spurious effects. This sought-for property is of major interest for modeling
laser-plasma interaction as it allows the laser wave to travel unperturbed in
vacuum over several wavelengths before reaching the overcritical target, whose
numerical stability calls for finite numerical damping. For the sake of com-
pleteness, we have checked that the weak (∼ 0.1% in the present case) re-
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flection arising at the discontinuity surface is consistent with Fresnel’s formula
R = (N(1) − N(0))2/(N(1) + N(0))2, where N(θf ) = c/vφ(θf ) is the numerical
refraction index derived in Sec. 4.1.

5.2. Plasma expansion into vacuum: benchmarking against explicit simulations

As a first test of the implicit Vlasov-Maxwell solver, we simulate the dynamics
of a plasma slab freely expanding into vacuum. The results of the implicit code
ELIXIR are confronted to refined, explicit simulations performed with the code
CALDER [54]. We consider a 0.6c/ωp plasma slab composed of hot (10 keV)
electrons and cold ions. In the implicit case, the simulation box is 103∆x× 4∆y
large, with ∆x = 2c/ωp and ∆y = 0.4c/ωp (yielding the ratios ∆x/λD = 14 and
vt∆t/∆x = 0.14), whereas the explicit simulation handles a 1024∆x× 8∆y box,
with ∆x = ∆y = 0.2c/ωp. A linear weight factor is used in all cases.

Figure 8: Time evolution of the ion density profile: explicit (left) and implicit (right) simulations
with ∆x = 0.2c/ωp, ∆t = 0.1ω−1

p , Np = 6 × 105 and ∆x = 2c/ωp, ∆t = 2ω−1

p , Np = 6 × 104,
respectively. The implicit damping parameter is θf = 1.

Figure 9: Ion phase space at t = 2600ω−1

p : explicit (left) and implicit (right) simulations with
∆x = 0.2c/ωp, ∆t = 0.1ω−1

p , Np = 6 × 105 and ∆x = 2c/ωp, ∆t = 2ω−1
p , Np = 6 × 104,

respectively. The implicit damping parameter is θf = 1.

23



Figure 10: Time evolution of the electron (red) and ion (green) kinetic energies: explicit (left)
and implicit (right) simulations with ∆x = 0.2c/ωp, ∆t = 0.1ω−1

p , Np = 6 × 105 and ∆x =
2c/ωp, ∆t = 2ω−1

p , Np = 6 × 104, respectively. The implicit damping parameter is θf = 1.

Figures 8, 9 and 10 plot the time evolution of the ion density profile, the ion
phase space and the time evolution of the plasma kinetic energies, as simulated
by the implicit and explicit codes. The implicit damping parameter is chosen to
be θf = 1, whereas the total number of macroparticles Np is 6× 104 and 6× 105

in the implicit and explicit cases, respectively. Overall, albeit roughly resolved
and strongly damped (as expected from Table 1), the implicit scheme manages to
satisfactorily capture the finely resolved, explicit results. Yet, the wave damping
gives rise to artificial electron cooling, which results into a weakened ion accel-
eration as seen in Figs. 9 and 10. More quantitatively, the total energy drops
by ∼ 3%, yielding a maximum ion energy of ∼ 160 keV, as compared to ∼ 220
keV in the explicit case. For the sake of completeness, we have carried out addi-
tional calculations so as to assess the influence of the damping parameter and the
number of macroparticules. For each simulation, we have measured the energy
variation and the peak ion energy. The data thus obtained is summarized in
Tables 5 and 6. The implicit scheme behaves reasonably well up to θf = 0.15
with an energy variation < 10%, comparable or better than its explicit counter-
part for an equal number of macroparticles. Increasing the latter from 6× 104 to
6 × 105 approximately halves the energy variation but hardly changes the peak
ion energy. The transition from numerical electron cooling and heating occurs
between θf = 1 and θf = 0.5. Finally, the undamped (θf=0) case is subject to
a much stronger, if still limited, electron heating, which translates into a twofold
overestimate of the peak ion energy.

5.3. A parametric study of plasma self-heating and cooling

We have carried out a series of simulations of the free evolution of an electron-
ion plasma to gauge the potential discrepancy between the idealized linear anal-
ysis of Sec. 4.2 and the actual predictor-corrector numerical scheme. Evidently,
the objective is to gain further insight into the energy conservation properties of
the latter and the predictive capability of the former. These calculations draw
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∆E/E0 Ion peak energy (keV)
Explicit +9.3 % 232
Implicit (θf = 1) -2.8% 162
Implicit (θf = 0.5) +3.1% 208
Implicit (θf = 0.15) +9% 273
Implicit (θf = 0) +19.7% 451

Table 5: Total energy variation and ion peak kinetic energy (keV) at 2600ω−1

p with Np = 6×104.

∆E/E0 Ion peak energy (keV)
Explicit +1 % 221
Implicit (θf = 1) -1.4% 162
Implicit (θf = 0.5) +1.5% 198
Implicit (θf = 0.15) +4.5% 256
Implicit (θf = 0) +12.4% 418

Table 6: Total energy variation and ion peak kinetic energy (keV) at 2600ω−1

p with Np = 6×105.

upon and extend the work of Ref. [21] to the electromagnetic regime. The
system consists of a bounded electron-ion plasma with Te = Ti = 1 keV and
mi/me = 900, extending over half a 300∆x × 4∆y simulation box. We have
scanned the (∆x/λD, ωp∆t) parameter space in the range [5, 60]× [1, 5]. In prac-
tice, after introducing ω0, the frequency of a fictitious electromagnetic wave,
and nc, the corresponding critical density, we have set ∆x = 0.2c/ω0 and var-
ied the ratio ne/nc and the time step so that ∆x/λD ∈ {5, 10, 20, 30, 60} and
ωp∆t ∈ {1, 2, 5}. The damping parameter is θf = 1. The total simulation time
is kept fixed at 1000ω−1

0 . For each simulation, we have calculated the relative
variation of the total kinetic energy per time step (∆K/K0)/N (where ∆K is the
kinetic variation, K0 the initial kinetic energy and N the number of time steps).
To be complete, we have also performed electrostatic calculations, whereby the
electric field is directly computed through the Poisson equation (64).

∆x/λD 5 10 20 30 60
ωp∆t
1 3.2 × 10−5 3.2 × 10−4 1.1 × 10−3 2.1 × 10−3 4.7 × 10−3

2 −9.2 × 10−5 1.5 × 10−4 7.9 × 10−4 1.5 × 10−3 4.5 × 10−3

5 0 −1.6 × 10−4 1.2 × 10−4 4.7 × 10−4 1.7 × 10−3

Table 7: Relative variation of the total kinetic energy per time step (∆K/K0)/N : electrostatic
case and linear weight factor.
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∆x/λD 5 10 20 30 60
ωp∆t
1 2.8 × 10−5 3.2 × 10−4 9.9 × 10−4 1.7 × 10−3 2.8 × 10−3

2 −1.1 × 10−4 1.3 × 10−4 6.9 × 10−4 1.2 × 10−3 2.6 × 10−3

5 −5.8 × 10−5 −2.4 × 10−4 2.9 × 10−5 3 × 10−4 9.5 × 10−4

Table 8: Relative variation of the total kinetic energy per time step (∆K/K0)/N : electromag-
netic case and linear weight factor.

∆x/λD 5 10 20 30 60
ωp∆t
1 −3 × 10−5 4 × 10−5 2.3 × 10−4 4.6 × 10−4 1.1 × 10−3

2 −1.1 × 10−4 −3.5 × 10−5 1.4 × 10−4 3.2 × 10−4 8.3 × 10−4

5 −1.3 × 10−4 −2.2 × 10−4 −10−4 0 2.4 × 10−4

Table 9: Relative variation of the total kinetic energy per time step (∆K/K0)/N : electromag-
netic case and quadratic weight factor.

The results are summarized in Tables 7-9. The associated plots of the kinetic
energies are shown in Figs. 11- 13: each column corresponds to a specific value of
∆x/λD and each line to a specific value of ωp∆t. Note that we have excluded in
these plots the case ∆x/λD = 60 as it always gives rise to significant numerical
heating. We have checked that the plasma kinetic energy makes up for most of the
system energy. Overall, the electrostatic results prove close to the electromagnetic
ones. Satisfactory energy conservation (. 10−4) is obtained for vt∆t/∆x & 0.2
and vt∆t/∆x & 0.1 in the linear and quadratic interpolation cases, respectively.
These lower bound values are in fairly good agreement, albeit slightly higher,
with the linear results of Sec. 4.2. Larger vt∆t/∆x ratios eventually lead to
plasma cooling,

5.4. High intensity laser interaction with an overdense plasma slab

5.4.1. Quasi-one-dimensional simulation

Let us now address the problem of the interaction of a relativistic-intensity
laser pulse with an overcritical plasma, which is the prime motivation behind this
work.

As a first illustration, we consider the case of a quasi-1D laser-plasma sys-
tem. The irradiated target consists of a 60c/ω0-long, 1 keV, 200nc plasma slab
preceded by a 18c/ω0-long density ramp rising linearly from 0 to 200nc . The
incident electromagnetic plane wave has a 120ω−1

0 constant-intensity profile with
a 22ω−1

0 rise time and a normalized amplitude a0 = eE0/mecω0 = 3. The
implicit simulation employs a 2048∆x × 4∆y grid, with ∆x = ∆y = 0.1c/ω0
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Figure 11: Time evolution of the total (blue), ion (red) and electron (green) energies: elec-
trostatic case with linear weight factor. ∆x/λD = (5, 10, 20, 30) from left to right and
ωp∆t = (1, 2, 5) from top to bottom.
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Figure 12: Time evolution of the total (blue), ion (red) and electron (green) energies: elec-
tromagnetic case with linear weight factor. ∆x/λD = (5, 10, 20, 30) from left to right and
ωp∆t = (1, 2, 5) from top to bottom.
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Figure 13: Time evolution of the total (blue), ion (red) and electron (green) energies: electro-
magnetic case with quadratic weight factor.
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and ∆t = 0.14ω−1
0 , yielding, in terms of plasma parameters, ∆x/λD = 32 and

ωp∆t = 2 (vt∆t/∆x = 0.06). The damping parameter in the electromagnetic
solver, as well as in the particle pusher, is set to zero in the vacuum region and
the moderately dense plasma region up to ne = 60nc, and to unity in the denser
plasma region. Guided by the results of Sec. 5.3, we make use of a quadratic
weight factor to reduce the numerical heating. The number of macroparticles
per cell Np is varied from 100 to 1300. These calculations are compared with
explicit simulations using the same parameters except for a decreased time step
∆t = 0.05ω−1

0 so as to fulfill the Courant stability condition.

Explicit Implicit (θf = 0) Implicit (θf = 1 if ne > 60nc)
Np = 1300 +14.4% +6% −3%
Np = 400 +15.3% +10.5% −1%
Np = 100 +22% +25.5% +12.7%

Table 10: Quasi-1D laser-plasma interaction: energy variation in the explicit simulations with
∆t = 0.05ω−1

0
and the implicit simulations with ∆t = 0.14ω−1

0
and varying θf . See text for

other simulation parameters.

Table 10 compares the values of the total energy variation (calculated after
complete reflection of the laser pulse) as obtained in the explicit and implicit
cases. Results from implicit simulations with zero damping are also displayed.
Overall, except for Np = 100, for which case the three schemes behave similarly,
the implicit simulations are found to achieve better energy conservation than
their explicit counterparts. The benefit of a strongly damped scheme in the
densest region of the plasma is mostly evidenced for Np = 1300 and 400. The
not-so-good performances of the explicit calculations prompted us to carry out
an additional, more refined explicit simulation that can serve more properly as
a reference calculation. This simulation made use of a 4096∆x× 8∆y grid with
∆x = ∆y = 0.05c/ω0 and ∆t = 0.03ω−1

0 , as well as of a third-order weight factor
with Np = 650. It yielded a total energy variation of 4%.

The electron (x, px) phase space (integrated in the y-direction) is displayed
in Fig. 14 for both explicit and implicit schemes. Consistently with the well-
known ponderomotive heating mechanism arising at relativistic laser intensities,
fast electrons are accelerated into the target as bunches separated by half the
laser wavelength [55]. The explicit simulation predicts maximum electron mo-
menta about 20% higher than that predicted by the implicit simulation. Also, as
a result of the damping of longitudinal beam-plasma modes, the implicit simula-
tion exhibits a longer-lived separation between the thermal electrons and the fast
electrons as the latter propagate through the target. In an actual solid-density
configuration, though, the beam-plasma wave mixing observed in the explicit
case should be suppressed by collisions as demonstrated in Ref. [56]. Yet, these
discrepancies do not translate into major differences in the electron energy dis-
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Figure 14: Electron (x, px) phase space at t = 198ω−1

0
: explicit simulation (left) and implicit

simulation with θf = 1 (right). In both cases, Np = 1300. See text for other simulation
parameters.

Figure 15: Electron energy distribution at different times: explicit simulation (red) and implicit
simulation (blue). Energy is normalized by mec

2.

Figure 16: Ion (x, px) phase space at t = 792ω−1

0
: explicit simulation (left) and implicit simu-

lation with θf = 1 (right). In both cases, Np = 1300. See text for other simulation parameters.
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Figure 17: Time evolution of the electron (red) and ion (green) kinetic energies: explicit sim-
ulation (left) and implicit simulation with θf = 1 (right). In both cases, Np = 1300. See text
for other simulation parameters.

tribution as shown at three successive times in Fig. 15. In particular, the slope
of the high-energy tail of the spectra is satisfactorily reproduced. The reduced
electron heating gives rise in turn to a ∼ 15% slower, space-charge-driven ion
acceleration into vacuum as depicted by the ion (x, px) phase spaces of Fig. 16.

5.5. Two-dimensional simulations

We now consider a fully two-dimensional laser-plasma system. The electron-
ion plasma slab has a peak density of 200nc, a temperature of 1 keV and a
thickness of 6c/ω0. A 12c/ω0-long linear density ramp is added in front of the
target. The simulation box consists of a 1024 × 512 grid with ∆x = ∆y =
0.1c/ω0 (∆x/λD = 32). The incoming laser pulse has unchanged parameters
except for a 12c/ω0 FWHM Gaussian transverse profile. Open and periodic
boundary conditions are applied for the electromagnetic fields along the x- and
y-axis, respectively. Due to memory constraints, we use a rather small number
of macroparticles Np = 40. So as to stabilize the system, in addition to using
a quadratic weight factor, the time step is significantly increased as compared
to the previous simulations: ∆t = 0.3ω−1

0 , which corresponds to ωp∆t = 4.2
and vt∆t/∆x = 0.13. Particles are subject to periodic boundary conditions in
the y-direction, and reinjected with their initial temperature in the x-direction.
The damping parameter in the electromagnetic solver, as well as in the particle
pusher, is set to zero in the vacuum region and the moderately dense plasma
region up to ne = 30nc. Two maximum values of the spatially varying damping
parameter have been tried in the denser plasma region: θf = 0.1 and 0.5. The
explicit simulation of reference makes use of a third-order weight factor with
the parameters ∆x = ∆y = 0.08c/ω0, ∆t = 0.05ω−1

0 and Np = 160. This
parallel calculation takes 4.5h on 64 1.6 GHz Itanium 2 processors. By contrast,
the (sequential) implicit simulations take 27h on a 2.66 GHz Intel Xeon X5355
processor.
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The time evolution of the particle kinetic energies is displayed in Fig. 18. All
simulations predict about the same peak electron energy. Yet, the damped im-
plicit calculations yield a faster decreasing electron energy. The total energy vari-
ation, evaluated over the time interval 215 < ω0t < 715 (that is, after complete
reflection of the laser pulse and before the fastest ions hit the box boundaries)
is −12% and −15% for the θf = 0.1 and θf = 0.5 implicit cases, respectively, as
compared to +5% in the explicit case.

Figure 18: Time evolution of the electron (red) and ion (green) kinetic energies: explicit simu-
lation (left), implicit simulations with θf = 0.1 (center) and θf = 0.5 (right).

Despite their crude time resolution and limited number of macroparticles, the
implicit calculations manage to reproduce quite accurately the salient features
of the fast electron and ion generation. This is evidenced by the electron and
ion (x, px) phase spaces of Figs. 19 and 20, as well as by the electron energy
spectra of Fig. 22. As in the previous Section, if to a lesser extent due to the
weaker numerical damping employed here, the implicit simulations somewhat un-
derestimate the maximum electron energies. A 2-D picture of the fast electron
generation is provided by the map of the electron kinetic energy density shown in
Fig. 23. A reasonable agreement is observed between the three cases, each calcu-
lation showing the characteristic 2ω0-bunched propagation of the fast electrons
and their breakout into vacuum.

Figure 19: Electron (x, px) phase space at t = 96ω−1

0
: explicit simulation (left) and implicit

simulations with θf = 0.1 (center) and θf = 0.5 (right).
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Figure 20: Ion (x, px) phase space at t = 523ω−1

0
: explicit simulation (left) and implicit simu-

lations with θf = 0.1 (center) and θf = 0.5 (right).

Figure 21: Electron energy distribution at different times: explicit simulation (red) and implicit
simulation with θf = 0.1 (blue). Energy is normalized by mec

2.
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Figure 22: Electron energy distribution at different times: explicit simulation (red) and implicit
simulation with θf = 0.5 (blue). Energy is normalized by mec

2.

6. Conclusion

This paper has been devoted to the application of the relativistic direct im-
plicit method to the problem of laser-plasma interaction. In contrast to closely
related works [26, 27, 28], our scheme, implemented inside the 2Dx-3Dv code
ELIXIRS, allows for high-order weight functions and adjustable damping of the
high-frequency waves. The latter capability, which extends to electromagnetic
waves a method originally designed by Friedman [41] for electrostatic waves, per-
mits to manage within a unified algorithm the dissipation-free, Courant condition-
free propagation of the incident laser pulse through vacuum, while suppressing
the need to resolve the high-frequency collective modes inside the dense plasma
region. After having presented an original derivation of the adjustable-damping,
direct implicit method as a simplified, one-iteration Newton scheme, we have
carried out a thorough analysis of its numerical properties regarding both elec-
tromagnetic and electrostatic waves. The latter study, accounting for the effects
of finite ∆t and ∆x, the weight factor order and the damping parameter is found
to provide useful hints when compared to the simulation results of the free evolu-
tion of a plasma slab. Several numerical tests have been presented and successfuly
benchmarked against finely resolved explicit simulations. In particular, we have
demonstrated the ability of the code to capture the main features of the laser-
plasma interaction despite cruder space-time resolution. Yet, our code being still
sequential, its increased stability domain remains insufficient to access the large
space- and time-scales managed nowadays by massively parallel explicit codes.
The parallelization of our code is therefore required and will be the subject of a
future work.
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Figure 23: Electron kinetic energy density (normalized by mec
2nc) at t = 67ω−1

0
and t = 86ω−1

0
:

explicit simulation (top) and implicit simulations with θf = 0.1 (center) and θf = 0.5 (bottom).
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A. Numerical implementation of the field equation

We detail here the numerical procedure to solve Eq. (57) within a 2D ge-
ometry. The Concus and Golub iterative method [44] is applied to the three
components of Eq. (57). The x-component writes
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The y-component writes
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The z-component writes
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x,i−1/2,j+1 −En+1

x,i+1/2,j−1 − En+1
x,i−1/2,j−1

)

+
∆t

∆y
ζ12,0
i

(
En+1

y,i,j+1/2 −En+1
y,i,j−1/2

)
+

∆t

2∆y
ζ13,0
i

(
En+1

z,i,j+1 − En+1
z,i,j−1

)

= Q̃z,i,j. (88)

The right-hand sides of Eqs. (86)-(88) are given by

Q̃
(m)
x,i+1/2,j = Qx,i+1/2,j − (χ11

i+1/2,j − χ11,0
i+1/2,j)E

(m)
x,i+1/2,j

− 1

4

[
(χ12

i,j − χ12,0
i )

(
E

(m)
y,i,j+1/2 + E

(m)
y,i,j−1/2

)

+(χ12
i+1,j − χ12,0

i+1 )
(
E

(m)
y,i+1,j−1/2 + E

(m)
y,i+1,j+1/2

)]
− (χ13

i,j − χ13,0
i,j )E

(m)
z,i,j

+
∆t

2∆y

[(
ζ31
i+1/2,j+1 − ζ31,0

i+1/2

)
E

(m)
x,i+1/2,j+1 −

(
ζ31
i+1/2,j−1 − ζ31,0

i+1/2

)
E

(m)
x,i+1/2,j−1

]

+
∆t

2∆y

[(
ζ32
i,j+1/2 − ζ32,0

i

)
E

(m)
y,i,j+1/2 +

(
ζ32
i+1,j+1/2 − ζ32,0

i+1

)
E

(m)
y,i+1,j+1/2

−
(
ζ32
i,j−1/2 − ζ32,0

i

)
E

(m)
y,i,j−1/2 −

(
ζ32
i+1,j−1/2 − ζ32,0

i+1

)
E

(m)
y,i+1,j−1/2

]

+
∆t

4∆y

[(
ζ33
i+1,j+1 − ζ33,0

i+1

)
E

(m)
z,i+1,j+1 +

(
ζ33
i,j+1 − ζ33,0

i

)
E

(m)
z,i,j+1

−
(
ζ33
i+1,j−1 − ζ33,0

i+1

)
E

(m)
z,i+1,j−1 −

(
ζ33
i,j−1 − ζ33,0

i

)
E

(m)
z,i,j−1

]
, (89)
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Q̃
(m)
y,i,j+1/2 =Qy,i,j+1/2 −

1

4

[(
χ21

i,j − χ21,0
i

) (
E

(m)
x,i−1/2,j + E

(m)
x,i+1/2,j

)

+
(
χ21

i,j+1 − χ21,0
i

) (
E

(m)
x,i−1/2,j+1 + E

(m)
x,i+1/2,j+1

)]
− (χ22

i,j+1/2 − χ22,0
i )E

(m)
y,i,j+1/2

− 1

2

[(
χ23

i,j − χ23,0
i

)
E

(m)
z,i,j +

(
χ23

i,j+1 − χ23,0
i

)
E

(m)
z,i,j+1

]

− ∆t

2∆x

[(
ζ31
i+1/2,j − ζ31,0

i+1/2

)
E

(m)
x,i+1/2,j +

(
ζ31
i+1/2,j+1 − ζ31,0

i+1/2

)
E

(m)
x,i+1/2,j+1

−
(
ζ31
i−1/2,j − ζ31,0

i−1/2

)
E

(m)
x,i−1/2,j −

(
ζ31
i−1/2,j+1 − ζ31,0

i−1/2

)
E

(m)
x,i−1/2,j+1

]

− ∆t

2∆x

[(
ζ32
i+1,j+1/2 − ζ32,0

i+1

)
E

(m)
y,i+1,j+1/2 −

(
ζ32
i−1,j+1/2 − ζ32,0

i−1

)
E

(m)
y,i−1,j+1/2

]

− ∆t

4∆x

[(
ζ33
i+1,j − ζ33,0

i+1

)
E

(m)
z,i+1,j +

(
ζ33
i+1,j+1 − ζ33,0

i+1

)
E

(m)
z,i+1,j+1

−
(
ζ33
i−1,j − ζ33,0

i−1

)
E

(m)
z,i−1,j −

(
ζ33
i−1,j+1 − ζ33,0

i−1

)
E

(m)
z,i−1,j+1

]
,

Q̃
(m)
z,i,j =Qz,i,j −

1

2
(χ31

i,j − χ31,0
i )

(
E

(m)
x,i−1/2,j + E

(m)
x,i+1/2,j

)

− 1

2

(
χ32

i,j − χ32,0
i

) (
E

(m)
y,i,j−1/2 + E

(m)
y,i,j+1/2

)
−
(
χ33

i,j − χ33,0
i

)
E

(m)
z,i,j

+
∆t

∆x

[(
ζ21
i+1/2,j − ζ21,0

i+1/2

)
E

(m)
x,i+1/2,j −

(
ζ21
i−1/2,j − ζ21,0

i−1/2

)
E

(m)
x,i−1/2,j

]

+
∆t

4∆x

[(
ζ22
i+1,j−1/2 − ζ22,0

i+1

)
E

(m)
y,i+1,j−1/2 +

(
ζ22
i+1,j+1/2 − ζ22,0

i+1

)
E

(m)
y,i+1,j+1/2

−
(
ζ22
i−1,j−1/2 − ζ22,0

i−1

)
E

(m)
y,i−1,j−1/2 −

(
ζ22
i−1,j+1/2 − ζ22,0

i−1

)
E

(m)
y,i−1,j+1/2

]

+
∆t

2∆x

[(
ζ23
i+1,j − ζ23,0

i+1

)
E

(m)
z,i+1,j −

(
ζ23
i−1,j − ζ23,0

i−1

)
E

(m)
z,i−1,j

]

− ∆t

4∆y

[(
ζ11
i+1/2,j+1 − ζ11,0

i+1/2

)
E

(m)
x,i+1/2,j+1 +

(
ζ11
i−1/2,j+1 − ζ11,0

i−1/2

)
E

(m)
x,i−1/2,j+1

−
(
ζ11
i+1/2,j−1 − ζ11,0

i+1/2

)
E

(m)
x,i+1/2,j−1 −

(
ζ11
i−1/2,j−1 − ζ11,0

i−1/2

)
E

(m)
x,i−1/2,j−1

]

− ∆t

∆y

[(
ζ12
i,j+1/2 − ζ12,0

i

)
E

(m)
y,i,j+1/2 −

(
ζ12
i,j−1/2 − ζ12,0

i

)
E

(m)
y,i,j−1/2

]

− ∆t

2∆y

[(
ζ13
i,j+1 − ζ13,0

i

)
E

(m)
z,i,j+1 −

(
ζ13
i,j−1 − ζ13,0

i

)
E

(m)
z,i,j−1

]
.

Assuming periodicity of the electric field along the y direction, we Fourier trans-
form Eqs. (86)-(88) in this direction. We introduce ER

k and EI
k the real and

imaginary parts of the Fourier transformed electric field. For notational simplic-
ity, the index k will be omitted in the following. The real part of the Fourier
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transform of Eq. (86) reads

(
ER

y

)
i

{−c2∆t2
2∆x∆y

(
cos(k̃∆y) − 1

)
+
χ12,0

i

4

(
cos(k̃∆y) + 1

)
− ∆t

2∆y
ζ32,0
i

(
cos(k̃∆y) − 1

)}

+
(
EI

y

)
i

{
c2∆t2

2∆x∆y
− χ12,0

i

4
+

∆t

2∆y
ζ32,0
i

}
sin(k̃∆y)

+
(
ER

z

)
i

{
χ13,0

i

2

}
+
(
EI

z

)
i

{
∆t

2∆y
ζ33,0
i sin(k̃∆y)

}

+
(
ER

x

)
i+1/2

{
1 − c2∆t2

∆y2

(
cos(k̃∆y) − 1

)
+ χ11,0

i+1/2

}
+
(
EI

x

)
i+1/2

{
∆t

∆y
ζ31,0
i+1/2 sin(k̃∆y)

}

+
(
ER

y

)
i+1

{
c2∆t2

2∆x∆y

(
cos(k̃∆y) − 1

)
+
χ12,0

i+1

4

(
cos(k̃∆y) + 1

)
− ∆t

2∆y
ζ32,0
i+1

(
cos(k̃∆y) − 1

)}

+
(
EI

y

)
i+1

{
−c2∆t2
2∆x∆y

− χ12,0
i+1

4
+

∆t

2∆y
ζ32,0
i+1

}
sin(k̃∆y)

+
(
ER

z

)
i+1

{
χ13,0

i+1

2

}
+
(
EI

z

)
i+1

{
∆t

2∆y
ζ33,0
i+1 sin(k̃∆y)

}
=
(
Q̃R

x

)
i+1/2

. (90)

The imaginary part of the Fourier transform of Eq. (86) reads

(
ER

y

)
i

{
− c2∆t2

2∆x∆y
+
χ12,0

i

4
− ∆t

2∆y
ζ32,0
i

}
sin(k̃∆y)

+
(
EI

y

)
i

{
− c2∆t2

2∆x∆y

(
cos(k̃∆y) − 1

)
+
χ12,0

i

4

(
cos(k̃∆y) + 1

)
− ∆t

2∆y
ζ32,0
i

(
cos(k̃∆y) − 1

)}

+
(
ER

z

)
i

{
− ∆t

2∆y
ζ33,0
i sin(k̃∆y)

}
+
(
EI

z

)
i

{
χ13,0

i

2

}

+
(
ER

x

)
i+1/2

{
−∆t

∆y
ζ31,0
i+1/2 sin(k̃∆y)

}
+
(
EI

x

)
i+1/2

{
1 − c2∆t2

∆y2

(
cos(k̃∆y) − 1

)
+ χ11,0

i+1/2

}

+
(
ER

y

)
i+1

{
c2∆t2

2∆x∆y
+
χ12,0

i+1

4
− ∆t

2∆y
ζ32,0
i+1

}
sin(k̃∆y)

+
(
EI

y

)
i+1

{
c2∆t2

2∆x∆y

(
cos(k̃∆y) − 1

)
+
χ12,0

i+1

4

(
cos(k̃∆y) + 1

)
− ∆t

2∆y
ζ32,0
i+1

(
cos(k̃∆y) − 1

)}

+
(
ER

z

)
i+1

{
− ∆t

2∆y
ζ33,0
i+1 sin(k̃∆y)

}
+
(
EI

z

)
i+1

{
χ13,0

i+1

2

}
=
(
Q̃I

x

)

i+1/2
. (91)
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The real part of the Fourier transform of Eq. (87) reads

(
ER

y

)
i−1

{
−c

2∆t2

2∆x2
− ∆t

2∆x
ζ32,0
i−1

}

+
(
ER

z

)
i−1

{
− ∆t

4∆x
ζ33,0
i−1

(
cos(k̃∆y) + 1

)}
+
(
EI

z

)
i−1

{
− ∆t

4∆x
ζ33,0
i−1 sin(k̃∆y)

}

+
(
ER

x

)
i−1/2

{
c2∆t2

2∆x∆y

(
cos(k̃∆y) − 1

)
+
χ21,0

i

4

(
cos(k̃∆y) + 1

)
− ∆t

2∆x
ζ31,0
i−1/2

(
cos(k̃∆y) + 1

)}

+
(
EI

x

)
i−1/2

{
c2∆t2

2∆x∆y
+
χ21,0

i

4
− ∆t

2∆x
ζ31,0
i−1/2

}
sin(k̃∆y)

+
(
ER

y

)
i

{
1 +

c2∆t2

∆x2
+ χ22,0

i

}

+
(
ER

z

)
i

{
χ23,0

i

2

(
cos(k̃∆y) + 1

)}
+
(
EI

z

)
i

{
χ23,0

i

2
sin(k̃∆y)

}

+
(
ER

x

)
i+1/2

{
− c2∆t2

2∆x∆y

(
cos(k̃∆y) − 1

)
+
χ21,0

i

4

(
cos(k̃∆y) + 1

)
+

∆t

2∆x
ζ31,0
i+1/2

(
cos(k̃∆y) + 1

)}

+
(
EI

x

)
i+1/2

{
− c2∆t2

2∆x∆y
+
χ21,0

i

4
+

∆t

2∆x
ζ31,0
i+1/2

}
sin(k̃∆y)

+
(
ER

y

)
i+1

{
−c

2∆t2

2∆x2
+

∆t

2∆x
ζ32,0
i+1

}

+
(
ER

z

)
i+1

{
∆t

4∆x
ζ33,0
i+1

(
cos(k̃∆y) + 1

)}
+
(
EI

z

)
i+1

{
∆t

4∆x
ζ33,0
i+1 sin(k̃∆y)

}
=
(
Q̃R

y

)
i
.

(92)
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The imaginary part of the Fourier transform of Eq. (87) reads

(
EI

y

)
i−1

{
−c

2∆t2

2∆x2
− ∆t

2∆x
ζ32,0
i−1

}

+
(
ER

z

)
i−1

{
∆t

4∆x
ζ33,0
i−1 sin(k̃∆y)

}
+
(
EI

z

)
i−1

{
− ∆t

4∆x
ζ33,0
i−1

(
cos(k̃∆y) + 1

)}

+
(
ER

x

)
i−1/2

{
− c2∆t2

2∆x∆y
sin(k̃∆y) − χ21,0

i

4
sin(k̃∆y) +

∆t

2∆x
ζ31,0
i−1/2 sin(k̃∆y)

}

+
(
EI

x

)
i−1/2

{
c2∆t2

2∆x∆y

(
cos(k̃∆y) − 1

)
+
χ21,0

i

4

(
cos(k̃∆y) + 1

)
− ∆t

2∆x
ζ31,0
i−1/2

(
cos(k̃∆y) + 1

)}

+
(
EI

y

)
i

{
1 +

c2∆t2

∆x2
+ χ22,0

i

}

+
(
ER

z

)
i

{
−χ

23,0
i

2
sin(k̃∆y)

}
+
(
EI

z

)
i

{
χ23,0

i

2

(
cos(k̃∆y) + 1

)}

+
(
ER

x

)
i+1/2

{
c2∆t2

2∆x∆y
sin(k̃∆y) − χ21,0

i

4
sin(k̃∆y) − ∆t

2∆x
ζ31,0
i+1/2 sin(k̃∆y)

}

+
(
EI

x

)
i+1/2

{
− c2∆t2

2∆x∆y

(
cos(k̃∆y) − 1

)
+
χ21,0

i

4

(
cos(k̃∆y) + 1

)
+

∆t

2∆x
ζ31,0
i+1/2

(
cos(k̃∆y) + 1

)}

+
(
EI

y

)
i+1

{
−c

2∆t2

2∆x2
+

∆t

2∆x
ζ32,0
i+1

}

+
(
ER

z

)
i+1

{
− ∆t

4∆x
ζ33,0
i+1 sin(k̃∆y)

}
+
(
EI

z

)
i+1

{
∆t

4∆x
ζ33,0
i+1

(
cos(k̃∆y) + 1

)}
=
(
Q̃I

y

)
i
.

(93)
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The real part of the Fourier transform of Eq. (88) reads

(
ER

y

)
i−1

{
∆t

4∆x
ζ22,0
i−1

(
cos(k̃∆y) + 1

)}
+
(
EI

y

)
i−1

{
− ∆t

4∆x
ζ22,0
i−1 sin(k̃∆y)

}

+
(
ER

z

)
i−1

{
−c

2∆t2

2∆x2
+

∆t

2∆x
ζ23,0
i−1

}

+
(
ER

x

)
i−1/2

{
χ31,0

i

2
+

∆t

∆x
ζ21,0
i−1/2

}
+
(
EI

x

)
i−1/2

{
− ∆t

2∆y
ζ11,0
i sin(k̃∆y)

}

+
(
ER

y

)
i

{
χ32,0

i

2

(
cos(k̃∆y) + 1

)
+

∆t

∆y
ζ12,0
i

(
cos(k̃∆y) − 1

)}

+
(
EI

y

)
i

{
−χ

32,0
i

2
sin(k̃∆y) − ∆t

∆y
ζ12,0
i sin(k̃∆y)

}

+
(
ER

z

)
i

{
1 +

c2∆t2

∆x2
+
c2∆t2

∆y2

(
1 − cos(k̃∆y)

)
+ χ33,0

i

}

+
(
EI

z

)
i

{
−∆t

∆y
ζ13,0
i sin(k̃∆y)

}

+
(
ER

x

)
i+1/2

{
χ31,0

i

2
− ∆t

∆x
ζ21,0
i+1/2

}
+
(
EI

x

)
i+1/2

{
− ∆t

2∆y
ζ11,0
i sin(k̃∆y)

}

+
(
ER

y

)
i+1

{
− ∆t

4∆x
ζ22,0
i+1

(
cos(k̃∆y) + 1

)}
+
(
EI

y

)
i+1

{
∆t

4∆x
ζ22,0
i+1 sin(k̃∆y)

}

+
(
ER

z

)
i+1

{
−c

2∆t2

2∆x2
− ∆t

2∆x
ζ23,0
i+1

}
=
(
Q̃R

z

)
i
. (94)
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The imaginary part of the Fourier transform of Eq. (88) reads

(
ER

y

)
i−1

{
∆t

4∆x
ζ22,0
i−1 sin(k̃∆y)

}
+
(
EI

y

)
i−1

{
∆t

4∆x
ζ22,0
i−1

(
cos(k̃∆y) + 1

)}

+
(
EI

z

)
i−1

{
−c

2∆t2

2∆x2
+

∆t

2∆x
ζ23,0
i−1

}

+
(
ER

x

)
i−1/2

{
∆t

2∆y
ζ11,0
i sin(k̃∆y)

}
+
(
EI

x

)
i−1/2

{
χ31,0

i

2
+

∆t

∆x
ζ21,0
i−1/2

}

+
(
ER

y

)
i

{
χ32,0

i

2
sin(k̃∆y) +

∆t

∆y
ζ12,0
i sin(k̃∆y)

}

+
(
EI

y

)
i

{
χ32,0

i

2

(
cos(k̃∆y) + 1

)
+

∆t

∆y
ζ12,0
i

(
cos(k̃∆y) − 1

)}

+
(
ER

z

)
i

{
∆t

∆y
ζ13,0
i sin(k̃∆y)

}

+
(
EI

z

)
i

{
1 +

c2∆t2

∆x2
+
c2∆t2

∆y2

(
1 − cos(k̃∆y)

)
+ χ33,0

i

}

+
(
ER

x

)
i+1/2

{
∆t

2∆y
ζ11,0
i sin(k̃∆y)

}
+
(
EI

x

)
i+1/2

{
χ31,0

i

2
− ∆t

∆x
ζ21,0
i+1/2

}

+
(
ER

y

)
i+1

{
− ∆t

4∆x
ζ22,0
i+1 sin(k̃∆y)

}
+
(
EI

y

)
i+1

{
− ∆t

4∆x
ζ22,0
i+1

(
cos(k̃∆y) + 1

)}

+
(
EI

z

)
i+1

{
−c

2∆t2

2∆x2
− ∆t

2∆x
ζ23,0
i+1

}
=
(
Q̃I

z

)
i
. (95)

Considering Nx grid points along x-direction Eqs. (90)-(95) can be formulated as
a band-diagonal system of equations, which we solve using a LU technique [45]
for each of the Ny modes of the discrete Fourier transform. Then we compute
the field solution in real space by inverse Fourier transformation.

B. Numerical implementation of the charge correction step

We detail here the numerical procedure to solve Eq. (64) within a 2D geom-
etry. As for the wave equation, we make use of the Concus and Golub iterative
method [44], which writes in the present case

−∇ ·
[
(1 + χ0)∇ψ(m+1)

]
= ρ−∇ · [(1 + χ)En+1] + ∇ ·

[
(χ− χ0)∇ψ(m)

]
(96)

where χ0 =
[
χkl,0

]
1≤k,l≤3

denotes the y-averaged χ susceptibility tensor with

χkl,0 =< χkl >y. En+1 is the solution of the wave equation (53) and m denotes
the iteration index. Omitting the latter, we discretize the above equation in the
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form

− 1

∆x

[(
1 + χ11,0

i+1/2,j

) 1

∆x
(ψi+1,j − ψi,j) −

(
1 + χ11,0

i−1/2,j

) 1

∆x
(ψi,j − ψi−1,j)

]

− 1

2∆x

[
χ12,0

i+1,j

1

2∆y
(ψi+1,j+1 − ψi+1,j−1) − χ12,0

i−1,j

1

2∆y
(ψi−1,j+1 − ψi−1,j−1)

]

− 1

2∆y

[
χ21,0

i,j+1

1

2∆x
(ψi+1,j+1 − ψi−1,j+1) − χ21,0

i,j−1

1

2∆x
(ψi+1,j−1 − ψi−1,j−1)

]

− 1

∆y

[(
1 + χ22,0

i,j+1/2

) 1

∆y
(ψi,j+1 − ψi,j) −

(
1 + χ22,0

i,j−1/2

) 1

∆y
(ψi,j − ψi,j−1)

]

= Si,j , (97)

where we have defined the source term

S =∂x

[
(χ11 − χ11,0)∂xψ + (χ12 − χ12,0)∂yψ

]

+∂y

[
(χ21 − χ21,0)∂xψ + (χ22 − χ22,0)∂yψ

]
+ ρ

−∂x

[
(1 + χ11)Ex

]
− ∂x

(
χ12Ey

)
− ∂x

(
χ13Ez

)

−∂y

(
χ21Ex

)
− ∂y

[
(1 + χ22)Ey

]
− ∂y

(
χ23Ez

)
(98)
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A centered spatial discretization of Eq. (98) is given by

Si,j = +
1

∆x

[
(χ11

i+1/2,j − χ11,0
i+1/2)

1

∆x
(ψi+1,j − ψi,j) − (χ11

i−1/2,j − χ11,0
i−1/2)

1

∆x
(ψi,j − ψi−1,j)

]

+
1

2∆x

[
(χ12

i+1,j − χ12,0
i+1 )

1

2∆y
(ψi+1,j+1 − ψi+1,j−1)

−(χ12
i−1,j − χ12,0

i−1 )
1

2∆y
(ψi−1,j+1 − ψi−1,j−1)

]

+
1

2∆y

[
(χ21

i,j+1 − χ21,0
i )

1

2∆x
(ψi+1,j+1 − ψi−1,j+1)

−(χ21
i,j−1 − χ21,0

i )
1

2∆x
(ψi+1,j−1 − ψi−1,j−1)

]

+
1

∆y

[
(χ22

i,j+1/2 − χ22,0
i )

1

∆y
(ψi,j+1 − ψi,j) − (χ22

i,j−1/2 − χ22,0
i )

1

∆y
(ψi,j − ψi,j−1)

]

− 1

∆x

[
(1 + χ11

i+1/2,j)Ex,i+1/2,j − (1 + χ11
i−1/2,j)Ex,i−1/2,j

]

− 1

2∆x

[
χ12

i+1,j

2

(
Ey,i+1,j+1/2 + Ey,i+1,j−1/2

)
−
χ12

i−1,j

2

(
Ey,i−1,j+1/2 + Ey,i−1,j−1/2

)]

− 1

2∆x

[
χ13

i+1,jEz,i+1,j − χ13
i−1,jEz,i−1,j

]

− 1

2∆y

[
χ21

i,j+1

2

(
Ex,i+1/2,j+1 + Ex,i−1/2,j+1

)
−
χ21

i,j−1

2

(
Ex,i+1/2,j−1 + Ex,i−1/2,j−1

)]

− 1

∆y

[(
1 + χ22

i,j+1/2

)
Ey,i,j+1/2 −

(
1 + χ22

i,j−1/2

)
Ey,i,j−1/2

]

− 1

2∆y

[
χ23

i,j+1Ez,i,j+1 − χ23
i,j−1Ez,i,j−1

]

+ ρi,j (99)

The above equations are Fourier transformed along the y direction. Considering
Ny grid cells we have to solve Ny one-dimensional equations. Assuming Nx grid
cells in the x direction, each equation turns out into a 2Nx system of equations.
These systems have a band-diagonal structure and are solved with a LU technique
[45].

C. Derivation of the dispersion relation of electron plasma waves with

finite ∆x and ∆t

We restrict our analysis to a one-dimensional, nonrelativistic electrostatic
plasma with immobile ions. In the following, we adopt the methodology and
notations of Ref. [1]. For a single macro-particle, the adjustable-damping scheme
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(7)-(10) can be formulated as

xn+1 − 2xn + xn−1 =
∆t2

2

{
an+1 +

an

2
+
an−1

22
+
an−2

23
+ . . .

}

=
∆t2

2

{
an+1 +

θf

2
an +

(
1 − θf

2

)2
[
an−1 +

θf

2
an−2 +

(
θf

2

)2

an−3 + . . .

]}

(100)

where n stands for the time step index. We now assume a harmonic form for the
interpolated electric force F (1) = F (k)ei(kx−ωt). As a direct consequence of the
PIC interpolation scheme, we have the relation [1]

F (k) = qE(k)S(−k) (101)

where E(k) and S(k) are the discrete Fourier transforms of the electric field and
the m-order weight function, respectively. The latter reads

S(k) =

[
sin (k∆x/2)

k∆x/2

]m+1

. (102)

The first-order acceleration term can then be expressed as

an =
F (k)

m
exp

[
i(kx(0)

n − ωtn)
]

=
F (k)

m
exp

[
ik(x0 + v(0)tn) − iωtn

]

=
F (k)

m
exp ikx0 exp [i(kv − ω)n∆t] . (103)

Defining A(k) = F (k)
m
eikx0 and z = ei(kv−ω)∆t, Eq. (103) reads

xn+1 − 2xn + xn−1 =
∆t2

2
A(k)

{
zn+1 +

1

2
zn +

(
1

2

)2

zn−1 +

(
1

2

)3

zn−2 + . . .

}

xn+1 − 2xn + xn−1 =
∆t2

2
A(k)zn

{
z−1

[(
1 − θf

2

)2

+
θf

2
z + z2

]

+

(
1 − θf

2

)2
θf

2
z−2

(
1 +

θf

2
z−1 +

(
θf

2

)2

z−2 + . . .

)}
.

(104)

This equation can be further simplified as

xn+1 − 2xn + xn−1 =
∆t2

2
A(k)2zn [(1 − θf ) + z2]

2z − θf

. (105)
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We linearize xn = x
(0)
n + x

(1)
n where x

(0)
n = x

(0)
0 + v

(0)
0 tn

x
(1)
n+1 − 2x(1)

n + x
(1)
n−1 =

∆t2

2
A(k)P(k) (106)

Where the polynomial P reads

P(k) = 2zn [(1 − θf ) + z2]

2z − θf

(107)

(108)

We deduce that x
(1)
n (x0, v0, tn) varies as ei(kv−ω)n∆t = zn. Hence we find the

solution

x(1)
n =

∆t2

m
F (k)ei(kx−ωt)

[
z

(z − 1)2
+

z

2z − θf

]
(109)

To evaluate the charge density, we introduce the dipole density

P (x, t) = n0q

∫
dvf0(v)x

(1)
n (x, v, t)

= −n0q

m
F (k)ei(kx−ωt)

∫
dvf0(v)

1
(

2
∆t

sin(ω − kv)∆t
2

)2

+
n0q∆t

2

2m
F (k)ei(kx−ωt)

∫
dvf0(v)

∞∑

s=0

ei(ω−kv)s∆t

(2/θf)s
(110)

The first and second terms of the right-hand side correspond to the explicit
leapfrog scheme and the implicit correction, respectively. Assuming a Maxwellian

distribution f0(v) = 1
vt

√
2π
exp

[
−
(

v√
2vt

)2
]
, the latter can be written

∫
dvf0(v)

∞∑

s=0

ei(ω−kv)s∆t

(2/θf)s
=

∞∑

s=0

eiωs∆t

(2/θf)s

∫
dvf0(v)e

−ikvs∆t

=
∞∑

s=0

eiωs∆t

(2/θf)s
F(f0)(ks∆t)

=
∞∑

s=0

eiωs∆t

(2/θf)s
e−

v2
t
2

(sk∆t)2 (111)

where F denotes the Fourier transform. Thus the polarisation becomes

P (x, t) =
n0q

m
F (k)ei(kx−ωt) ∆t

2

4

∫
f ′

0(v)
2

k∆t
cotan

[
(ω − kv)

∆t

2

]
dv

+
n0q∆t

2

2m
F (k)ei(kx−ωt)

∞∑

s=0

eiωs∆t

(2/θf)s
e−

v2
t
2

(sk∆t)2 (112)

48



We can develop cotan as a series in the form

cotan

[
(ω − kv)

∆t

2

]
=

2

∆t

+∞∑

q=−∞

1

ω − kv − qωg
(113)

The continuous charge density is given by ρp = −∇ · P, which writes in Fourier
space ρp(k) = −ikP (k). The discrete charge density is then given by

ρ(k) =
∑

p

S(kp)ρp(kp)

= − i
∑

p

kpS(kp)P (kp)

= − i
∑

p

|S(kp)|2
n0q

2

m
E(kp)

+∞∑

q=−∞

∫
dv

∂f0(v)/∂v

ω − kpv − qωg

− i
∑

p

kp|S(kp)|2
n0q

2∆t2

2m
E(kp)

∞∑

s=0

eiωs∆t

(2/θ)s
e−

v2
t
2

(sk∆t)2 . (114)

Using centered space-differencing, discrete Fourier transform of the relation E =
−∂φ/∂x gives

E(k) = −iK(k)φ(k) = −iK(k)φ(k) , (115)

where

K(k) = k
sin(k∆x)

k∆x
. (116)

The Poisson equation as modified by the direct implicit method reads

∇ · (∇φn+1) = −ρn+1

ǫ0
(117)

Centered space-differencing followed by a Fourier transformation gives

κ2(k)φ(k) =
ρ(k)

ǫ0
(118)

where we have defined

κ2(k) = k2

[
sin (k∆x/2)

k∆x/2

]2

. (119)

Combining Eqs. (114)-(119), we obtain the dispersion relation for an infinite elec-
trostatic one dimensional plasma taking into account both spatial and temporal
discretizations

ǫ(ω, k) = 1 +
ω2

p

κ2(k)

∑

p

|S(kp)|2K(kp)
+∞∑

q=−∞

∫
dv

∂f0(v)/∂v

ω − kpv − qωg

+
ω2

p

κ2(k)

∆t2

2

∑

p

kp|S(kp)|2K(kp)
+∞∑

s=0

eiωs∆t

(2/θ)s
e−

1

2
v2

t (sk∆t)2 = 0 , (120)
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where kg = 2π/∆x, ωg = 2π/∆t, ωq = ω − qωg and kp = k − pkg.
Exploiting the Maxwellian form of f0, we have

∫
dv

∂f0/∂v

ωq − kpv
=

1

kpv2
t

[1 + ξqZ(ξq)] , (121)

where ξq = ωq√
2kpvt

and Z denotes the Fried and Conte plasma dispersion function

Z [50], defined by

Z(ξ) = π−1/2

∫ ∞

−∞
du

e−u2

u− ξ
with ℑ(ξ) > 0 . (122)

Finally, substituting Eq. (121) into Eq. 120 yields Eq. (82).
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