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1 IntrodutionUnderstanding trade exeution strategies is a key issue for �nanial market pratitioners,and has attrated a growing attention from the aademi researhers. An important pro-blem faed by stok traders is how to liquidate large blok orders of shares. This is ahallenge due to the following dilemma. By trading quikly, the investor is subjet tohigher osts due to market impat reeting the depth of the limit order book. Thus,to minimize prie impat, it is generally bene�ial to break up a large order into smallerbloks. However, more gradual trading over time results in higher risks sine the assetvalue an vary more during the investment horizon in an unertain environment. Therehas been reently a onsiderable interest in the literature on suh liquidity e�ets, takinginto aount permanent and/or temporary prie impat, and problems of this type werestudied by Bertsimas and Lo [7℄, Almgren and Criss [1℄, Bank and Baum [5℄, Cetin, Jarrowand Protter [8℄, Obizhaeva and Wang [18℄, He and Mamayski [13℄, Shied an Sh�oneborn[25℄, Ly Vath, Mnif and Pham [17℄, Rogers and Singh [24℄, and Cetin, Soner and Touzi [9℄,to mention some of them.There are essentially two popular formulation types for the optimal trading problemin the literature: disrete-time versus ontinuous-time. In the disrete-time formulation,we may distinguish papers onsidering that trading take plae at �xed deterministi times(see [7℄), at exogenous random disrete times given for example by the jumps of a Poissonproess (see [22℄, [6℄), or at disrete times deided optimally by the investor through animpulse ontrol formulation (see [13℄ and [17℄). In this last ase, one usually assumes theexistene of a �xed transation ost paid at eah trading in order to ensure that strategiesdo not aumulate in time and our really at disrete points in time (see e.g. [15℄ or [19℄).The ontinuous-time trading formulation is not realisti in pratie, but is ommonly used(as in [8℄, [25℄ or [24℄), due to the tratability and powerful theory of the stohasti alulustypially illustrated by Itô's formula. In a perfetly liquid market without transation ostand market impat, ontinuous-time trading is often justi�ed by arguing that it is a limitapproximation of disrete-time trading when the time step goes to zero. However, one mayquestion the validity of suh assertion in the presene of liquidity e�ets.In this paper, we propose a ontinuous-time framework taking into aount the mainliquidity features and risk/ost tradeo� of portfolio exeution: there is a bid-ask spreadin the limit order book, and temporary market prie impat penalizing rapid exeutiontrades. However, in ontrast with previous related papers ([25℄ or [24℄), we do not as-sume ontinuous-time trading strategies. We onsider instead real trading that take plaein disrete-time, and without assuming ad ho any �xed transation ost, in aordanewith the pratitioner literature. Moreover, a key issue in line of the banking regulationand solveny onstraints is to de�ne in an eonomially meaningful way the portfolio valueof a position in stok at any time, and this is addressed in our modelling. These issuesare formulated onveniently through an impulse ontrol problem inluding the lag variabletraking the time interval between trades. Thus, we ombine the advantages of the stohas-ti alulus tehniques, and the realisti modeling of portfolio liquidation. In this ontext,we study the optimal portfolio liquidation problem over a �nite horizon: the investor seeks2



to unwind an initial position in stok shares by maximizing his expeted utility from ter-minal liquidation wealth, and under a natural eonomi solveny onstraint involving theliquidation value of a portfolio.A �rst important result of our paper is to show that that nearly optimal exeutionstrategies in this modeling lead atually to a �nite number of trading times. While mostmodels dealing with trading strategies via an impulse ontrol formulation assumed �xedtransation ost in order to justify a posteriori the disrete-nature of trading times, weprove here that disrete-time trading appear naturally as a onsequene of liquidity fea-tures represented by temporary prie impat and bid-ask spread. Next, we derive thedynami programming quasi-variational inequality (QVI) satis�ed by the value funtion inthe sense of onstrained visosity solutions in order to handle state onstraints. There aresome tehnial diÆulties related to the nonlinearity of the impulse transation funtionindued by the market prie impat, and the non smoothness of the solveny boundary. Inpartiular, sine we do not assume a �xed transation fee, whih preludes the existene ofa strit supersolution to the QVI, we an not prove diretly a omparison priniple (henea uniqueness result) for the QVI. We then onsider two types of approximations by in-troduing families of value funtions onverging to our original value funtion, and whihare haraterized as unique onstrained visosity solutions to their dynami programmingequations. This onvergene result is useful for numerial purpose, postponed in a furtherstudy.The plan of the paper is organized as follows. Setion 2 presents the details of the modeland formulates the liquidation problem. In Setion 3, we show some interesting eonomialand mathematial properties of the model, in partiular the �niteness of the number oftrading strategies under illiquidity osts. Setion 4 is devoted to the dynami programmingand visosity properties of the value funtion to our impulse ontrol problem. We proposein Setion 5 an approximation of the original problem by onsidering small �xed tran-sation fee. Finally, Setion 6 desribes another approximation of the model with utilitypenalization by small ost. As a onsequene, we obtain that our initial value funtion isharaterized as the minimal onstrained visosity solution to its dynami programmingQVI.2 The model and liquidation problemWe onsider a �nanial market where an investor has to liquidate an initial position ofy > 0 shares of risky asset (or stok) by time T . He faes with the following risk/osttradeo�: if he trades rapidly, this results in higher osts for quikly exeuted orders andmarket prie impat; he an then split the order into several smaller bloks, but is thenexposed to the risk of prie depreiation during the trading horizon. These liquidity e�etsreeived reently a onsiderable interest starting with the papers by Bertsimas and Lo [7℄,and Almgren and Criss [1℄ in a disrete-time framework, and further investigated amongothers in Obizhaeva and Wang [18℄, Shied an Sh�oneborn [25℄, or Rogers and Singh [24℄in a ontinuous-time model. These papers assume ontinuous trading with instantaneoustrading rate induing prie impat. In a ontinuous time market framework, we propose3



here a more realisti modeling by onsidering that trading takes plae at disrete points intime through an impulse ontrol formulation, and with a temporary prie impat dependingon the time interval between trades, and inluding a bid-ask spread.We present the details of the model. Let (
;F ;P) be a probability spae equipped witha �ltration F = (Ft)0�t�T satisfying the usual onditions, and supporting a one dimensionalBrownian motion W on a �nite horizon [0; T ℄, T <1. We denote by P = (Pt) the marketprie proess of the risky asset, by Xt the amount of money (or ash holdings), by Yt thenumber of shares in the stok held by the investor at time t, and by �t the time intervalbetween time t and the last trade before t. We set R�+ = (0;1) and R�� = (�1; 0).� Trading strategies. We assume that the investor an only trade disretely on [0; T ℄.This is modelled through an impulse ontrol strategy � = (�n; �n)n�0: �0 � : : : � �n : : : � Tare nondereasing stopping times representing the trading times of the investor and �n,n � 0, are F�n�measurable random variables valued in R and giving the number of stokpurhased if �n � 0 or selled if �n < 0 at these times. We denote by A the set of tradingstrategies. The sequene (�n; �n) may be a priori �nite or in�nite. Notie also that wedo not assume a priori that the sequene of trading times (�n) is stritly inreasing. Weintrodue the lag variable traking the time interval between trades:�t = inf �t� �n : �n � tg; t 2 [0; T ℄;whih evolves aording to�t = t� �n; �n � t < �n+1; ��n+1 = 0; n � 0: (2.1)The dynamis of the number of shares invested in stok is given by:Yt = Y�n ; �n � t < �n+1; Y�n+1 = Y��n+1 + �n+1; n � 0: (2.2)� Cost of illiquidity. The market prie of the risky asset proess follows a geometriBrownian motion: dPt = Pt(bdt+ �dWt); (2.3)with onstants b and � > 0. We do not onsider a permanent prie impat on the prie,i.e. the lasting e�et of large trader, but fous here on the e�et of illiquidity, that is theprie at whih an investor will trade the asset. Suppose now that the investor deides attime t to make an order in stok shares of size e. If the urrent market prie is p, and thetime lag from the last order is �, then the prie he atually get for the order e is:Q(e; p; �) = pf(e; �); (2.4)where f is a temporary prie impat funtion from R � [0; T ℄ into R+ [ f1g. We assumethat the Borelian funtion f satis�es the following liquidity and transation ost properties:(H1f) f(0; �) = 1, and f(:; �) is nondereasing for all � 2 [0; T ℄,(H2f) (i) f(e; 0) = 0 for e < 0, and (ii) f(e; 0) = 1 for e > 0,(H3f) �b := sup(e;�)2R���[0;T ℄ f(e; �) < 1 and �a := inf(e;�)2R�+�[0;T ℄ f(e; �) > 1.4



Condition (H1f) means that no trade inurs no impat on the market prie, i.e. Q(0; p; �)= p, and a purhase (resp. a sale) of stok shares indues a ost (resp. gain) greater(resp. smaller) than the market prie, whih inreases (resp. dereases) with the size of theorder. In other words, we have Q(e; p; �) � (resp. �) p for e � (resp. �) 0, and Q(:; p; �)is nondereasing. Condition (H2f) expresses the higher osts for immediay in trading:indeed, the immediate market resilieny is limited, and the faster the investor wants toliquidate (resp. purhase) the asset, the deeper into the limit order book he will have to go,and lower (resp. higher) will be the prie for the shares of the asset sold (resp. bought), witha zero (resp. in�nite) limiting prie for immediate blok sale (resp. purhase). Condition(H2f) also prevents the investor to pass orders at onseutive immediate times, whih isthe ase in pratie. Instead of imposing a �xed arbitrary lag between orders, we shall seethat ondition (H2) implies that trading times are stritly inreasing. Condition (H3f)aptures a transation ost e�et: at time t, Pt is the market or mid-prie, �bPt is the bidprie, �aPt is the ask prie, and (�a � �b)Pt is the bid-ask spead. We also assume someregularity onditions on the temporary prie impat funtion:(Hf) (i) f is ontinuous on R� � (0; T ℄,(ii) f is C1 on R�� � [0; T ℄ and x 7! �f�� is bounded on R�� � [0; T ℄.A usual form (see e.g. [16℄, [23℄, [2℄) of temporary prie impat and transation ost funtionf , suggested by empirial studies isf(e; �) = e�j e� j�sgn(e)��a1e>0 + 1e=0 + �b1e<0�; (2.5)with the onvention f(0; 0) = 1. Here 0 < �b < 1 < �a, �a � �b is the bid-ask spreadparameter, � > 0 is the temporary prie impat fator, and � > 0 is the prie impatexponent. In our illiquidity modelling, we fous on the ost of trading fast (that is thetemporary prie impat), and ignore as in Cetin, Jarrow and Protter [8℄ and Rogers andSingh [24℄ the permanent prie impat of a large trade. This last e�et ould be inludedin our model, by assuming a jump of the prie proess at the trading date, depending onthe order size, see e.g. He and Mamayski [13℄ and Ly Vath, Mnif and Pham [17℄.� Cash holdings. We assume a zero risk-free return, so that the bank aount is onstantbetween two trading times:Xt = X�n ; �n � t < �n+1; n � 0: (2.6)When a disrete trading �Yt = �n+1 ours at time t = �n+1, this results in a variation ofthe ash amount given by �Xt := Xt�Xt� = ��Yt:Q(�Yt; Pt;�t�) due to the illiquiditye�ets. In other words, we haveX�n+1 = X��n+1 � �n+1Q(�n+1; P�n+1 ;���n+1)= X��n+1 � �n+1P�n+1f(�n+1; �n+1 � �n); n � 0: (2.7)Notie that similarly as in the above ited papers dealing with ontinuous-time trading,we do not assume �xed transation fees to be paid at eah trading. They are pratiallyinsigni�ant with respet to the prie impat and bid-ask spread. We an then not exlude5



a priori trading strategies with immediate trading times, i.e. ���n+1 = �n+1 � �n = 0 forsome n. However, notie that under ondition (H2f), an immediate sale does not inreasethe ash holdings, i.e. X�n+1 = X��n+1 = X�n , while an immediate purhase leads to abankrupty, i.e. X�n+1 = �1.� Liquidation value and solveny onstraint. A key issue in portfolio liquidation isto de�ne in an eonomially meaningful way what is the portfolio value of a position onash and stoks. In our framework, we impose a no-short sale onstraint on the tradingstrategies, i.e. Yt � 0; 0 � t � T;whih is in line with the bank regulation following the �nanial risis, and we onsider theliquidation funtion L(x; y; p; �) representing the net wealth value that an investor with aash amount x, would obtained by liquidating his stok position y � 0 by a single bloktrade, when the market prie is p and given the time lag � from the last trade. It is de�nedon R � R+ � R�+ � [0; T ℄ by L(x; y; p; �) = x+ ypf(�y; �);and we impose the liquidation onstraint on trading strategies:L(Xt; Yt; Pt;�t) � 0; 0 � t � T:We have L(x; 0; p; �) = x, and under ondition (H2f)(ii), we notie that L(x; y; p; 0) = xfor y � 0. We naturally introdue the liquidation solveny region:S = n(z; �) = (x; y; p; �) 2 R � R+ � R�+ � [0; T ℄ : y > 0 and L(z; �) > 0o:We denote its boundary and its losure by�S = �yS [ �LS and �S = S [ �S;where�yS = n(z; �) = (x; y; p; �) 2 R � R+ � R�+ � [0; T ℄ : y = 0 and x = L(z; �) � 0o;�LS = n(z; �) = (x; y; p; �) 2 R � R+ � R�+ � [0; T ℄ : L(z; �) = 0o:We also denote by D0 the orner line in �S:D0 = f0g � f0g � R�+ � [0; T ℄ = �yS \ �LS:� Admissible trading strategies. Given (t; z; �) 2 [0; T ℄ � �S, we say that the impulseontrol strategy � = (�n; �n)n�0 is admissible, denoted by � 2 A(t; z; �), if �0 = t � �, �n� t, n � 1, and the proess f(Zs;�s) = (Xs;Ys; Ps;�s); t � s � Tg solution to (2.1)-(2.2)-(2.3)-(2.6)-(2.7), with an initial state (Zt� ;�t�) = (z; �) (and the onvention that (Zt;�t)= (z; �) if �1 > t), satis�es (Zs;�s) 2 [0; T ℄ � �S for all s 2 [t; T ℄. As usual, to alleviatenotations, we omitted the dependene of (Z;�) in (t; z; �; �), when there is no ambiguity.6



t h e t a = 0 . 1t h e t a = 0 . 5

t h e t a = 1t h e t a = 1 . 5
y : s t o c k s h a r e s

y : s t o c k s h a r e sy : s t o c k s h a r e s

y : s t o c k s h a r e s
x :cas h
x :cas h

x :cas h

x :cas h D � D �

D � D �
Figure 1: Domain S in the nonhathed zone for �xed p = 1 and � evolving from 1:5 to 0:1.Here �b = 0:9 and f(e; �) = �b exp( e� ) for e < 0. Notie that when � goes to 0, the domainonverges to the open orthant R�+ � R�+ .
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p=1

x:
ca

sh
 a

m
ou

nt

y: stock amounttheta: time−lag order Figure 3: Lower bound of the domain S for �xed p = 1 with f(e; �) = �b exp( e� ) for e < 0and �b = 0:9. Notie that when � is �xed, we obtain the Figure 1.8



Remark 2.1 Let (t; z; �) 2 [0; T ℄ � �S, and onsider the impulse ontrol strategy � =(�n; �n)n�0, �0 = t� �, onsisting in liquidating immediately all the stok shares, and thendoing no transation anymore, i.e. (�1; �1) = (t;�y), and �n = 0, n � 2. The assoiatedstate proess (Z = (X;Y; P );�) satis�es Xs = L(z; �), Ys = 0, whih shows that L(Zs;�s)= Xs = L(z; �) � 0, t � s � T , and thus � 2 A(t; z; �) 6= ;.� Portfolio liquidation problem. We onsider a utility funtion U from R+ into R,nondereasing, onave, with U(0) = 0, and s.t. there exists K � 0 and  2 [0; 1):(HU) 0 � U(x) � Kx ; 8x 2 R+ :The problem of optimal portfolio liquidation is formulated asv(t; z; �) = sup�2A`(t;z;�) E�U(XT )�; (t; z; �) 2 [0; T ℄� �S; (2.8)where A`(t; z; �) = �� 2 A(t; z; �) : YT = 0	 is nonempty by Remark 2.1. Notiethat for � 2 A`(t; z; �), XT = L(ZT ;�T ) � 0, so that the expetations in (2.8), and thevalue funtion v are well-de�ned in [0;1℄. Moreover, by onsidering the partiular strategydesribed in Remark 2.1, whih leads to a �nal liquidation value XT = L(z; �), we obtaina lower-bound for the value funtion;v(t; z; �) � U(L(z; �)); (t; z; �) 2 [0; T ℄� �S: (2.9)Remark 2.2 We an shift the terminal liquidation onstraint in A`(t; z; �) to a terminalliquidation utility by onsidering the funtion UL de�ned on �S by:UL(z; �) = U(L(z; �)); (z; �) 2 �S:Then, problem (2.8) is written equivalently in�v(t; z; �) = sup�2A(t;z;�) EhUL(ZT ;�T )i; (t; z; �) 2 [0; T ℄ � �S: (2.10)Indeed, by observing that for all � 2 A`(t; z; �), we have E [U(XT )℄ = E [UL (ZT ;�T )℄, andsine A`(t; z; �) � A(t; z; �), it is lear that v � �v. Conversely, for any � 2 A(t; z; �) as-soiated to the state ontrolled proess (Z;�), onsider the impulse ontrol strategy ~� =� [ (T;�YT ) onsisting in liquidating all the stok shares YT at time T . The orrespond-ing state proess ( ~Z; ~�) satis�es learly: ( ~Zs; ~�s) = (Zs;�s) for t � s < T , and ~XT =L(ZT ;�T ), ~YT = 0, and so ~� 2 A`(t; z; �). We dedue that E [UL(ZT ;�T )℄ = E [U( ~XT )℄� v(t; z; �), and so by arbitrariness of � in A(t; z; �), �v(t; z; �) � v(t; z; �). This provesthe equality v = �v. Atually, the above arguments also show that sup�2A`(t;z;�) U(XT ) =sup�2A(t;z;�) UL(ZT ;�T ).Remark 2.3 A ontinuous-time trading version of our illiquid market model with stokprie P and temporary prie impat f an be formulated as follows. The trading strategy9



is given by a F-adated proess � = (�t)0�t�T representing the instantaneous trading rate,whih means that the dynamis of the umulated number of stok shares Y is governed by:dYt = �tdt: (2.11)The ash holdings X follows dXt = ��tPtf(�t)dt: (2.12)Notie that in a ontinuous-time trading formulation, the time interval between trades is�t = 0 at any time t. Under ondition (H2f), the liquidation value is then given at anytime t by: L(Xt; Yt; Pt; 0) = Xt; 0 � t � T;and does not apture the position in stok shares, whih is eonomially not relevant. Onthe ontrary, by expliitly onsidering the time interval between trades in our disrete-timetrading formulation, we take into aount the position in stok.3 Properties of the modelIn this setion, we show that the illiquid market model presented in the previous setiondisplays some interesting and eonomially meaningful properties on the admissible tradingstrategies and the optimal performane, i.e. the value funtion. Let us onsider the impulsetransation funtion � de�ned on R � R+ � R�+ � [0; T ℄� R into R [ f�1g � R � R�+ by:�(z; �; e) = �x� epf�e; ��; y + e; p�;for z = (x; y; p), and set ��(z; �; e) = ��(z; �; e); 0�. This orresponds to the value of thestate variable (Z;�) immediately after a trading at time t = �n+1 of �n+1 shares of stok,i.e. (Z�n+1 ;��n+1) = ��(Z��n+1 ;���n+1 ; �n+1); 0�. We then de�ne the set of admissible trans-ations: C(z; �) = ne 2 R : ��(z; �; e); 0� 2 �So; (z; �) 2 �S:This means that for any � = (�n; �n)n�0 2 A(t; z; �) with assoiated state proess (Z;�),we have �n 2 C(Z��n ;���n ), n � 1. We de�ne the impulse operator H byH'(t; z; �) = supe2C(z;�)'(t;�(z; �; e); 0); (t; z; �) 2 [0; T ℄ � �S:We also introdue the liquidation funtion of the (perfetly liquid) Merton model:LM (z) = x+ py; 8z = (x; y; p) 2 R � R � R�+ :For (t; z = (x; y; p); �) 2 [0; T ℄ � �S, we denote by (Z0;t;z;�0;t;�) the state proess startingfrom (z; �) at time t, and without any impulse ontrol strategy: it is given by�Z0;t;zs ;�0;t;�s � = (x; y; P t;ps ; � + s� t); t � s � T;10



where P t;p is the solution to (2.3) starting from p at time t. Notie that (Z0;t;z;�0;t;�) is theontinuous part of the state proess (Z;�) ontrolled by � 2 A(t; z; �). The in�nitesimalgenerator L assoiated to the proess (Z0;t;z;�0;t;�) isL'+ �'�� = bp�'�p + 12�2p2�2'�p2 + �'�� :We �rst prove a useful result on the set of admissible transations.Lemma 3.1 Assume that (H1f), (H2f) and (H3f) hold. Then, for all (z = (x; y; p); �)2 �S, the set C(z; �) is ompat in R and satisfyC(z; �) � [�y; �e(z; �)℄; (3.1)where �y � �e(z; �) <1 is given by�e(z; �) = ( supne 2 R : epf(e; �) � xo ; if � > 00 ; if � = 0:For � = 0, (3.1) beomes an equality : C(z; 0) = [�y; 0℄.The set funtion C is ontinous for the Hausdor� metri, i.e. if (zn; �n) onverges to(z; �) in �S, and (en) is a sequene in C(zn; �n) onverging to e, then e 2 C(z; �). Moreover,if e 2 R 7! ef(e; �) is stritly inreasing for � 2 (0; T ℄, then for (z = (x; y; p); �) 2 �LSwith � > 0, we have �e(z; �) = �y, i.e. C(z; �) = f�yg.Proof. By de�nition of the impulse transation funtion � and the liquidation funtion L,we immediately see that the set of admissible transations is written asC(z; �) = ne 2 R : x� epf(e; �) � 0; and y + e � 0o= ne 2 R : epf(e; �) � xo \ [�y;1) =: C1(z; �) \ [�y;1): (3.2)It is lear that C(z; �) is losed and bounded, thus a ompat set. Under (H1f) and (H3f),we have lime!1 epf(e; �) = 1. Hene we get �e(z; �) < 1 and C1(z; �) � (�1; �e(z; �)℄.From (3.2), we get (3.1). Suppose � = 0. Under (H2f), using (z; �) 2 �S, we have C1(z; �)= R� . From (3.2), we get C(z; �) = [�y; 0℄.Let us now prove the ontinuity of the set of admissible transations. Consider asequene (zn = (xn; yn; pn); �n) in �S onverging to (z; �) 2 �S, and a sequene (en) inC(zn; �n) onverging to e. Suppose �rst that � > 0. Then, for n large enough, �n > 0and by observing that (z; �; e) 7! ��(z; �; e) is ontinuous on R � R+ � R�+ � R�+ � R, weimmediately dedue that e 2 C(z; �). In the ase � = 0, writing xn� enf(en; �n) � 0, using(H2f)(ii) and sending n to in�nity, we see that e should neessarily be nonpositive. Bywriting also that yn+ en � 0, we get by sending n to in�nity that y+ e � 0, and thereforee 2 C(z; 0) = [�y; 0℄.Suppose �nally that e 2 R 7! ef(e; �) is inreasing, and �x (z = (x; y; p); �) 2 �LS,with � > 0. Then, L(z; �) = 0, i.e. x = �ypf(�y; �). Set �e = �e(z; �). By writing that�epf(�e; �) � x = �ypf(�y; �), and �e � �y, we dedue from the inreasing monotoniity ofe 7! epf(e; �) that �e = �y. 211



Remark 3.1 The previous Lemma implies in partiular that C(z; 0) � R� , whih meansthat an admissible transation after an immediate trading should be neessarily a sale. Inother words, given � = (�n; �n)n�0 2 A(t; z; �), (t; z; �) 2 [0; T ℄� �S, if ���n = 0, then �n �0. The ontinuity property of C ensures that the operator H preserves the lower and upper-semiontinuity (see Appendix). This Lemma also asserts that, under the assumption ofinreasing monotoniity of e ! ef(e; �), when the state is in the boundary L = 0, then theonly admissible transation is to liquidate all stok shares. This inreasing monotoniitymeans that the amount traded is inreasing with the size of the order. Suh an assumptionis satis�ed in the example (2.5) of temporary prie impat funtion f for � = 2, but is notful�lled for � = 1. In this ase, the presene of illiquidity ost implies that it may be moreadvantageous to split the order size.We next state some useful bounds on the liquidation value assoiated to an admissibletransation.Lemma 3.2 Assume that (H1f) holds. Then, we have for all (t; z; �) 2 [0; T ℄� �S:0 � L(z; �) � LM (z); (3.3)LM (�(z; �; e)) � LM (z); 8e 2 R; (3.4)sup�2A(t;z;�)L(Zs;�s) � LM (Z0;t;zs ); t � s � T: (3.5)Furthermore, under (H3f), we have for all (z = (x; y; p); �) 2 �S,LM (�(z; �; e)) � LM (z)�min(�a � 1; 1 � �b)jejp; 8e 2 R: (3.6)Proof. Under (H1f), we have f(e; �) � 1 for all e � 0, whih shows learly (3.3). Fromthe de�nition of LM and �, we see that for all e 2 R,LM (�(z; �; e)) � LM (z) = ep�1� f(e; �)�; (3.7)whih yields the inequality (3.4). Fix some arbitrary � = (�n; �n)n�0 2 A(t; z; �) assoiatedto the ontrolled state proess (Z;�). When a transation ours at time s = �n, n � 1,the jump of LM (Z) is nonpositive by (3.4):�LM (Zs) = LM (Z�n)� LM (Z��n ) = LM (�(Z��n ;���n ; �n))� LM (Z��n ) � 0:We dedue that the proess LM (Z) is smaller than its ontinuous part equal to LM (Z0;t;z),and we then get (3.5) with (3.3). Finally, under the additional ondition (H3f), we easilyobtain inequality (3.6) from relation (3.7). 2We now hek that our liquidation problem is well-posed by stating a natural upper-bound on the optimal performane, namely that the value funtion in our illiquid marketmodel is bounded by the usual Merton bound in a perfetly liquid market.
12



Proposition 3.1 Assume that (H1f) and (HU) hold. Then, for all (t; z; �) 2 [0; T ℄� �S,the family fUL(ZT ;�T ); � 2 A(t; z; �)g is uniformly integrable, and we havev(t; z; �) � v0(t; z) := EhU�LM�Z0;t;zT ��i; (t; z; �) 2 [0; T ℄� �S;� Ke�(T�t)LM (z) ; (3.8)where � is a positive onstant s.t. � � 1�  b22�2 : (3.9)Proof. From (3.5) and the nondereasing monotoniity of U , we have for all (t; z; �) 2[0; T ℄ � �S: sup�2A`(t;z;�)U(XT ) = sup�2A(t;z;�)UL(ZT ;�T ) � U(LM (Z0;t;zT ));and all the assertions of the Proposition will follow one we prove the inequality (3.8). Forthis, onsider the nonnegative funtion ' de�ned on [0; T ℄� �S by:'(t; z; �) = e�(T�t)LM (z) = e�(T�t)�x+ py� ;and notie that ' is smooth C2 on [0; T ℄� ( �S nD0). We laim that for � > 0 large enough,the funtion ' satis�es:��'�t � �'�� �L' � 0; on [0; T ℄ � ( �S nD0):Indeed, a straightforward alulation shows that for all (t; z; �) 2 [0; T ℄� ( �S nD0):��'�t (t; z; �)� �'�� (t; z; �)�L'(t; z; �)= e�(T�t)LM (z)�2h�p�LM (z) + b2p�yp�2 + �(1� )�22 � b224� �y2p2i (3.10)whih is nonegative under ondition (3.9).Fix some (t; z; �) 2 [0; T ℄� �S . If (z; �) = (0; 0; p; �) 2 D0, then we learly have v0(t; z; �)= U(0), and inequality (3.8) is trivial. Otherwise, if (z; �) 2 �S n D0, then the proess(Z0;t;z;�0;t;�) satisfy LM (Z0;t;z;�0;t;�) > 0. Indeed, Denote by ( �Zt;z; ��t;�) the proessstarting from (z; �) at t and assoiated to the strategy onsisting in liquidating all stokshares at t. Then we have ( �Zt;zs ; ��t;�s ) 2 �S nD0 for all s 2 [t; T ℄ and hene LM ( �Zt;zs ; ��t;�s )>0 for all s 2 [t; T ℄. Using (3.5) we get LM(Z0;t;zs ;�0;t;�s ) � LM ( �Zt;zs ; ��t;�s ) > 0.We an then apply Itô's formula to '(s; Z0;t;zs ;�0;t;�s ) between t and TR = inffs �t : jZ0;t;zs j � Rg ^ T :E ['(TR ; Z0;t;zTR ;�0;t;�TR )℄ = '(t; z) + Eh Z TRt ��'�t + �'�� + L'�(s; Z0;t;zs ;�0;t;�s )dsi� '(t; z): 13



(The stohasti integral term vanishes in expetation sine the integrand is bounded beforeTR). By sending R to in�nity, we get by Fatou's lemma and sine '(T; z; �) = LM (z) :EhLM (Z0;t;zT )i � '(t; z; �):We onlude with the growth ondition (HU). 2As a diret onsequene of the previous proposition, we obtain the ontinuity of thevalue funtion on the boundary �yS, i.e. when we start with no stok shares.Corollary 3.1 Assume that (H1f) and (HU) hold. Then, the value funtion v is on-tinuous on [0; T ℄ � �yS, and we havev(t; z; �) = U(x); 8t 2 [0; T ℄; (z; �) = (x; 0; p; �) 2 �yS:In partiular, we have v(t; z; �) = U(0) = 0, for all (t; z; �) 2 [0; T ℄�D0.Proof. From the lower-bound (2.9) and the upper-bound in Proposition 3.1, we have forall (t; z; �) 2 [0; T ℄� �S,U�x+ ypf�� y; ��� � v(t; z; �) � E�U(LM (Z0;t;zT ))� = E�U(x+ yP t;pT )�:These two inequalities imply the required result. 2The following result states the �niteness of the total number of shares and amounttraded.Proposition 3.2 Assume that (H1f) and (H3f) hold. Then, for any � = (�n; �n)n�0 2A(t; z; �), (t; z; �) 2 [0; T ℄� �S, we haveXn�1 j�nj < 1; Xn�1 j�njP�n < 1; and Xn�1 j�njP�nf��n;���n � < 1; a:s:Proof. Fix (t; z = (x; y; p); �) 2 [0; T ℄ � �S, and � = (�n; �n)n�0 2 A(t; z; �). Observe�rst that the ontinuous part of the proess LM (Z) is LM (Z0;t;z), and we denote its jumpat time �n by �LM (Z�n) = LM (Z�n) � LM (Z��n ). From the estimates (3.3) and (3.6) inLemma 3.2, we then have almost surely for all n � 1,0 � LM (Z�n) = LM (Z0;t;z�n ) + nXk=1�LM(Z�k)� LM (Z0;t;z�n )� �� nXk=1 j�kjP�k ;where we set �� = min(�a � 1; 1� �b) > 0. We dedue that for all n � 1,nXk=1 j�kjP�k � 1�� sups2[t;T ℄LM (Z0;t;zs ) = 1���x+ y sups2[t;T ℄P t;ps � < 1; a:s:14



This shows the almost sure onvergene of the seriesPn j�njP�n . Moreover, sine the prieproess P is ontinous and stritly positive, we also obtain the onvergene of the seriesPn j�nj. Realling that f(e; �) � 1 for all e � 0 and � 2 [0; T ℄, we have for all n � 1.nXk=1 j�kjP�kf��k;���k � = nXk=1 �kP�kf��k;���k �+ 2 nXk=1 j�kjP�kf��k;���k �1�k�0� nXk=1 �kP�kf��k;���k �+ 2 nXk=1 j�kjP�k : (3.11)On the other hand, we have0 � LM (Z�n) = X�n + Y�nP�n= x� nXk=1 �kP�kf��k;���k �+ (y + nXk=1 �k)P�n :Together with (3.11), this implies that for all n � 1,nXk=1 j�kjP�kf��k;���k � � x+ (y + nXk=1 j�kj) sups2[t;T ℄P t;ps + 2 nXk=1 j�kjP�k :The onvergene of the seriesPn j�njP�nf��n;���n � follows therefore from the onvergeneof the series Pn j�nj and Pn j�njP�n . 2As a onsequene of the above results, we an now prove that in the optimal portfolioliquidation, it suÆes to restrit to a �nite number of trading times, whih are stritlyinreasing. Given a trading strategy � = (�n; �n)n�0 2 A, let us denote by N(�) theproess ounting the number of intervention times:Nt(�) = Xn�11�n�t; 0 � t � T:We denote by Ab̀(t; z; �) the set of admissible trading strategies in A`(t; z; �) with a �nitenumber of trading times, suh that these trading times are stritly inreasing, namely:Ab̀(t; z; �) = n� = (�n; �n)n�0 2 A`(t; z; �) : NT (�) <1; a:s:and �n < �n+1 a:s:; 0 � n � NT (�) � 1o:For any � = (�n; �n)n 2 Ab̀(t; z; �), the assoiated state proess (Z;�) satis�es ���n+1 > 0,i.e. (Z��n+1 ;���n+1) 2 �S� := n(z; �) 2 �S : � > 0o. We also set �LS� = �LS \ �S�.Theorem 3.1 Assume that (H1f), (H2f), (H3f), (Hf) and (HU) hold. Then, we havev(t; z; �) = sup�2Ab̀(t;z;�) E�U(XT )�; (t; z; �) 2 [0; T ℄ � �S: (3.12)Moreover, we havev(t; z; �) = sup�2Ab̀+ (t;z;�) E�U(XT )�; (t; z; �) 2 [0; T ℄� ( �S n �LS); (3.13)where Ab̀+(t; z; �) = f� 2 Ab̀(t; z; �) : (Zs;�s) 2 ( �S n �LS); t � s < Tg.15



Proof. 1. Fix (t; z; �) 2 [0; T ℄� �S, and denote by �Ab̀(t; z; �) the set of admissible tradingstrategies in A`(t; z; �) with a �nite number of trading times:�Ab̀(t; z; �) = n� = (�k; �k)k�0 2 A`(t; z; �) : NT (�) is bounded a.s. o:Given an arbitrary � = (�k; �k)k�0 2 A`(t; z; �) assoiated to the state proess (Z;�) =(X;Y; P;�), let us onsider the trunated trading strategy �(n) = (�k; �k)k�n [ (�n+1;�Y��n+1),whih onsists in liquidating all stok shares at time �n+1. This strategy �(n) lies in�A`(t; z; �), and is assoiated to the state proess denoted by (Z(n);�(n)). We then haveX(n)T �XT = Xk�n+1 �kP�kf��k;���k � + Y��n+1P�n+1f�� Y��n+1 ;���n+1�:Now, from Proposition 3.2, we haveXk�n+1 �kP�kf��k;���k � �! 0 a:s: when n!1:Moreover, sine 0 � Y��n+1 = Y�n goes to YT = 0 as n goes to in�nity, by de�nition of � 2A`(t; z; �), and realling that f is smaller than 1 on R� � [0; T ℄, we dedue that0 � Y��n+1P�n+1f�� Y��n+1���n+1� � Y��n+1 sups2[t;T ℄P t;ps�! 0 a:s: when n!1:This proves that X(n)T �! XT a:s: when n!1:From Proposition 3.1, the sequene (U(X(n)T ))n�1 is uniformly integrable, and we an applythe dominated onvergene theorem to getE�U(X(n)T )� �! E�U(XT )�; when n!1:From the arbitrariness of � 2 A`(t; z; �), this shows thatv(t; z; �) � �vb(t; z; �) := sup�2 �Ab̀(t;z;�) E�U(XT )�;and atually the equality v = �vb sine the other inequality �vb � v is trivial from the inlusion�Ab̀(t; z; �) � A`(t; z; �).2. Denote by vb the value funtion in the r.h.s. of (3.12). It is lear that vb � �vb = v sineAb̀(t; z; �) � �Ab̀(t; z; �). To prove the reverse inequality we need �rst to study the behaviorof optimal strategies at time T . Introdue the set~Ab̀(t; z; �) = n� = (�k; �k)k 2 Ab̀(t; z; �) : #fk : �k = Tg � 1o;and denote by ~vb the assoiated value funtion. Then we have ~vb � �vb. Indeed, let �= (�k; �k)k be some arbitrary element in �Ab̀(t; z; �), (t; z = (x; y; p); �) 2 [0; T ℄ � �S. If16



� 2 ~Ab̀(t; z; �) then we have ~vb(t; z; �) � EhUL(ZT ;�T )i, where (Z;�) denotes the pro-ess assoiated to �. Suppose now that � =2 ~Ab̀(t; z; �). Set m = maxfk : �k < Tg.Then de�ne the stopping time � 0 := �m+T2 and the F� 0 -measurable random variable � 0 :=argmaxfef(e; T � �m) : e � �Y�mg. De�ne the strategy �0 = (�k; �k)k�m [ (� 0; Y�m � � 0)[(T; � 0). From the onstrution of �0, we easily hek that �0 2 ~Ab(t; z; �) and EhUL(ZT ;�T )i� EhUL(Z 0T ;�0T )i where (Z 0;�0) denotes the proess assoiated to �0. Hene, we get ~vb ��vb. We now prove that vb � ~vb. Let � = (�k; �k)k be some arbitrary element in ~Ab̀(t; z; �),(t; z = (x; y; p); �) 2 [0; T ℄� �S . Denote by N =NT (�) the a.s. �nite number of trading timesin �. We set m = inff0 � k � N�1 : �k+1 = �kg andM = supfm+1 � k � N : �k = �mgwith the onvention that inf ; = sup ; = N+1. We then de�ne �0 = (� 0k; � 0k)0�k�N�(M�m)+12 A by:(� 0k; � 0k) = 8>>><>>>: (�k; �k); for 0 � k < m(�m = �M ;PMk=m �k); for k = m and m < N;(�k+M�m; �k+M�m); for m+ 1 � k � N � (M �m) and m < N;(� 0;PMl=m+1 �l) for k = N � (M �m) + 1where � 0 = �̂+T2 with �̂ = maxf�k : �k < Tg, and we denote by (Z 0 = (X 0; Y 0; P );�0) theassoiated state proess. It is lear that (Z 0s;�0s) = (Zs;�s) for t � s < �m, and so X 0(�)0�= X(� 0)� , �0(� 0)� = �(� 0)� . Moreover, sine �m = �M , we have ���k = 0 for m+1 � k �M .From Lemma 3.1 (or Remark 3.1), this implies that �k � 0 for m + 1 � k � M , and so� 0N�(M�m)+1 = PMk=m+1 �k � 0. We also reall that immediate sales does not inrease theash holdings, so that X�k = X�m for m+ 1 � k �M . We then getX 0T = XT � � 0N�(M�m)+1P� 0f�� 0N�(M�m)+1;�0(� 0)��� XT :Moreover, we have Y 0T = y +PNk=1 �k = YT = 0. By onstrution, notie that � 00 < : : : <� 0m+1. Given an arbitrary � 2 �Ab̀(t; z; �), we an then onstrut by indution a tradingstrategy �0 2 Ab̀(t; z; �) suh that X 0T � XT a.s. By the nondereasing monotoniity of theutility funtion U , this yieldsE [U(XT )℄ � E [U(X 0T )℄ � vb(t; z; �);and we onlude from the arbitrariness of � 2 ~Ab̀(t; z; �): ~vb � vb, and thus v = �vb = ~vb =vb.3. Fix now an element (t; z; �) 2 [0; T ℄� ( �S n �LS), and denote by v+ the r.h.s of (3.13). Itis lear that v � v+. Conversely, take some arbitrary � = (�k; �k)k 2 Ab̀(t; z; �), assoiatedwith the state proess (Z;�), and denote by N = NT (�) the �nite number of trading timesin �. Consider the �rst time before T when the liquidation value reahes zero, i.e. �� =infft � s � T : L(Zs;�s) = 0g ^ T with the onvention inf ; = 1. We laim that thereexists 1 � m � N + 1 (depending on ! and �) suh that �� = �m, with the onventionthat m = N + 1, �N+1 = T if �� = T . On the ontrary, there would exist 1 � k � N suh17



that �k < �� < �k+1, and L(Z�� ;���) = 0. Between �k and �k+1, there is no trading, andso (Xs; Ys) = (X�k ; Y�k), �s = s� �k for �k � s < �k+1. We then getL(Zs;�s) = X�k + Y�kPsf�� Y�k ; s� �k�; �k � s < �k+1: (3.14)Moreover, sine 0 < L(Z�k ;��k) = X�k , and L(Z�� ;���) = 0, we see with (3.14) for s = ��that Y�kP��f��Y�k ; ����k� should neessarily be stritly negative: Y�kP��f��Y�k ; ����k�< 0, a ontradition with the admissibility onditions and the nonnegative property of f .We then have �� = �m for some 1 � m � N + 1. Observe that if m � N , i.e.L(Z�m ;��m) = 0, then U(L(ZT ;�T )) = 0. Indeed, suppose that Y�m > 0 and m � N .From the admissibility ondition, and by Itô's formula to L(Z;�) in (3.14) between �� and��m+1, we get0 � L(Z��m+1 ;���k+1) = L(Z��m+1 ;���m+1)� L(Z�� ;���)= Z �m+1�� Y�mPsh�(Y�m ; s� �m)ds+ �f�� Y�k ; s� �m�dWsi; (3.15)where �(y; �) = bf(�y; �) + �f�� (�y; �) is bounded on R+ � [0; T ℄ by (Hf)(ii). Sine theintegrand in the above stohasti integral w.r.t Brownian motion W is stritly positive,thus nonzero, we must have �� = �m+1. Otherwise, there is a nonzero probability that ther.h.s. of (3.15) beomes stritly negative, a ontradition with the inequality (3.15).Hene we get Y�m = 0, and thus L(Z��m+1 ;���m+1) = X�m = 0. From the Markov featureof the model and Corollary 3.1, we then haveEhU�L(ZT ;�T )����F�mi � v(�m; Z�m ;��m) = U(X�m) = 0:Sine U is nonnegative, this implies that U�L(ZT ;�T )� = 0. Let us next onsider thetrading strategy �0 = (� 0k; � 0k)0�k�(m�1) 2 A onsisting in following � until time ��, andliquidating all stok shares at time �� = �m�1, and de�ned by:(� 0k; � 0k) = ( (�k; �k); for 0 � k < m� 1��m�1;�Y��(m�1)�; for k = m� 1;and we denote by (Z 0;�0) the assoiated state proess. It is lear that (Z 0s;�0s) = (Zs;�s)for t � s < �m�1, and so L(Z 0s;�0s) = L(Zs;�s) > 0 for t � s � �m�1. The liquidationat time �m�1 (for m � N) yields X�m�1 = L(Z��m�1 ;���m�1) > 0, and Y�m�1 = 0. Sinethere is no more trading after time �m�1, the liquidation value for �m�1 � s � T is givenby: L(Zs;�s) = X�m�1 > 0. This shows that �0 2 Ab̀+(t; z; �). When m = N + 1, wehave � = �0, and so X 0T = L(Z 0T ;�0T ) = L(ZT ;�T ) = XT . For m � N , we have U(X 0T ) =U(L(Z 0T ;�0T )) � 0 = U(L(ZT ;�T )) = U(XT ). We then get U(X 0T ) � U(XT ) a.s., and soE [U(XT )℄ � E [U(X 0T )℄ � v+(t; z; �):We onlude from the arbitrariness of � 2 �Ab̀(t; z; �): v � v+, and thus v = v+. 218



Remark 3.2 If we suppose that the funtion e 2 R 7! ef(e; �) is inreasing for � 2 (0; T ℄,we get the value of v on the bound �LS�: v(t; z; �) = U(0) = 0 for (t; z = (x; y; p); �) 2[0; T ℄ � �LS�. Indeed, �x some point (t; z = (x; y; p); �) 2 [0; T ℄ � �LS�, and onsideran arbitrary � = (�k; �k)k 2 Ab̀(t; z; �) with state proess (Z;�), and denote by N thenumber of trading times. We distinguish two ases: (i) If �1 = t, then by Lemma 3.1, thetransation �1 is equal to �y, whih leads to Y�1 = 0, and a liquidation value L(Z�1 ;��1)= X�1 = L(z; �) = 0. At the next trading date �2 (if it exists), we get X��2 = Y��2 = 0with liquidation value L(Z��2 ;���2 ) = 0, and by using again Lemma 3.1, we see that afterthe transation at �2, we shall also obtain X�2 = Y�2 = 0. By indution, this leads at the�nal trading time to X�N = Y�N = 0, and �nally to XT = YT = 0. (ii) If �1 > t, we laimthat y = 0. On the ontrary, by arguing similarly as in (3.15) between t and ��1 , we havethen proved that any admissible trading strategy � 2 Ab̀(t; z; �) provides a �nal liquidationvalue XT = 0, and sov(t; z; �) = U(0) = 0; 8(t; z; �) 2 [0; T ℄� �LS�: (3.16)Remark 3.3 The representation (3.12) of the optimal portfolio liquidation reveals inte-resting eonomial and mathematial features. It shows that the liquidation problem ina ontinuous-time illiquid market model with disrete-time orders and temporary prieimpat with the presene of a bid-ask spread as onsidered in this paper, leads to nearlyoptimal trading strategies with a �nite number of orders and with stritly inreasing tradingtimes. While most models dealing with trading strategies via an impulse ontrol formulationassumed �xed transation fees in order to justify the disrete nature of trading times,we prove in this paper that disrete-time trading appears naturally as a onsequene oftemporary prie impat and bid-ask spread.The representation (3.13) shows that when we are in an initial state with stritly posi-tive liquidation value, then we an restrit in the optimal portfolio liquidation problem toadmissible trading strategies with stritly positive liquidation value up to time T�. Therelation (3.16) means that when the initial state has a zero liquidation value, whih is nota result of an immediate trading time, then the liquidation value will stay at zero until the�nal horizon.4 Dynami programming and visosity propertiesIn the sequel, the onditions (H1f), (H2f), (H3f), (Hf) and (HU) stand in fore, andare not realled in the statement of Theorems and Propositions.We use a dynami programming approah to derive the equation satis�ed by the valuefuntion of our optimal portfolio liquidation problem. Dynami programming priniple(DPP) for impulse ontrols was frequently used starting from the works by Bensoussanand Lions [4℄, and then onsidered e.g. in [28℄, [20℄, [17℄ or [26℄. In our ontext (reall theexpression (2.10) of the value funtion), this is formulated as:19



Dynami programming priniple (DPP). For all (t; z; �) 2 [0; T ℄� �S, we havev(t; z; �) = sup�2A(t;z;�) E [v(�; Z� ;�� )℄; (4.1)where � = �(�) is any stopping time valued in [t; T ℄ eventually depending on the strategy� in (4.1). More preisely we have :(i) for all � 2 A(t; z; �), for all � 2 Tt;T , the set of stopping times valued in [t; T ℄:E [v(�; Z� ;�� )℄ � v(t; z; �) (4.2)(ii) for all " > 0, there exists �̂" 2 A(t; z; �) s.t. for all � 2 Tt;T :v(t; z; �)� " � E [v(�; Ẑ"� ; �̂"� )℄; (4.3)with (Ẑ"; �̂") the state proess ontrolled by �̂".The orresponding dynami programming Hamilton-Jaobi-Bellman (HJB) equation isa quasi-variational inequality (QVI) written as:min h� �v�t � �v�� �Lv ; v �Hvi = 0; in [0; T )� �S; (4.4)together with the relaxed terminal ondition:min �v � UL ; v �Hv� = 0; in fTg � �S: (4.5)The rigorous derivation of the HJB equation satis�ed by the value funtion from thedynami programming priniple is ahieved by means of the notion of visosity solutions,and is by now rather lassial in the modern approah of stohasti ontrol (see e.g. thebooks [11℄ and [21℄). There are some spei�ities here related to the impulse ontrol andthe liquidation state onstraint, and we reall in Appendix, de�nitions of (disontinuous)onstrained visosity solutions for paraboli QVIs. The main result of this setion is statedas follows.Theorem 4.1 The value funtion v is a onstrained visosity solution to (4.4)-(4.5).Proof. The proof of the visosity supersolution property on [0; T ) � S and the visositysubsolution property on [0; T ) � �S follows the same lines of arguments as in [17℄, and isthen omitted here. We fous on the terminal ondition (4.5).We �rst hek the visosity supersolution property on fTg � S. Fix some (z; �) 2 S,and onsider some sequene (tk; zk; �k)k�1 in [0; T ) � S, onverging to (T; z; �) and suhthat limk v(tk; zk; �k) = v�(T; z; �). By taking the no impulse ontrol strategy on [tk; T ℄, wehave v(tk; zk; �k) � E�UL(Z0;tk;zkT ;�0;tk;�kT )�:20



Sine (Z0;tk;zkT ;�0;tk;zkT ) onverges a.s. to (z; �) when k goes to in�nity by ontinuity of(Z0;t;z;�0;t;�) in its initial ondition, we dedue by Fatou's lemma thatv�(T; z; �) � UL(z; �): (4.6)On the other hand, we know from the dynami programming QVI that v � Hv on [0; T )�S,and thus v(tk; zk; �k) � Hv(tk; zk; �k) � Hv�(tk; zk; �k); 8k � 1:Realling that Hv� is ls, we obtain by sending k to infnity:v�(T; z; �) � Hv�(T; z; �):Together with (4.6), this proves the required visosity supersolution property of (4.5).We now prove the visosity subsolution property on fTg� �S, and argue by ontraditionby assuming that there exists (�z; ��) 2 �S suh thatmin �v�(T; �z; ��)� UL(�z; ��) ; v�(T; �z; ��)�Hv�(T; �z; ��)� := 2" > 0: (4.7)One an �nd a sequene of smooth funtions ('n)n�0 on [0; T ℄� �S suh that 'n onvergespointwisely to v� on [0; T ℄� �S as n!1. Moreover, by (4.7) and realling that Hv� is us,we may assume that the inequalitymin �'n � UL ; 'n �Hv�� � "; (4.8)holds on some bounded neighborhood Bn of (T; �z; ��) in [0; T ℄� �S, for n large enough. Let(tk; zk; �k)k�1 be a sequene in [0; T )�S onverging to (T; �z; ��) and suh that limk v(tk; zk; �k)= v�(T; �z; ��). There exists Æn > 0 suh that Bnk := [tk; T ℄�B(zk; Æn)��(�k� Æn; �k+ Æn)\[0; T ℄� � Bn for all k large enough, so that (4.8) holds on Bnk . Sine v is loally bounded,there exists some � > 0 suh that jv�j � � on Bn. We an then assume that 'n � �2� onBn. Let us de�ne the smooth funtion ~'nk on [0; T )� S by~'nk(t; z; �) := 'n(t; z; �) + 4� jz � zkj2jÆnj2 +pT � tand observe that (v� � ~'nk)(t; z; �) � ��; (4.9)for (t; z; �) 2 [tk; T ℄� �B(zk; Æn)��(�k � Æn; �k + Æn)\ [0; T ℄�. Sine �pT � t�t �! �1 ast! T , we have for k large enough� � ~'nk�t � � ~'nk�� �L ~'nk � 0; on Bnk : (4.10)Let �k = (�kj ; �kj )j�1 be a 1k�optimal ontrol for v(tk; zk; �k) with orresponding stateproess (Zk;�k), and denote by �kn = inffs � tk : (Zks ;�ks) =2 Bnk g ^ �k1 ^ T . From theDPP (4.3), this means thatv(tk; zk; �k)� 1k � Eh1�kn<(�k1 ^T ) v(�kn; Zk�kn)i+ Eh1�kn=T<�k1 UL(Zk�kn ;�k�kn)i+ Eh1�k1��kn v��k1 ;�(Zk(�k1 )� ;�k(�k1 )� ; �k1 ); 0�i (4.11)21



Now, by applying Itô's Lemma to ~'kn(s; Zks ;�ks) between tk and �kn, we get from (4.8)-(4.9)-(4.10),~'nk (tk; zk; �k) � Eh1�kn<�k1 ~'nk(�kn; Zk�kn ;�k�kn)i+ Eh1�k1��kn ~'nk��k1 ; Zk(�k1 )� ;�k(�k1 )��i� Eh1�kn<(�k1 ^T )�v�(�kn; Zk�kn ;�k�kn) + ��i+ Eh1�kn=T<�k1 �UL(Zk�kn ;�k�kn) + "�i+ Eh1�k1��kn�v���k1 ;�(Zk(�k1 )� ;�k(�k1 )� ; �k1 ); 0�+ "�i:Together with (4.11), this implies~'nk (tk; zk; �k) � v(tk; zk; �k)� 1k + " ^ �:Sending k, and then n to in�nity, we get the required ontradition: v�(T; �z; ��)� v�(T; �z; ��)+" ^ �. 2Remark 4.1 In order to have a omplete haraterization of the value funtion throughits HJB equation, we need a uniqueness result, thus a omparison priniple for the QVI(4.4)-(4.5). A key argument originally due to Ishii [14℄ for getting a uniqueness result forvariational inequalities with impulse parts, is to produe a strit visosity supersolution.However, in our model, this is not possible. Indeed, suppose we an �nd a strit visosityls supersolution w to (4.4), so that (w � Hw)(t; z; �) > 0 on [0; T ) � S. But for z =(x; y; p) and � = 0, we have �(z; 0; e) = (x; y + e; p) for any e C(z; 0). Sine 0 2 C(z; 0) wehave Hw(t; z; 0) = supe2[�y;0℄w(t; x; y + e; p; 0) � w(t; z; 0) > Hw(t; z; 0), a ontradition.Atually, the main reason why one annot obtain a strit supersolution is the absene of�xed ost in the impulse funtion � or in the objetive funtional.5 An approximating problem with �xed transation feeIn this setion, we onsider a small variation of our original model by adding a �xedtransation fee " > 0 at eah trading. This means that given a trading strategy � =(�n; �n)n�0, the ontrolled state proess (Z = (X;Y; P );�) jumps now at time �n+1, by:(Z�n+1 ;��n+1) = ��"(Z��n+1 ;���n+1 ; �n+1); 0�; (5.1)where �" is the funtion de�ned on R �R+ �R�+ � [0; T ℄�R into R [ f�1g�R �R�+ by:�"(z; �; e) = �(z; �; e)� ("; 0; 0) = �x� epf(e; �)� "; y + e; p�;for z = (x; y; p). The dynamis of (Z;�) between trading dates is given as before. We alsointrodue a modi�ed liquidation funtion L" de�ned by:L"(z; �) = max[x;L(z; �)� "℄; (z; �) = (x; y; p; �) 2 R � R+ � R�+ � [0; T ℄:The interpretation of this modi�ed liquidation funtion is the following. Due to the preseneof the transation fee at eah trading, it may be advantageous for the investor not to22



liquidate his position in stok shares (whih would give him L(z; �)� "), and rather bin hisstok shares, by keeping only his ash amount (whih would give him x). Hene, the investorhooses the best of these two possibilities, whih indues a liquidation value L"(z; �).We then introdue the orresponding solveny region S" with its losure �S" = S" [ �S",and boundary �S" = �yS" [ �LS":S" = n(z; �) = (x; y; p; �) 2 R � R+ � R�+ � [0; T ℄ : y > 0 and L"(z; �) > 0o;�yS" = n(z; �) = (x; y; p; �) 2 R � R+ � R�+ � [0; T ℄ : y = 0 and L"(z; �) � 0o;�LS" = n(z; �) = (x; y; p; �) 2 R � R+ � R�+ � R+ : L"(z; �) = 0o:We also introdue the orner lines of �S". For simpliity of presentation, we onsider atemporary prie impat funtion f in the form:f(e; �) = ~f�e�� = exp��e����a1e>0 + 1e=0 + �b1e<0�1�>0;where 0 < �b < 1 < �a, and � > 0. A straightforward analysis of the funtion L showsthat y 7! L(x; y; p; �) is inreasing on [0; �=�℄, dereasing on [�=�;1) with L(x; 0; p; �) =x = L(x;1; p; �), and maxy>0 L(x; y; p; �) = L(x; �=�; p; �) = x+ p �� ~f(�1=�). We �rst getthe form of the sets C(z; �): C(z; �) = [�y; �e(z; �)℄ ;where the funtion �e is de�ned in Lemma 3.1. We then distinguish two ases: (i) Ifp �� ~f(�1=�) < ", then L"(x; y; p; �) = x. (ii) If p �� ~f(�1=�) � ", then there exists an uniquey1(p; �) 2 (0; �=�℄ and y2(p; �) 2 [�=�;1) suh that L(x; y1(p; �); p; �) = L(x; y2(p; �); p; �)= x, and L"(x; y; p; �) = x for y 2 [0; y1(p; �))[ (y2(p; �);1), L"(x; y; p; �) = L(x; y; p; �)�"for y 2 [y1(p; �); y2(p; �)℄. We then denote byD0 = f0g � f0g � R�+ � [0; T ℄ = �yS" \ �LS";D1;" = n(0; y1(p; �); p; �) : p �� ~f��1� � � "; � 2 [0; T ℄o;D2;" = n(0; y2(p; �); p; �) : p �� ~f��1� � � "; � 2 [0; T ℄o:Notie that the inner normal vetors at the orner lines D1;" and D2;" form an aute angle(positive salar produt), while we have a right angle at the orner D0.Next, we de�ne the set of admissible trading strategies as follows. Given (t; z; �) 2[0; T ℄ � �S", we say that the impulse ontrol � is admissible, denoted by � 2 A"(t; z; �), if�0 = t� �, �n � t, n � 1, and the ontrolled state proess (Z";�) solution to (2.1)-(2.2)-(2.3)-(2.6)-(5.1), with an initial state (Z"t� ;�t�) = (z; �) (and the onvention that (Z"t ;�t)= (z; �) if �1 > t), satis�es (Z"s ;�s) 2 [0; T ℄ � �S" for all s 2 [t; T ℄. Here, we stress thedependene of Z" = (X"; Y; P ) in " appearing in the transation funtion �", and we notiethat it a�ets only the ash omponent. Notie that A"(t; z; �) is nonempty for any (t; z; �)2 [0; T ℄ � �S". Indeed, for (z = (x; y; p); �) 2 �S", i.e. L"(z; �) = max(x;L(z; �) � ") � 0,we distinguish two ases: (i) if x � 0, then by doing none transation, the assoiated state23
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proess (Z" = (X"; Y; P );�) satis�es X"s = x � 0, t � s � T , and thus this zero transationis admissible; (ii) if L(z; �) � " � 0, then by liquidating immediately all the stok shares,and doing nothing more after, the assoiated state proess satis�es X"s = L(z; �)� ", Ys =0, and thus L"(Z"s ;�s) = X"s � 0, t � s � T , whih shows that this immediate transationis admissible.Given the utility funtion U on R+ , and the liquidation utility funtion de�ned on �S"by UL"(z; �) = U(L"(z; �)), we then onsider the assoiated optimal portfolio liquidationproblem de�ned via its value funtion by:v"(t; z; �) = sup�2A"(t;z;�) E�UL"(Z"T ;�T )�; (t; z; �) 2 [0; T ℄ � �S": (5.2)Notie that when " = 0, the above problem redues to the optimal portfolio liquidationproblem desribed in Setion 2, and in partiular v0 = v. The main purpose of this setionis to provide a unique PDE haraterization of the value funtions v", " > 0, and to provethat the sequene (v")" onverges to the original value funtion v as " goes to zero.We de�ne the set of admissible transations in the model with �xed transation fee by:C"(z; �) = ne 2 R : ��"(z; �; e); 0� 2 �S"o; (z; �) 2 �S":A similar alulation as in Lemma 3.1 shows that for (z = (x; y; p); �) 2 �S",C"(z; �) = ( [�y; �e"(z; �)℄; if � > 0 or x � ";;; if � = 0 and x < ";where �e(z; �) = supfe 2 R : ep ~f(e=�) � x� "g if � > 0 and �e(z; 0) = 0 if x � ". Here, theset [�y; �e"(z; �)℄ should be viewed as empty when �e(z; �) < y, i.e. x+ py ~f(�y=�)� " < 0.We also easily hek that C" is ontinuous for the Hausdor� metri. We then onsider theimpulse operator H" byH"w(t; z; �) = supe2C"(z;�)w(t;�"(z; �; e); 0); (t; z; �) 2 [0; T ℄ � �S";for any loally bounded funtion w on [0; T ℄� �S", with the onvention that H"w(t; z; �) =�1 when C"(z; �) = ;.Next, onsider again the Merton liquidation funtion LM , and observe similarly as in(3.7) that LM (�"(z; �; e)) � LM (z) = ep�1� f�e; ���� "� �"; 8(z; �) 2 �S"; e 2 R: (5.3)This implies in partiular that H"LM < LM on �S": (5.4)Sine L" � LM , we observe from (5.3) that if (z; �) 2 N" := f(z; �) 2 �S" : LM (z) < "g,then C"(z; �) = ;. Moreover, we dedue from (5.3) that for all � = (�n; �n)n�0 2 A"(t; z; �)26



assoiated to the state proess (Z;�), (t; z; �) 2 [0; T ℄ � �S":0 � LM (ZT ) = LM (Z0;t;zT ) +Xn�0�LM (Z�n)� LM (Z0;t;zT )� "NT (�);where we reall that NT (�) is the number of trading times over the whole horizon T . Thisshows that NT (�) � 1"LM (Z0;t;zT ) < 1 a:s:In other words, we see that, under the presene of �xed transation fee, the number ofintervention times over a �nite interval for an admissible trading strategy is �nite almostsurely.The dynami programming equation assoiated to the ontrol problem (5.2) ismin h� �w�t � �w�� �Lw ; w �H"wi = 0; in [0; T )� �S"; (5.5)min �w � UL" ; w �H"w� = 0; in fTg � �S": (5.6)The main result of this setion is stated as follows.Theorem 5.1 (1) The sequene (v")" is noninreasing, and onverges pointwise on [0; T ℄�( �S n �LS) towards v as " goes to zero.(2) For any " > 0, the value funtion v" is ontinuous on [0; T )�S", and is the unique (in[0; T ) � S") onstrained visosity solution to (5.5)-(5.6), satisfying the growth ondition:jv"(t; z; �)j � K(1 + LM (z)); 8(t; z; �) 2 [0; T ℄� �S"; (5.7)for some positive onstant K, and the boundary ondition:lim(t0;z0;�0)!(t;z;�) v"(t0; z0; �0) = v(t; z; �)= U(0); 8(t; z = (0; 0; p); �) 2 [0; T ℄ �D0: (5.8)We �rst prove the onvergene of the sequene of value funtions (v").Proof of Theorem 5.1 (1).Notie that for any 0 < "1 � "2, we have L"2 � L"1 � L, A"2(t; z; �) � A"1(t; z; �) �A(t; z; �), for t 2 [0; T ℄, (z; �) 2 �S"2 � �S"1 � �S, and for � 2 A"2(t; z; �), L"2(Z"2 ;�) �L"2(Z"1 ;�) � L"1(Z"1 ;�) � L(Z;�). This shows that the sequene (v") is noninreasing,and is upper-bounded by the value funtion v without transation fee, so thatlim"#0 v"(t; z; �) � v(t; z; �); 8(t; z; �) 2 [0; T ℄� �S: (5.9)Fix now some point (t; z; �) 2 [0; T ℄ � ( �S n �LS). From the representation (3.13) ofv(t; z; �), there exists for any n � 1, an 1=n-optimal ontrol �(n) = (� (n)k ; �(n)k )k 2 Ab̀+(t; z; �)27



with assoiated state proess (Z(n) = (X(n); Y (n); P );�(n)) and number of trading timesN (n): E�U(X(n)T )� � v(t; z; �)� 1n: (5.10)We denote by (Z";(n);�(n)) = (X";(n); Y (n); P );�(n)) the state proess ontrolled by �(n) inthe model with transation fee " (only the ash omponent is a�eted by "), and we observethat for all t � s � T ,X";(n)s = X(n)s � "N (n)s % X(n)s ; as " goes to zero. (5.11)Given n, we onsider the family of stopping times:�(n)" = inf �s � t : L(Z";(n)s ;�(n)s ) � "	 ^ T; " > 0:Let us prove that lim"&0�(n)" = T a:s: (5.12)Observe that for 0 < "1 � "2, X"2;(n)s � X"1;(n)s , and so L(Z"2;(n)s ;�s) � L(Z"1;(n)s ;�s)for t � s � T . This implies learly that the sequene (�(n)" )" is noninreasing. Sine thissequene is bounded by T , it admits a limit, denoted by �(n)0 = lim"#0 " �(n)" . Now, byde�nition of �(n)" , we have L(Z";(n)�(n)" ;�(n)�(n)" ) � ", for all " > 0. By sending " to zero, we thenget with (5.11): L(Z(n)�(n);�0 ;�(n)�(n);�0 ) = 0 a:s:Realling the de�nition ofAb̀+(t; z; �), this implies that �(n)0 = � (n)k for some k 2 f1; : : : ; N (n)+1g with the onvention � (n)N(n)+1 = T . If k � N (n), arguing as in (3.15), we get a ontraditionwith the solveny onstraints. Hene we get �(n)0 = T .Consider now the trading strategy ~�";(n) 2 A onsisting in following �(n) until time �(n)"and liquidating all the stok shares at time �(n)" , i.e.~�";(n) = (� (n)k ; �(n)k )1�k<�(n)" [ (�(n)" ;�Y�(n);�" ):We denote by ( ~Z";(n) = ( ~X";(n); ~Y ";(n); P ); ~�";(n)) the assoiated state proess in the marketwith transation fee ". By onstrution, we have for all t � s < �(n)" : L( ~Z";(n)s ; ~�";(n)s ) =L(Z";(n)s ;�(n)s ) � ", and thus L"( ~Z";(n)s ; ~�";(n)s ) � 0. At the transation time �(n)" , we thenhave ~X";(n)�(n)" = L( ~Z";(n)�(n);�" ; ~�";(n)�(n);�" )� " = L(Z(n)�";(n);�" ;�(n)�(n);�" )� ", ~Y ";(n)�(n)" = 0. After time �(n)" ,there is no more transation in ~�";(n), and so~X";(n)s = ~X";(n)�(n)" = L(Z(n)�";(n);�" ;�(n)�(n);�" )� " � 0; (5.13)~Y ";(n)s = ~Y ";(n)�(n)" = 0; �(n)" � s � T; (5.14)28



and thus L"( ~Z";(n)s ; ~�";(n)s ) = ~X";(n)s � 0 for �(n)" � s � T . This shows that ~�";(n) lies inA"(t; z; �), and thus by de�nition of v":v"(t; z) � E�UL"� ~Z";(n)T ; ~�";(n)T ��: (5.15)Let us hek that given n,lim"#0 L"� ~Z";(n)T ; ~�";(n)T � = X(n)T ; a:s: (5.16)To alleviate notations, we set N = N (n)T the total number of trading times of �(n). If thelast trading time of �(n) ours stritly before T , then we do not trade anymore until the�nal horizon T , and soX(n)T = X(n)�N ; and Y (n)T = Y (n)�N = 0; on f�N < Tg: (5.17)By (5.12), we have for " small enough: �(n)" > �N , and so ~X";(n)�(n);�" = X";(n)�N , ~Y ";(n)�(n);�" = Y (n)�N= 0. The �nal liquidation at time �(n)" yields: ~X";(n)T = ~X";(n)�(n)" = ~X";(n)�(n);�" � " = X";(n)�N � ",and ~Y ";(n)T = ~Y ";(n)�(n)" = 0. We then obtainL"� ~Z";(n)T ; ~�";(n)T � = max� ~X";(n)T ; L� ~Z";(n)T ; ~�";(n)T �� "�= ~X";(n)T = X";(n)�N � " on f�N < Tg= X(n)T � (1 +N)" on f�N < Tg;by (5.11) and (5.17), whih shows that the onvergene in (5.16) holds on f�N < Tg. If thelast trading of �(n) ours at time T , this means that we liquidate all stok shares at T ,and so X(n)T = L(Z(n)T� ;�(n)T�); Y (n)T = 0 on f�N = Tg: (5.18)On the other hand, by (5.13)-(5.14), we haveL"� ~Z";(n)T ; ~�";(n)T � = ~X";(n)T = L(Z(n)�";(n);�" ;�(n)�(n);�" )� "�! L(Z(n)T� ;�(n)T�) as " goes to zero;by (5.12). Together with (5.18), this implies that the onvergene in (5.16) also holds onf�N = Tg, and thus almost surely. Sine 0 � L" � L, we immediately see by Proposition3.1 that the sequene fUL"� ~Z";(n)T ; ~�";(n)T �; " > 0g is uniformly integrable, so that by sending" to zero in (5.15) and using (5.16), we getlim"#0 v"(t; z; �) � E�U(X(n)T )� � v(t; z) � 1n;from (5.10). By sending n to in�nity, and realling (5.9), this ompletes the proof ofassertion (1) in Theorem 5.1. 229



We now turn to the visosity haraterization of v". The visosity property of v" isproved similarly as for v, and is then omitted. From Proposition 3.1, and sine 0 � v"� v, we know that the value funtions v" lie in the set of funtions satisfying the growthondition in (5.7), i.e.G([0; T ℄� �S") = nw : [0; T ℄� �S" ! R; sup[0;T ℄� �S" jw(t; z; �)j1 + LM (z) < 1o:The boundary property (5.8) is immediate. Indeed, �x (t; z = (x; 0; p); �) 2 [0; T ℄ � �yS",and onsider an arbitrary sequene (tn; zn = (xn; yn; pn); �n)n in [0; T ℄ � �S" onverging to(t; z; �). Sine 0 � L"(zn; �n) = max(xn; L(zn; �n)�"), and yn goes to zero, this implies thatfor n large enough, xn = L"(zn; �n) � 0. By onsidering from (tn; zn; �n) the admissiblestrategy of doing none transation, whih leads to a �nal liquidation value XT = xn,we have U(xn) � v"(tn; zn; �n) � v(tn; zn; �n). Realling Corollary 3.1, we then obtain theontinuity of v" on �yS" with v"(t; z; �) = U(x) = v(t; z; �) for (z; �) = (x; 0; p; �) 2 �yS", andin partiular (5.8). Finally, we address the uniqueness issue, whih is a diret onsequeneof the following omparison priniple for onstrained (disontinuous) visosity solution to(5.5)-(5.6).Theorem 5.2 (Comparison priniple)Suppose u 2 G([0; T ℄ � �S") is a us visosity subsolution to (5.5)-(5.6) on [0; T ℄� �S", andw 2 G([0; T ℄ � �S") is a ls visosity supersolution to (5.5)-(5.6) on [0; T ℄� S" suh thatu(t; z; �) � lim inf(t0; z0; �0) ! (t; z; �)(t0; z0; �0) 2 [0; T ) � S" w(t0; z0; �0); 8(t; z; �) 2 [0; T ℄ �D0: (5.19)Then, u � w on [0; T ℄� S": (5.20)Notie that with respet to usual omparison priniples for paraboli PDEs where weompare a visosity subsolution and a visosity supersolution from the inequalities on thedomain and at the terminal date, we require here in addition a omparison on the boundaryD0 due to the non smoothness of the domain �S" on this right angle of the boundary.A similar feature appears also in [17℄, and we shall only emphasize the main argumentsadapted from [3℄, for proving the omparison priniple.Proof of Theorem 5.2.Let u and w as in Theorem 5.2, and (re)de�ne w on [0; T ℄� �S" byw(t; z; �) = lim inf(t0; z0; �0)! (t; z; �)(t0; z0; �0) 2 [0; T ) � S" w(t0; z0; �0); (t; z; �) 2 [0; T ℄ � �S": (5.21)In order to obtain the omparison result (5.20), it suÆes to prove that sup[0;T ℄� �S"(u�w)� 0, and we shall argue by ontradition by assuming thatsup[0;T ℄� �S"(u� w) > 0: (5.22)30



� Step 1. Constrution of a strit visosity supersolution.Consider the funtion de�ned on [0; T ℄� �S" by (t; z; �) = e�0(T�t)LM(z)0 ; t 2 [0; T ℄; (z; �) = (x; y; p; �) 2 �S";where �0 > 0, and 0 2 (0; 1) will be hosen later. The funtion  is smooth C2 on[0; T ) � ( �S" nD0), and by the same alulations as in (3.10), we see that by hoosing �0 >01�0 b22�2 , then � � �t � � �� �L > 0 on [0; T )� ( �S" nD0): (5.23)Moreover, from (5.4), we have( �H" )(t; z; �) = e�0(T�t)hLM (z)0 � (H"LM(z))0i =: �(t; z) (5.24)> 0 on [0; T ℄� �S":For m � 1, we denote by~u(t; z; �) = etu(t; z; �); and ~wm(t; z; �) = et�w(t; z; �) + 1m (t; z; �)℄:From the visosity subsolution property of u, we immediately see that ~u is a visositysubsolution to min �~u� �~u�t � �~u�� �L~u ; ~u�H"~u� � 0; on [0; T ) � �S" (5.25)min �~u� ~UL" ; ~u�H"~u� � 0; on fTg � �S"; (5.26)where we set ~UL"(z; �) = eTUL"(z; �). From the visosity supersolution property of w, andthe relations (5.23)-(5.24), we also derive that ~wm is a visosity supersolution to~wm � � ~wm�t � � ~wm�� �L ~wm � 0 on [0; T ) � (S" nD0) (5.27)~wm �H" ~wm � 1m� on [0; T ℄� S": (5.28)~wm � ~UL" � 0 on fTg � S": (5.29)On the other hand, from the growth ondition on u and w in G([0; T ℄� �S"), and by hoosing0 2 (; 1), we have for all (t; �) 2 [0; T ℄2,limjzj!1(u� wm)(t; z; �) = �1:Therefore, the us funtion ~u � ~wm attains its supremum on [0; T ℄ � �S", and from (5.22),there exists m large enough, and (�t; �z; ��) 2 [0; T ℄� �S" s.t.~M = sup[0;T ℄� �S"(~u� ~wm) = (~u� ~wm)(�t; �z; ��) > 0: (5.30)� Step 2. From the boundary ondition (5.19), we know that (�z; ��) annot lie in D0, andwe have then two possible ases: 31



(i) (�z; ��) 2 S" nD0(ii) (�z; ��) 2 �S" nD0.The ase (i) where (�z; ��) lies in S" is standard in the omparison priniple for (nonon-stained) visosity solutions, and we fous here on the ase (ii), whih is spei� to ons-trained visosity solutions. From (5.21), there exists a sequene (tn; zn; �n)n�1 in [0; T )�S"suh that (tn; zn; �n; ~wm(tn; zn; �n)) �! (�t; �z; ��; ~wm(�t; �z; ��)) as n!1:We then set Æn = jzn � �zj+ j�n � ��j, and onsider the funtion �n de�ned on [0; T ℄� ( �S")2by: �n(t; z; �; z0; �0) = ~u(t; z; �)� ~wm(t; z0; �0)� 'n(t; z; �; z0; �0)'n(t; z; �; z0; �0) = jt� �tj2 + jz � �zj4 + j� � ��j4+ jz � z0j2 + j� � �0j22Æn + � d(z0; �0)d(zn; �n) � 1�4:Here, d(z; �) denotes the distane from (z; �) to �S". Sine (�z; ��) =2 D0, there exists anopen neighborhood �V of (�z; ��) satisfying �V \D0 = ;, suh that the funtion d(:) is twieontinuously di�erentiable with bounded derivatives. This is well known (see e.g. [12℄)when (�z; ��) lies in the smooth parts of the boundary �S" n (D1;" [D2;"). This is also truefor (�z; ��) 2 Dk;" for k 2 f1; 2g. Indeed, at these orner lines, the inner normal vetorsform an aute angle (positive salar produt), and thus one an extend from (�z; ��) theboundary to a smooth boundary so that the distane d is equal, loally on the neighborhood,to the distane to this smooth boundary. From the growth onditions on u and w inG([0; T ℄� �S"), there exists a sequene (t̂n; ẑn; �̂n; ẑ0n; �̂0n) attaining the maximum of the us�n on [0; T ℄� ( �S")2. By standard arguments (see e.g. [3℄ or [17℄), we have(t̂n; ẑn; �̂n; ẑ0n; �̂0n) �! (�t; �z; ��; �z; ��) (5.31)jẑn � ẑ0nj2 + j�̂n � �̂0nj22Æn + �d(ẑ0n; �̂0n)d(zn; �n) � 1�4 �! 0 (5.32)~u(t̂n; ẑn; �̂n)� ~wm(t̂n; ẑ0n; �̂0n) �! (~u� ~wm)(�t; �z; ��): (5.33)The onvergene in (5.32) shows in partiular that for n large enough, d(ẑ0n; �̂0n)� d(zn; �n)=2> 0, and so (ẑ0n; �̂0n) 2 S". From the onvergene in (5.31), we may also assume that forn large enough, (ẑn; �̂n), (ẑ0n; �̂0n) lie in the neighborhood �V of (�z; ��) so that the derivativesupon order 2 of d(:) at (ẑn; �̂n) and (ẑ0n; �̂0n) exist and are bounded.� Step 3. We show that for n large enough,~u(t̂n; ẑn; �̂n)�H"~u(t̂n; ẑn) > 0: (5.34)Otherwise, up to a subsequene, we would have for all n:~u(t̂n; ẑn; �̂n)�H"~u(t̂n; ẑn) � 0:32



By sending n to in�nity, and from the upper-semiontinuity ofH"~u, we get with (5.31): �1< ~u(�t; �z; ��) � H"~u(�t; �z; ��), whih shows in partiular that C"(�z; ��) is not empty. Moreover,by the visosity supersolution property (5.28), we have~wm(t̂n; ẑ0n; �̂0n)�H" ~wm(t̂n; ẑ0n; �̂0n) � 1m�(t̂n; ẑ0n; �̂0n):By substrating the two previous inequalities, we would get~u(t̂n; ẑn; �̂n)� ~wm(t̂n; ẑ0n; �̂0n) � H"~u(t̂n; ẑn)�H" ~wm(t̂n; ẑ0n; �̂0n)� 1m�(t̂n; ẑ0n; �̂0n):By sending n to in�nity, and from the upper-semiontinuity ofH"~u, the lower-semiontinuityof H" ~wm and �, this yields with (5.31), (5.33)(~u� ~wm)(�t; �z; ��) � H"~u(�t; �z; ��)�H" ~wm(�t; �z; ��)� 1m�(�t; �z; ��):Now, by ompatness of C"(�z; ��) 6= ;, there exists �e 2 C"(�z; ��) suh that H"~u(�t; �z; ��) =~u(t;�"(�z; ��; �e); 0) and so~M = (~u� ~wm)(�t; �z; ��) � ~u(�t;�"(�z; ��; �e); 0)� ~wm(�t;�"(�z; ��; �e); 0) � 1m�(�t; �z; ��)� ~M � 1m�(�t; �z; ��);a ontradition.� Step 4. We hek that, up to a subsequene, t̂n < T for all n. On the ontrary, t̂n = �t =T for n large enough, and we would get from (5.34) and the visosity subsolution property(5.26): ~u(T; ẑn; �̂n) � ~UL"(ẑn; �̂n):Moreover, by (5.29), we have ~wm(T; ẑ0n; �̂0n) � ~UL"(ẑ0n; �̂0n), whih ombined with the formerinequality, implies~u(T; ẑn; �̂n)� ~wm(T; ẑ0n; �̂0n) � ~UL"(ẑn; �̂n)� ~UL"(ẑ0n; �̂0n):By sending n to in�nity, this yields with (5.31), (5.33) and ontinuity of ~UL" : ~M = (~u �~wm)(�t; �z; ��) � 0, a ontradition with (5.30).� Step 5. We use the visosity subsolution property (5.25) of ~u at (t̂n; ẑn; �̂n) 2 [0; T )� �S",whih is written by (5.34) as(~u� �~u�t � �~u�� �L~u)(t̂n; ẑn; �̂n) � 0: (5.35)The above inequality is understood in the visosity sense, and applied with the test funtion(t; z; �) ! 'n(t; z; �; ẑ0n; �̂0n), whih is C2 in the neighborhood [0; T ℄ � �V of (t̂n; ẑn; �̂n). Wealso write the visosity supersolution property (5.27) of ~wm at (t̂n; ẑ0n; �̂0n) 2 [0; T )�(S"nD0):( ~wm � � ~wm�t � � ~wm�� �L ~wm)(t̂n; ẑ0n; �̂0n) � 0: (5.36)The above inequality is again understood in the visosity sense, and applied with the testfuntion (t; z0; �0) ! �'n(t; ẑn; �̂n; z0; �0), whih is C2 in the neighborhood [0; T ℄ � �V of(t̂n; ẑ0n; �̂0n). The onlusion is ahieved by arguments similar to [17℄: we invoke Ishii'sLemma, substrat the two inequalities (5.35)-(5.36), and �nally get the required ontradi-tion ~M � 0 by sending n to in�nity with (5.31)-(5.32)-(5.33). 233



6 An approximating problem with utility penalizationWe onsider in this setion another perturbation of our initial optimization problem byadding a ost " to the utility at eah trading. We then de�ne the value funtion �v" on[0; T ℄ � �S by�v"(t; z; �) = sup�2Ab̀(t;z;�) EhUL�ZT ;�T �� "NT (�)i; (t; z; �) 2 [0; T ℄� �S: (6.1)The onvergene of this approximation is immediate.Proposition 6.1 The sequene (�v")" is nondereasing and onverges pointwise on [0; T ℄� �Stowards v as " goes to zero.Proof. It is lear that the sequene (�v")" is nondereasing and that �v" � v on [0; T ℄ � �Sfor any " > 0. Let us prove that lim"&0 �v" = v. Fix n 2 N� and (t; z; �) 2 [0; T ℄ � �S andonsider some �(n) 2 Ab̀(t; z; �) suh thatEhUL�Z(n)T ;�(n)T �i � v(t; z; �)� 1n;where (Z(n);�(n)) is the assoiated ontrolled proess. From the monotone onvergenetheorem, we then getlim"&0 �v"(t; z; �) � EhUL�Z(n)T ;�(n)T �i � v(t; z; �) � 1n:By the arbitrariness of n 2 N� , we onlude that lim" �v" � v, whih ends the proof sinewe already have �v" � v. 2The nonloal impulse operator �H" assoiated to (6.1) is given by�H"'(t; z; �) = H'(t; z; �)� ";and we onsider the orresponding dynami programming equation:min h� �w�t � �w�� �Lw ; w � �H"wi = 0; in [0; T )� �S; (6.2)min �w � UL ; w � �H"w� = 0; in fTg � �S: (6.3)By similar arguments as in Setion 5, we an show that �v" is a onstrained visositysolution to (6.2)-(6.3), and the following omparison priniple holds:Suppose u 2 G([0; T ℄� �S) is a us visosity subsolution to (6.2)-(6.3) on [0; T ℄� �S, and w2 G([0; T ℄� �S) is a ls visosity supersolution to (6.2)-(6.3) on [0; T ℄� S, suh thatu(t; z; �) � lim inf(t0; z0; �0) ! (t; z; �)(t0; z0; �0) 2 [0; T ) � S w(t0; z0; �0); 8(t; z; �) 2 [0; T ℄�D0:Then, u � w on [0; T ℄� S: (6.4)The proof follows the same lines of arguments as in the proof of Theorem 5.2 (the funtion is still a strit visosity supersolution to (6.2)-(6.3) on [0; T ℄� �S), and so we omit it.As a onsequene, we obtain a PDE haraterization of the value funtion v.34



Proposition 6.2 The value funtion v is the minimal onstrained visosity solution inG([0; T ℄ � �S) to (4.4)-(4.5), satisfying the boundary onditionlim(t0;z0;�0)!(t;z;�) v(t0; z0; �0) = v(t; z; �) = U(0); 8(t; z; �) 2 [0; T ℄ �D0: (6.5)Proof. Let V 2 G([0; T ℄ � �S) be a visosity solution in G([0; T ℄ � �S) to (4.4)-(4.5),satisfying the boundary ondition (6.5). Sine H � �H", it is lear that V� is a visositysupersolution to (6.2)-(6.3). Moreover, sine lim(t0;z0;�0)!(t;z;�) V�(t0; z0; �0) = U(0) = v(t; z; �)� �v�"(t; z; �) for (t; z; �) 2 [0; T ℄ �D0, we dedue from the omparison priniple (6.4) thatV � V� � �v�" � �v" on [0; T ℄ � S. By sending " to 0, and from the onvergene result inProposition 6.1, we obtain: V � v, whih proves the required result. 2Appendix: onstrained visosity solutions to paraboli QVIsWe onsider a paraboli quasi-variational inequality in the form:min h� �v�t + F (t; x; v;Dxv;D2xv) ; v �Hvi = 0; in [0; T )� �O; (A.1)together with a terminal onditionmin �v � g ; v �Hv� = 0; in fTg � �O: (A.2)Here, O � Rd is an open domain, F is a ontinuous funtion on [0; T ℄� Rd � R � Rd � Sd(Sd is the set of positive semide�nite symmetri matries in Rd�d), noninreasing in its lastargument, g is a ontinuous funtion on �O, and H is a nonloal operator de�ned on the setof loally bounded funtions on [0; T ℄ � �O by:Hv(t; x) = supe2C(t;x) �v(t;�(t; x; e)) + (t; x; e)�:C(t; x) is a ompat set of a metri spae E, eventually empty for some values of (t; x), inwhih ase we set Hv(t; x) = �;, and is ontinuous for the Hausdor� metri, i.e. if (tn; xn)onverges to (t; x) in [0; T ℄ � �O, and (en) is a sequene in C(tn; xn) onverging to e, thene 2 C(t; x). The funtions � and  are ontinuous, and suh that �(t; x; e) 2 �O for all e 2C(t; x; e).Given a loally bounded funtion u on [0; T ℄ � �O, we de�ne its lower-semiontinuous(ls in short) envelope u� and upper-semiontinuous (us) envelope u� on [0; T ℄� �S by:u�(t; x) = lim inf(t0; x0)! (t; x)(t0; x0) 2 [0; T ) �O u(t0; x0); u�(t; x) = lim sup(t0; x0)! (t; x)(t0; x0) 2 [0; T )�O u(t0; x0):One an hek (see e.g. Lemma 5.1 in [17℄) that the operator H preserves lower and upper-semiontinuity:(i) Hu� is ls, and Hu� � (Hu)�, (ii) Hu� is us, and (Hu)� � Hu�.We now give the de�nition of onstrained visosity solutions to (A.1)-(A.2). This notion,whih extends the de�nition of visosity solutions of Crandall, Ishii and Lions (see [10℄),35



was introdued in [27℄ for �rst-order equations for taking into aount boundary onditionsarising in state onstraints, and used in [29℄ for stohasti ontrol problems in optimalinvestment.De�nition A.1 A loally bounded funtion v on [0; T ℄� �O is a onstrained visosity solu-tion to (A.1)-(A.2) if the two following properties hold:(i) Visosity supersolution property on [0; T ℄ � O: for all (�t; �x) 2 [0; T ℄ � O, and ' 2C1;2([0; T ℄ �O) with 0 = (v� � ')(�t; �x) = min(v� � '), we havemin h� �'�t (�t; �x) + F (�t; �x; '�(�t; �x);Dx'(�t; �x);D2x'(�t; �x)) ;v�(�t; �x)�Hv�(�t; �x)i � 0; (�t; �x) 2 [0; T )�O;min �v�(�t; �x)� g(�x) ; v�(�t; �x)�Hv�(�t; �x)i � 0; (�t; �x) 2 fTg � O:(ii) Visosity subsolution property on [0; T ℄ � �O: for all (�t; �x) 2 [0; T ℄ � �O, and ' 2C1;2([0; T ℄ � �O) with 0 = (v� � ')(�t; �x) = max(v� � '), we havemin h� �'�t (�t; �x) + F (�t; �x; '�(�t; �x);Dx'(�t; �x);D2x'(�t; �x)) ;v�(�t; �x)�Hv�(�t; �x)i � 0; (�t; �x) 2 [0; T )� �O;min �v�(�t; �x)� g(�x) ; v�(�t; �x)�Hv�(�t; �x)i � 0; (�t; �x) 2 fTg � �O:
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