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tWe study the optimal portfolio liquidation problem over a �nite horizon in a limitorder book with bid-ask spread and temporary market pri
e impa
t penalizing speedyexe
ution trades. We use a 
ontinuous-time modeling framework, but in 
ontrast withprevious related papers (see e.g. [24℄ and [25℄), we do not assume 
ontinuous-timetrading strategies. We 
onsider instead real trading that o

ur in dis
rete-time, andthis is formulated as an impulse 
ontrol problem under a solven
y 
onstraint, in
ludingthe lag variable tra
king the time interval between trades. A �rst important resultof our paper is to show that nearly optimal exe
ution strategies in this 
ontext leada
tually to a �nite number of trading times, and this holds true without assuming ad ho
any �xed transa
tion fee. Next, we derive the dynami
 programming quasi-variationalinequality satis�ed by the value fun
tion in the sense of 
onstrained vis
osity solutions.We also introdu
e a family of value fun
tions 
onverging to our value fun
tion, andwhi
h is 
hara
terized as the unique 
onstrained vis
osity solutions of an approximationof our dynami
 programming equation. This 
onvergen
e result is useful for numeri
alpurpose, postponed in a further study.Keywords: Optimal portfolio liquidation, exe
ution trade, liquidity e�e
ts, order book,impulse 
ontrol, vis
osity solutions.MSC Classi�
ation (2000) : 93E20, 91B28, 60H30, 49L25.
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1 Introdu
tionUnderstanding trade exe
ution strategies is a key issue for �nan
ial market pra
titioners,and has attra
ted a growing attention from the a
ademi
 resear
hers. An important pro-blem fa
ed by sto
k traders is how to liquidate large blo
k orders of shares. This is a
hallenge due to the following dilemma. By trading qui
kly, the investor is subje
t tohigher 
osts due to market impa
t re
e
ting the depth of the limit order book. Thus,to minimize pri
e impa
t, it is generally bene�
ial to break up a large order into smallerblo
ks. However, more gradual trading over time results in higher risks sin
e the assetvalue 
an vary more during the investment horizon in an un
ertain environment. Therehas been re
ently a 
onsiderable interest in the literature on su
h liquidity e�e
ts, takinginto a

ount permanent and/or temporary pri
e impa
t, and problems of this type werestudied by Bertsimas and Lo [7℄, Almgren and Criss [1℄, Bank and Baum [5℄, Cetin, Jarrowand Protter [8℄, Obizhaeva and Wang [18℄, He and Mamayski [13℄, S
hied an S
h�oneborn[25℄, Ly Vath, Mnif and Pham [17℄, Rogers and Singh [24℄, and Cetin, Soner and Touzi [9℄,to mention some of them.There are essentially two popular formulation types for the optimal trading problemin the literature: dis
rete-time versus 
ontinuous-time. In the dis
rete-time formulation,we may distinguish papers 
onsidering that trading take pla
e at �xed deterministi
 times(see [7℄), at exogenous random dis
rete times given for example by the jumps of a Poissonpro
ess (see [22℄, [6℄), or at dis
rete times de
ided optimally by the investor through animpulse 
ontrol formulation (see [13℄ and [17℄). In this last 
ase, one usually assumes theexisten
e of a �xed transa
tion 
ost paid at ea
h trading in order to ensure that strategiesdo not a

umulate in time and o

ur really at dis
rete points in time (see e.g. [15℄ or [19℄).The 
ontinuous-time trading formulation is not realisti
 in pra
ti
e, but is 
ommonly used(as in [8℄, [25℄ or [24℄), due to the tra
tability and powerful theory of the sto
hasti
 
al
ulustypi
ally illustrated by Itô's formula. In a perfe
tly liquid market without transa
tion 
ostand market impa
t, 
ontinuous-time trading is often justi�ed by arguing that it is a limitapproximation of dis
rete-time trading when the time step goes to zero. However, one mayquestion the validity of su
h assertion in the presen
e of liquidity e�e
ts.In this paper, we propose a 
ontinuous-time framework taking into a

ount the mainliquidity features and risk/
ost tradeo� of portfolio exe
ution: there is a bid-ask spreadin the limit order book, and temporary market pri
e impa
t penalizing rapid exe
utiontrades. However, in 
ontrast with previous related papers ([25℄ or [24℄), we do not as-sume 
ontinuous-time trading strategies. We 
onsider instead real trading that take pla
ein dis
rete-time, and without assuming ad ho
 any �xed transa
tion 
ost, in a

ordan
ewith the pra
titioner literature. Moreover, a key issue in line of the banking regulationand solven
y 
onstraints is to de�ne in an e
onomi
ally meaningful way the portfolio valueof a position in sto
k at any time, and this is addressed in our modelling. These issuesare formulated 
onveniently through an impulse 
ontrol problem in
luding the lag variabletra
king the time interval between trades. Thus, we 
ombine the advantages of the sto
has-ti
 
al
ulus te
hniques, and the realisti
 modeling of portfolio liquidation. In this 
ontext,we study the optimal portfolio liquidation problem over a �nite horizon: the investor seeks2



to unwind an initial position in sto
k shares by maximizing his expe
ted utility from ter-minal liquidation wealth, and under a natural e
onomi
 solven
y 
onstraint involving theliquidation value of a portfolio.A �rst important result of our paper is to show that that nearly optimal exe
utionstrategies in this modeling lead a
tually to a �nite number of trading times. While mostmodels dealing with trading strategies via an impulse 
ontrol formulation assumed �xedtransa
tion 
ost in order to justify a posteriori the dis
rete-nature of trading times, weprove here that dis
rete-time trading appear naturally as a 
onsequen
e of liquidity fea-tures represented by temporary pri
e impa
t and bid-ask spread. Next, we derive thedynami
 programming quasi-variational inequality (QVI) satis�ed by the value fun
tion inthe sense of 
onstrained vis
osity solutions in order to handle state 
onstraints. There aresome te
hni
al diÆ
ulties related to the nonlinearity of the impulse transa
tion fun
tionindu
ed by the market pri
e impa
t, and the non smoothness of the solven
y boundary. Inparti
ular, sin
e we do not assume a �xed transa
tion fee, whi
h pre
ludes the existen
e ofa stri
t supersolution to the QVI, we 
an not prove dire
tly a 
omparison prin
iple (hen
ea uniqueness result) for the QVI. We then 
onsider two types of approximations by in-trodu
ing families of value fun
tions 
onverging to our original value fun
tion, and whi
hare 
hara
terized as unique 
onstrained vis
osity solutions to their dynami
 programmingequations. This 
onvergen
e result is useful for numeri
al purpose, postponed in a furtherstudy.The plan of the paper is organized as follows. Se
tion 2 presents the details of the modeland formulates the liquidation problem. In Se
tion 3, we show some interesting e
onomi
aland mathemati
al properties of the model, in parti
ular the �niteness of the number oftrading strategies under illiquidity 
osts. Se
tion 4 is devoted to the dynami
 programmingand vis
osity properties of the value fun
tion to our impulse 
ontrol problem. We proposein Se
tion 5 an approximation of the original problem by 
onsidering small �xed tran-sa
tion fee. Finally, Se
tion 6 des
ribes another approximation of the model with utilitypenalization by small 
ost. As a 
onsequen
e, we obtain that our initial value fun
tion is
hara
terized as the minimal 
onstrained vis
osity solution to its dynami
 programmingQVI.2 The model and liquidation problemWe 
onsider a �nan
ial market where an investor has to liquidate an initial position ofy > 0 shares of risky asset (or sto
k) by time T . He fa
es with the following risk/
osttradeo�: if he trades rapidly, this results in higher 
osts for qui
kly exe
uted orders andmarket pri
e impa
t; he 
an then split the order into several smaller blo
ks, but is thenexposed to the risk of pri
e depre
iation during the trading horizon. These liquidity e�e
tsre
eived re
ently a 
onsiderable interest starting with the papers by Bertsimas and Lo [7℄,and Almgren and Criss [1℄ in a dis
rete-time framework, and further investigated amongothers in Obizhaeva and Wang [18℄, S
hied an S
h�oneborn [25℄, or Rogers and Singh [24℄in a 
ontinuous-time model. These papers assume 
ontinuous trading with instantaneoustrading rate indu
ing pri
e impa
t. In a 
ontinuous time market framework, we propose3



here a more realisti
 modeling by 
onsidering that trading takes pla
e at dis
rete points intime through an impulse 
ontrol formulation, and with a temporary pri
e impa
t dependingon the time interval between trades, and in
luding a bid-ask spread.We present the details of the model. Let (
;F ;P) be a probability spa
e equipped witha �ltration F = (Ft)0�t�T satisfying the usual 
onditions, and supporting a one dimensionalBrownian motion W on a �nite horizon [0; T ℄, T <1. We denote by P = (Pt) the marketpri
e pro
ess of the risky asset, by Xt the amount of money (or 
ash holdings), by Yt thenumber of shares in the sto
k held by the investor at time t, and by �t the time intervalbetween time t and the last trade before t. We set R�+ = (0;1) and R�� = (�1; 0).� Trading strategies. We assume that the investor 
an only trade dis
retely on [0; T ℄.This is modelled through an impulse 
ontrol strategy � = (�n; �n)n�0: �0 � : : : � �n : : : � Tare nonde
reasing stopping times representing the trading times of the investor and �n,n � 0, are F�n�measurable random variables valued in R and giving the number of sto
kpur
hased if �n � 0 or selled if �n < 0 at these times. We denote by A the set of tradingstrategies. The sequen
e (�n; �n) may be a priori �nite or in�nite. Noti
e also that wedo not assume a priori that the sequen
e of trading times (�n) is stri
tly in
reasing. Weintrodu
e the lag variable tra
king the time interval between trades:�t = inf �t� �n : �n � tg; t 2 [0; T ℄;whi
h evolves a

ording to�t = t� �n; �n � t < �n+1; ��n+1 = 0; n � 0: (2.1)The dynami
s of the number of shares invested in sto
k is given by:Yt = Y�n ; �n � t < �n+1; Y�n+1 = Y��n+1 + �n+1; n � 0: (2.2)� Cost of illiquidity. The market pri
e of the risky asset pro
ess follows a geometri
Brownian motion: dPt = Pt(bdt+ �dWt); (2.3)with 
onstants b and � > 0. We do not 
onsider a permanent pri
e impa
t on the pri
e,i.e. the lasting e�e
t of large trader, but fo
us here on the e�e
t of illiquidity, that is thepri
e at whi
h an investor will trade the asset. Suppose now that the investor de
ides attime t to make an order in sto
k shares of size e. If the 
urrent market pri
e is p, and thetime lag from the last order is �, then the pri
e he a
tually get for the order e is:Q(e; p; �) = pf(e; �); (2.4)where f is a temporary pri
e impa
t fun
tion from R � [0; T ℄ into R+ [ f1g. We assumethat the Borelian fun
tion f satis�es the following liquidity and transa
tion 
ost properties:(H1f) f(0; �) = 1, and f(:; �) is nonde
reasing for all � 2 [0; T ℄,(H2f) (i) f(e; 0) = 0 for e < 0, and (ii) f(e; 0) = 1 for e > 0,(H3f) �b := sup(e;�)2R���[0;T ℄ f(e; �) < 1 and �a := inf(e;�)2R�+�[0;T ℄ f(e; �) > 1.4



Condition (H1f) means that no trade in
urs no impa
t on the market pri
e, i.e. Q(0; p; �)= p, and a pur
hase (resp. a sale) of sto
k shares indu
es a 
ost (resp. gain) greater(resp. smaller) than the market pri
e, whi
h in
reases (resp. de
reases) with the size of theorder. In other words, we have Q(e; p; �) � (resp. �) p for e � (resp. �) 0, and Q(:; p; �)is nonde
reasing. Condition (H2f) expresses the higher 
osts for immedia
y in trading:indeed, the immediate market resilien
y is limited, and the faster the investor wants toliquidate (resp. pur
hase) the asset, the deeper into the limit order book he will have to go,and lower (resp. higher) will be the pri
e for the shares of the asset sold (resp. bought), witha zero (resp. in�nite) limiting pri
e for immediate blo
k sale (resp. pur
hase). Condition(H2f) also prevents the investor to pass orders at 
onse
utive immediate times, whi
h isthe 
ase in pra
ti
e. Instead of imposing a �xed arbitrary lag between orders, we shall seethat 
ondition (H2) implies that trading times are stri
tly in
reasing. Condition (H3f)
aptures a transa
tion 
ost e�e
t: at time t, Pt is the market or mid-pri
e, �bPt is the bidpri
e, �aPt is the ask pri
e, and (�a � �b)Pt is the bid-ask spead. We also assume someregularity 
onditions on the temporary pri
e impa
t fun
tion:(H
f) (i) f is 
ontinuous on R� � (0; T ℄,(ii) f is C1 on R�� � [0; T ℄ and x 7! �f�� is bounded on R�� � [0; T ℄.A usual form (see e.g. [16℄, [23℄, [2℄) of temporary pri
e impa
t and transa
tion 
ost fun
tionf , suggested by empiri
al studies isf(e; �) = e�j e� j�sgn(e)��a1e>0 + 1e=0 + �b1e<0�; (2.5)with the 
onvention f(0; 0) = 1. Here 0 < �b < 1 < �a, �a � �b is the bid-ask spreadparameter, � > 0 is the temporary pri
e impa
t fa
tor, and � > 0 is the pri
e impa
texponent. In our illiquidity modelling, we fo
us on the 
ost of trading fast (that is thetemporary pri
e impa
t), and ignore as in Cetin, Jarrow and Protter [8℄ and Rogers andSingh [24℄ the permanent pri
e impa
t of a large trade. This last e�e
t 
ould be in
ludedin our model, by assuming a jump of the pri
e pro
ess at the trading date, depending onthe order size, see e.g. He and Mamayski [13℄ and Ly Vath, Mnif and Pham [17℄.� Cash holdings. We assume a zero risk-free return, so that the bank a

ount is 
onstantbetween two trading times:Xt = X�n ; �n � t < �n+1; n � 0: (2.6)When a dis
rete trading �Yt = �n+1 o

urs at time t = �n+1, this results in a variation ofthe 
ash amount given by �Xt := Xt�Xt� = ��Yt:Q(�Yt; Pt;�t�) due to the illiquiditye�e
ts. In other words, we haveX�n+1 = X��n+1 � �n+1Q(�n+1; P�n+1 ;���n+1)= X��n+1 � �n+1P�n+1f(�n+1; �n+1 � �n); n � 0: (2.7)Noti
e that similarly as in the above 
ited papers dealing with 
ontinuous-time trading,we do not assume �xed transa
tion fees to be paid at ea
h trading. They are pra
ti
allyinsigni�
ant with respe
t to the pri
e impa
t and bid-ask spread. We 
an then not ex
lude5



a priori trading strategies with immediate trading times, i.e. ���n+1 = �n+1 � �n = 0 forsome n. However, noti
e that under 
ondition (H2f), an immediate sale does not in
reasethe 
ash holdings, i.e. X�n+1 = X��n+1 = X�n , while an immediate pur
hase leads to abankrupt
y, i.e. X�n+1 = �1.� Liquidation value and solven
y 
onstraint. A key issue in portfolio liquidation isto de�ne in an e
onomi
ally meaningful way what is the portfolio value of a position on
ash and sto
ks. In our framework, we impose a no-short sale 
onstraint on the tradingstrategies, i.e. Yt � 0; 0 � t � T;whi
h is in line with the bank regulation following the �nan
ial 
risis, and we 
onsider theliquidation fun
tion L(x; y; p; �) representing the net wealth value that an investor with a
ash amount x, would obtained by liquidating his sto
k position y � 0 by a single blo
ktrade, when the market pri
e is p and given the time lag � from the last trade. It is de�nedon R � R+ � R�+ � [0; T ℄ by L(x; y; p; �) = x+ ypf(�y; �);and we impose the liquidation 
onstraint on trading strategies:L(Xt; Yt; Pt;�t) � 0; 0 � t � T:We have L(x; 0; p; �) = x, and under 
ondition (H2f)(ii), we noti
e that L(x; y; p; 0) = xfor y � 0. We naturally introdu
e the liquidation solven
y region:S = n(z; �) = (x; y; p; �) 2 R � R+ � R�+ � [0; T ℄ : y > 0 and L(z; �) > 0o:We denote its boundary and its 
losure by�S = �yS [ �LS and �S = S [ �S;where�yS = n(z; �) = (x; y; p; �) 2 R � R+ � R�+ � [0; T ℄ : y = 0 and x = L(z; �) � 0o;�LS = n(z; �) = (x; y; p; �) 2 R � R+ � R�+ � [0; T ℄ : L(z; �) = 0o:We also denote by D0 the 
orner line in �S:D0 = f0g � f0g � R�+ � [0; T ℄ = �yS \ �LS:� Admissible trading strategies. Given (t; z; �) 2 [0; T ℄ � �S, we say that the impulse
ontrol strategy � = (�n; �n)n�0 is admissible, denoted by � 2 A(t; z; �), if �0 = t � �, �n� t, n � 1, and the pro
ess f(Zs;�s) = (Xs;Ys; Ps;�s); t � s � Tg solution to (2.1)-(2.2)-(2.3)-(2.6)-(2.7), with an initial state (Zt� ;�t�) = (z; �) (and the 
onvention that (Zt;�t)= (z; �) if �1 > t), satis�es (Zs;�s) 2 [0; T ℄ � �S for all s 2 [t; T ℄. As usual, to alleviatenotations, we omitted the dependen
e of (Z;�) in (t; z; �; �), when there is no ambiguity.6
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hed zone for �xed p = 1 and � evolving from 1:5 to 0:1.Here �b = 0:9 and f(e; �) = �b exp( e� ) for e < 0. Noti
e that when � goes to 0, the domain
onverges to the open orthant R�+ � R�+ .
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e that when � is �xed, we obtain the Figure 1.8



Remark 2.1 Let (t; z; �) 2 [0; T ℄ � �S, and 
onsider the impulse 
ontrol strategy � =(�n; �n)n�0, �0 = t� �, 
onsisting in liquidating immediately all the sto
k shares, and thendoing no transa
tion anymore, i.e. (�1; �1) = (t;�y), and �n = 0, n � 2. The asso
iatedstate pro
ess (Z = (X;Y; P );�) satis�es Xs = L(z; �), Ys = 0, whi
h shows that L(Zs;�s)= Xs = L(z; �) � 0, t � s � T , and thus � 2 A(t; z; �) 6= ;.� Portfolio liquidation problem. We 
onsider a utility fun
tion U from R+ into R,nonde
reasing, 
on
ave, with U(0) = 0, and s.t. there exists K � 0 and 
 2 [0; 1):(HU) 0 � U(x) � Kx
 ; 8x 2 R+ :The problem of optimal portfolio liquidation is formulated asv(t; z; �) = sup�2A`(t;z;�) E�U(XT )�; (t; z; �) 2 [0; T ℄� �S; (2.8)where A`(t; z; �) = �� 2 A(t; z; �) : YT = 0	 is nonempty by Remark 2.1. Noti
ethat for � 2 A`(t; z; �), XT = L(ZT ;�T ) � 0, so that the expe
tations in (2.8), and thevalue fun
tion v are well-de�ned in [0;1℄. Moreover, by 
onsidering the parti
ular strategydes
ribed in Remark 2.1, whi
h leads to a �nal liquidation value XT = L(z; �), we obtaina lower-bound for the value fun
tion;v(t; z; �) � U(L(z; �)); (t; z; �) 2 [0; T ℄� �S: (2.9)Remark 2.2 We 
an shift the terminal liquidation 
onstraint in A`(t; z; �) to a terminalliquidation utility by 
onsidering the fun
tion UL de�ned on �S by:UL(z; �) = U(L(z; �)); (z; �) 2 �S:Then, problem (2.8) is written equivalently in�v(t; z; �) = sup�2A(t;z;�) EhUL(ZT ;�T )i; (t; z; �) 2 [0; T ℄ � �S: (2.10)Indeed, by observing that for all � 2 A`(t; z; �), we have E [U(XT )℄ = E [UL (ZT ;�T )℄, andsin
e A`(t; z; �) � A(t; z; �), it is 
lear that v � �v. Conversely, for any � 2 A(t; z; �) as-so
iated to the state 
ontrolled pro
ess (Z;�), 
onsider the impulse 
ontrol strategy ~� =� [ (T;�YT ) 
onsisting in liquidating all the sto
k shares YT at time T . The 
orrespond-ing state pro
ess ( ~Z; ~�) satis�es 
learly: ( ~Zs; ~�s) = (Zs;�s) for t � s < T , and ~XT =L(ZT ;�T ), ~YT = 0, and so ~� 2 A`(t; z; �). We dedu
e that E [UL(ZT ;�T )℄ = E [U( ~XT )℄� v(t; z; �), and so by arbitrariness of � in A(t; z; �), �v(t; z; �) � v(t; z; �). This provesthe equality v = �v. A
tually, the above arguments also show that sup�2A`(t;z;�) U(XT ) =sup�2A(t;z;�) UL(ZT ;�T ).Remark 2.3 A 
ontinuous-time trading version of our illiquid market model with sto
kpri
e P and temporary pri
e impa
t f 
an be formulated as follows. The trading strategy9



is given by a F-adated pro
ess � = (�t)0�t�T representing the instantaneous trading rate,whi
h means that the dynami
s of the 
umulated number of sto
k shares Y is governed by:dYt = �tdt: (2.11)The 
ash holdings X follows dXt = ��tPtf(�t)dt: (2.12)Noti
e that in a 
ontinuous-time trading formulation, the time interval between trades is�t = 0 at any time t. Under 
ondition (H2f), the liquidation value is then given at anytime t by: L(Xt; Yt; Pt; 0) = Xt; 0 � t � T;and does not 
apture the position in sto
k shares, whi
h is e
onomi
ally not relevant. Onthe 
ontrary, by expli
itly 
onsidering the time interval between trades in our dis
rete-timetrading formulation, we take into a

ount the position in sto
k.3 Properties of the modelIn this se
tion, we show that the illiquid market model presented in the previous se
tiondisplays some interesting and e
onomi
ally meaningful properties on the admissible tradingstrategies and the optimal performan
e, i.e. the value fun
tion. Let us 
onsider the impulsetransa
tion fun
tion � de�ned on R � R+ � R�+ � [0; T ℄� R into R [ f�1g � R � R�+ by:�(z; �; e) = �x� epf�e; ��; y + e; p�;for z = (x; y; p), and set ��(z; �; e) = ��(z; �; e); 0�. This 
orresponds to the value of thestate variable (Z;�) immediately after a trading at time t = �n+1 of �n+1 shares of sto
k,i.e. (Z�n+1 ;��n+1) = ��(Z��n+1 ;���n+1 ; �n+1); 0�. We then de�ne the set of admissible trans-a
tions: C(z; �) = ne 2 R : ��(z; �; e); 0� 2 �So; (z; �) 2 �S:This means that for any � = (�n; �n)n�0 2 A(t; z; �) with asso
iated state pro
ess (Z;�),we have �n 2 C(Z��n ;���n ), n � 1. We de�ne the impulse operator H byH'(t; z; �) = supe2C(z;�)'(t;�(z; �; e); 0); (t; z; �) 2 [0; T ℄ � �S:We also introdu
e the liquidation fun
tion of the (perfe
tly liquid) Merton model:LM (z) = x+ py; 8z = (x; y; p) 2 R � R � R�+ :For (t; z = (x; y; p); �) 2 [0; T ℄ � �S, we denote by (Z0;t;z;�0;t;�) the state pro
ess startingfrom (z; �) at time t, and without any impulse 
ontrol strategy: it is given by�Z0;t;zs ;�0;t;�s � = (x; y; P t;ps ; � + s� t); t � s � T;10



where P t;p is the solution to (2.3) starting from p at time t. Noti
e that (Z0;t;z;�0;t;�) is the
ontinuous part of the state pro
ess (Z;�) 
ontrolled by � 2 A(t; z; �). The in�nitesimalgenerator L asso
iated to the pro
ess (Z0;t;z;�0;t;�) isL'+ �'�� = bp�'�p + 12�2p2�2'�p2 + �'�� :We �rst prove a useful result on the set of admissible transa
tions.Lemma 3.1 Assume that (H1f), (H2f) and (H3f) hold. Then, for all (z = (x; y; p); �)2 �S, the set C(z; �) is 
ompa
t in R and satisfyC(z; �) � [�y; �e(z; �)℄; (3.1)where �y � �e(z; �) <1 is given by�e(z; �) = ( supne 2 R : epf(e; �) � xo ; if � > 00 ; if � = 0:For � = 0, (3.1) be
omes an equality : C(z; 0) = [�y; 0℄.The set fun
tion C is 
ontinous for the Hausdor� metri
, i.e. if (zn; �n) 
onverges to(z; �) in �S, and (en) is a sequen
e in C(zn; �n) 
onverging to e, then e 2 C(z; �). Moreover,if e 2 R 7! ef(e; �) is stri
tly in
reasing for � 2 (0; T ℄, then for (z = (x; y; p); �) 2 �LSwith � > 0, we have �e(z; �) = �y, i.e. C(z; �) = f�yg.Proof. By de�nition of the impulse transa
tion fun
tion � and the liquidation fun
tion L,we immediately see that the set of admissible transa
tions is written asC(z; �) = ne 2 R : x� epf(e; �) � 0; and y + e � 0o= ne 2 R : epf(e; �) � xo \ [�y;1) =: C1(z; �) \ [�y;1): (3.2)It is 
lear that C(z; �) is 
losed and bounded, thus a 
ompa
t set. Under (H1f) and (H3f),we have lime!1 epf(e; �) = 1. Hen
e we get �e(z; �) < 1 and C1(z; �) � (�1; �e(z; �)℄.From (3.2), we get (3.1). Suppose � = 0. Under (H2f), using (z; �) 2 �S, we have C1(z; �)= R� . From (3.2), we get C(z; �) = [�y; 0℄.Let us now prove the 
ontinuity of the set of admissible transa
tions. Consider asequen
e (zn = (xn; yn; pn); �n) in �S 
onverging to (z; �) 2 �S, and a sequen
e (en) inC(zn; �n) 
onverging to e. Suppose �rst that � > 0. Then, for n large enough, �n > 0and by observing that (z; �; e) 7! ��(z; �; e) is 
ontinuous on R � R+ � R�+ � R�+ � R, weimmediately dedu
e that e 2 C(z; �). In the 
ase � = 0, writing xn� enf(en; �n) � 0, using(H2f)(ii) and sending n to in�nity, we see that e should ne
essarily be nonpositive. Bywriting also that yn+ en � 0, we get by sending n to in�nity that y+ e � 0, and thereforee 2 C(z; 0) = [�y; 0℄.Suppose �nally that e 2 R 7! ef(e; �) is in
reasing, and �x (z = (x; y; p); �) 2 �LS,with � > 0. Then, L(z; �) = 0, i.e. x = �ypf(�y; �). Set �e = �e(z; �). By writing that�epf(�e; �) � x = �ypf(�y; �), and �e � �y, we dedu
e from the in
reasing monotoni
ity ofe 7! epf(e; �) that �e = �y. 211



Remark 3.1 The previous Lemma implies in parti
ular that C(z; 0) � R� , whi
h meansthat an admissible transa
tion after an immediate trading should be ne
essarily a sale. Inother words, given � = (�n; �n)n�0 2 A(t; z; �), (t; z; �) 2 [0; T ℄� �S, if ���n = 0, then �n �0. The 
ontinuity property of C ensures that the operator H preserves the lower and upper-semi
ontinuity (see Appendix). This Lemma also asserts that, under the assumption ofin
reasing monotoni
ity of e ! ef(e; �), when the state is in the boundary L = 0, then theonly admissible transa
tion is to liquidate all sto
k shares. This in
reasing monotoni
itymeans that the amount traded is in
reasing with the size of the order. Su
h an assumptionis satis�ed in the example (2.5) of temporary pri
e impa
t fun
tion f for � = 2, but is notful�lled for � = 1. In this 
ase, the presen
e of illiquidity 
ost implies that it may be moreadvantageous to split the order size.We next state some useful bounds on the liquidation value asso
iated to an admissibletransa
tion.Lemma 3.2 Assume that (H1f) holds. Then, we have for all (t; z; �) 2 [0; T ℄� �S:0 � L(z; �) � LM (z); (3.3)LM (�(z; �; e)) � LM (z); 8e 2 R; (3.4)sup�2A(t;z;�)L(Zs;�s) � LM (Z0;t;zs ); t � s � T: (3.5)Furthermore, under (H3f), we have for all (z = (x; y; p); �) 2 �S,LM (�(z; �; e)) � LM (z)�min(�a � 1; 1 � �b)jejp; 8e 2 R: (3.6)Proof. Under (H1f), we have f(e; �) � 1 for all e � 0, whi
h shows 
learly (3.3). Fromthe de�nition of LM and �, we see that for all e 2 R,LM (�(z; �; e)) � LM (z) = ep�1� f(e; �)�; (3.7)whi
h yields the inequality (3.4). Fix some arbitrary � = (�n; �n)n�0 2 A(t; z; �) asso
iatedto the 
ontrolled state pro
ess (Z;�). When a transa
tion o

urs at time s = �n, n � 1,the jump of LM (Z) is nonpositive by (3.4):�LM (Zs) = LM (Z�n)� LM (Z��n ) = LM (�(Z��n ;���n ; �n))� LM (Z��n ) � 0:We dedu
e that the pro
ess LM (Z) is smaller than its 
ontinuous part equal to LM (Z0;t;z),and we then get (3.5) with (3.3). Finally, under the additional 
ondition (H3f), we easilyobtain inequality (3.6) from relation (3.7). 2We now 
he
k that our liquidation problem is well-posed by stating a natural upper-bound on the optimal performan
e, namely that the value fun
tion in our illiquid marketmodel is bounded by the usual Merton bound in a perfe
tly liquid market.
12



Proposition 3.1 Assume that (H1f) and (HU) hold. Then, for all (t; z; �) 2 [0; T ℄� �S,the family fUL(ZT ;�T ); � 2 A(t; z; �)g is uniformly integrable, and we havev(t; z; �) � v0(t; z) := EhU�LM�Z0;t;zT ��i; (t; z; �) 2 [0; T ℄� �S;� Ke�(T�t)LM (z)
 ; (3.8)where � is a positive 
onstant s.t. � � 
1� 
 b22�2 : (3.9)Proof. From (3.5) and the nonde
reasing monotoni
ity of U , we have for all (t; z; �) 2[0; T ℄ � �S: sup�2A`(t;z;�)U(XT ) = sup�2A(t;z;�)UL(ZT ;�T ) � U(LM (Z0;t;zT ));and all the assertions of the Proposition will follow on
e we prove the inequality (3.8). Forthis, 
onsider the nonnegative fun
tion ' de�ned on [0; T ℄� �S by:'(t; z; �) = e�(T�t)LM (z)
 = e�(T�t)�x+ py�
 ;and noti
e that ' is smooth C2 on [0; T ℄� ( �S nD0). We 
laim that for � > 0 large enough,the fun
tion ' satis�es:��'�t � �'�� �L' � 0; on [0; T ℄ � ( �S nD0):Indeed, a straightforward 
al
ulation shows that for all (t; z; �) 2 [0; T ℄� ( �S nD0):��'�t (t; z; �)� �'�� (t; z; �)�L'(t; z; �)= e�(T�t)LM (z)
�2h�p�LM (z) + b
2p�yp�2 + �
(1� 
)�22 � b2
24� �y2p2i (3.10)whi
h is nonegative under 
ondition (3.9).Fix some (t; z; �) 2 [0; T ℄� �S . If (z; �) = (0; 0; p; �) 2 D0, then we 
learly have v0(t; z; �)= U(0), and inequality (3.8) is trivial. Otherwise, if (z; �) 2 �S n D0, then the pro
ess(Z0;t;z;�0;t;�) satisfy LM (Z0;t;z;�0;t;�) > 0. Indeed, Denote by ( �Zt;z; ��t;�) the pro
essstarting from (z; �) at t and asso
iated to the strategy 
onsisting in liquidating all sto
kshares at t. Then we have ( �Zt;zs ; ��t;�s ) 2 �S nD0 for all s 2 [t; T ℄ and hen
e LM ( �Zt;zs ; ��t;�s )>0 for all s 2 [t; T ℄. Using (3.5) we get LM(Z0;t;zs ;�0;t;�s ) � LM ( �Zt;zs ; ��t;�s ) > 0.We 
an then apply Itô's formula to '(s; Z0;t;zs ;�0;t;�s ) between t and TR = inffs �t : jZ0;t;zs j � Rg ^ T :E ['(TR ; Z0;t;zTR ;�0;t;�TR )℄ = '(t; z) + Eh Z TRt ��'�t + �'�� + L'�(s; Z0;t;zs ;�0;t;�s )dsi� '(t; z): 13



(The sto
hasti
 integral term vanishes in expe
tation sin
e the integrand is bounded beforeTR). By sending R to in�nity, we get by Fatou's lemma and sin
e '(T; z; �) = LM (z)
 :EhLM (Z0;t;zT )
i � '(t; z; �):We 
on
lude with the growth 
ondition (HU). 2As a dire
t 
onsequen
e of the previous proposition, we obtain the 
ontinuity of thevalue fun
tion on the boundary �yS, i.e. when we start with no sto
k shares.Corollary 3.1 Assume that (H1f) and (HU) hold. Then, the value fun
tion v is 
on-tinuous on [0; T ℄ � �yS, and we havev(t; z; �) = U(x); 8t 2 [0; T ℄; (z; �) = (x; 0; p; �) 2 �yS:In parti
ular, we have v(t; z; �) = U(0) = 0, for all (t; z; �) 2 [0; T ℄�D0.Proof. From the lower-bound (2.9) and the upper-bound in Proposition 3.1, we have forall (t; z; �) 2 [0; T ℄� �S,U�x+ ypf�� y; ��� � v(t; z; �) � E�U(LM (Z0;t;zT ))� = E�U(x+ yP t;pT )�:These two inequalities imply the required result. 2The following result states the �niteness of the total number of shares and amounttraded.Proposition 3.2 Assume that (H1f) and (H3f) hold. Then, for any � = (�n; �n)n�0 2A(t; z; �), (t; z; �) 2 [0; T ℄� �S, we haveXn�1 j�nj < 1; Xn�1 j�njP�n < 1; and Xn�1 j�njP�nf��n;���n � < 1; a:s:Proof. Fix (t; z = (x; y; p); �) 2 [0; T ℄ � �S, and � = (�n; �n)n�0 2 A(t; z; �). Observe�rst that the 
ontinuous part of the pro
ess LM (Z) is LM (Z0;t;z), and we denote its jumpat time �n by �LM (Z�n) = LM (Z�n) � LM (Z��n ). From the estimates (3.3) and (3.6) inLemma 3.2, we then have almost surely for all n � 1,0 � LM (Z�n) = LM (Z0;t;z�n ) + nXk=1�LM(Z�k)� LM (Z0;t;z�n )� �� nXk=1 j�kjP�k ;where we set �� = min(�a � 1; 1� �b) > 0. We dedu
e that for all n � 1,nXk=1 j�kjP�k � 1�� sups2[t;T ℄LM (Z0;t;zs ) = 1���x+ y sups2[t;T ℄P t;ps � < 1; a:s:14



This shows the almost sure 
onvergen
e of the seriesPn j�njP�n . Moreover, sin
e the pri
epro
ess P is 
ontinous and stri
tly positive, we also obtain the 
onvergen
e of the seriesPn j�nj. Re
alling that f(e; �) � 1 for all e � 0 and � 2 [0; T ℄, we have for all n � 1.nXk=1 j�kjP�kf��k;���k � = nXk=1 �kP�kf��k;���k �+ 2 nXk=1 j�kjP�kf��k;���k �1�k�0� nXk=1 �kP�kf��k;���k �+ 2 nXk=1 j�kjP�k : (3.11)On the other hand, we have0 � LM (Z�n) = X�n + Y�nP�n= x� nXk=1 �kP�kf��k;���k �+ (y + nXk=1 �k)P�n :Together with (3.11), this implies that for all n � 1,nXk=1 j�kjP�kf��k;���k � � x+ (y + nXk=1 j�kj) sups2[t;T ℄P t;ps + 2 nXk=1 j�kjP�k :The 
onvergen
e of the seriesPn j�njP�nf��n;���n � follows therefore from the 
onvergen
eof the series Pn j�nj and Pn j�njP�n . 2As a 
onsequen
e of the above results, we 
an now prove that in the optimal portfolioliquidation, it suÆ
es to restri
t to a �nite number of trading times, whi
h are stri
tlyin
reasing. Given a trading strategy � = (�n; �n)n�0 2 A, let us denote by N(�) thepro
ess 
ounting the number of intervention times:Nt(�) = Xn�11�n�t; 0 � t � T:We denote by Ab̀(t; z; �) the set of admissible trading strategies in A`(t; z; �) with a �nitenumber of trading times, su
h that these trading times are stri
tly in
reasing, namely:Ab̀(t; z; �) = n� = (�n; �n)n�0 2 A`(t; z; �) : NT (�) <1; a:s:and �n < �n+1 a:s:; 0 � n � NT (�) � 1o:For any � = (�n; �n)n 2 Ab̀(t; z; �), the asso
iated state pro
ess (Z;�) satis�es ���n+1 > 0,i.e. (Z��n+1 ;���n+1) 2 �S� := n(z; �) 2 �S : � > 0o. We also set �LS� = �LS \ �S�.Theorem 3.1 Assume that (H1f), (H2f), (H3f), (H
f) and (HU) hold. Then, we havev(t; z; �) = sup�2Ab̀(t;z;�) E�U(XT )�; (t; z; �) 2 [0; T ℄ � �S: (3.12)Moreover, we havev(t; z; �) = sup�2Ab̀+ (t;z;�) E�U(XT )�; (t; z; �) 2 [0; T ℄� ( �S n �LS); (3.13)where Ab̀+(t; z; �) = f� 2 Ab̀(t; z; �) : (Zs;�s) 2 ( �S n �LS); t � s < Tg.15



Proof. 1. Fix (t; z; �) 2 [0; T ℄� �S, and denote by �Ab̀(t; z; �) the set of admissible tradingstrategies in A`(t; z; �) with a �nite number of trading times:�Ab̀(t; z; �) = n� = (�k; �k)k�0 2 A`(t; z; �) : NT (�) is bounded a.s. o:Given an arbitrary � = (�k; �k)k�0 2 A`(t; z; �) asso
iated to the state pro
ess (Z;�) =(X;Y; P;�), let us 
onsider the trun
ated trading strategy �(n) = (�k; �k)k�n [ (�n+1;�Y��n+1),whi
h 
onsists in liquidating all sto
k shares at time �n+1. This strategy �(n) lies in�A`(t; z; �), and is asso
iated to the state pro
ess denoted by (Z(n);�(n)). We then haveX(n)T �XT = Xk�n+1 �kP�kf��k;���k � + Y��n+1P�n+1f�� Y��n+1 ;���n+1�:Now, from Proposition 3.2, we haveXk�n+1 �kP�kf��k;���k � �! 0 a:s: when n!1:Moreover, sin
e 0 � Y��n+1 = Y�n goes to YT = 0 as n goes to in�nity, by de�nition of � 2A`(t; z; �), and re
alling that f is smaller than 1 on R� � [0; T ℄, we dedu
e that0 � Y��n+1P�n+1f�� Y��n+1���n+1� � Y��n+1 sups2[t;T ℄P t;ps�! 0 a:s: when n!1:This proves that X(n)T �! XT a:s: when n!1:From Proposition 3.1, the sequen
e (U(X(n)T ))n�1 is uniformly integrable, and we 
an applythe dominated 
onvergen
e theorem to getE�U(X(n)T )� �! E�U(XT )�; when n!1:From the arbitrariness of � 2 A`(t; z; �), this shows thatv(t; z; �) � �vb(t; z; �) := sup�2 �Ab̀(t;z;�) E�U(XT )�;and a
tually the equality v = �vb sin
e the other inequality �vb � v is trivial from the in
lusion�Ab̀(t; z; �) � A`(t; z; �).2. Denote by vb the value fun
tion in the r.h.s. of (3.12). It is 
lear that vb � �vb = v sin
eAb̀(t; z; �) � �Ab̀(t; z; �). To prove the reverse inequality we need �rst to study the behaviorof optimal strategies at time T . Introdu
e the set~Ab̀(t; z; �) = n� = (�k; �k)k 2 Ab̀(t; z; �) : #fk : �k = Tg � 1o;and denote by ~vb the asso
iated value fun
tion. Then we have ~vb � �vb. Indeed, let �= (�k; �k)k be some arbitrary element in �Ab̀(t; z; �), (t; z = (x; y; p); �) 2 [0; T ℄ � �S. If16



� 2 ~Ab̀(t; z; �) then we have ~vb(t; z; �) � EhUL(ZT ;�T )i, where (Z;�) denotes the pro-
ess asso
iated to �. Suppose now that � =2 ~Ab̀(t; z; �). Set m = maxfk : �k < Tg.Then de�ne the stopping time � 0 := �m+T2 and the F� 0 -measurable random variable � 0 :=argmaxfef(e; T � �m) : e � �Y�mg. De�ne the strategy �0 = (�k; �k)k�m [ (� 0; Y�m � � 0)[(T; � 0). From the 
onstru
tion of �0, we easily 
he
k that �0 2 ~Ab(t; z; �) and EhUL(ZT ;�T )i� EhUL(Z 0T ;�0T )i where (Z 0;�0) denotes the pro
ess asso
iated to �0. Hen
e, we get ~vb ��vb. We now prove that vb � ~vb. Let � = (�k; �k)k be some arbitrary element in ~Ab̀(t; z; �),(t; z = (x; y; p); �) 2 [0; T ℄� �S . Denote by N =NT (�) the a.s. �nite number of trading timesin �. We set m = inff0 � k � N�1 : �k+1 = �kg andM = supfm+1 � k � N : �k = �mgwith the 
onvention that inf ; = sup ; = N+1. We then de�ne �0 = (� 0k; � 0k)0�k�N�(M�m)+12 A by:(� 0k; � 0k) = 8>>><>>>: (�k; �k); for 0 � k < m(�m = �M ;PMk=m �k); for k = m and m < N;(�k+M�m; �k+M�m); for m+ 1 � k � N � (M �m) and m < N;(� 0;PMl=m+1 �l) for k = N � (M �m) + 1where � 0 = �̂+T2 with �̂ = maxf�k : �k < Tg, and we denote by (Z 0 = (X 0; Y 0; P );�0) theasso
iated state pro
ess. It is 
lear that (Z 0s;�0s) = (Zs;�s) for t � s < �m, and so X 0(�)0�= X(� 0)� , �0(� 0)� = �(� 0)� . Moreover, sin
e �m = �M , we have ���k = 0 for m+1 � k �M .From Lemma 3.1 (or Remark 3.1), this implies that �k � 0 for m + 1 � k � M , and so� 0N�(M�m)+1 = PMk=m+1 �k � 0. We also re
all that immediate sales does not in
rease the
ash holdings, so that X�k = X�m for m+ 1 � k �M . We then getX 0T = XT � � 0N�(M�m)+1P� 0f�� 0N�(M�m)+1;�0(� 0)��� XT :Moreover, we have Y 0T = y +PNk=1 �k = YT = 0. By 
onstru
tion, noti
e that � 00 < : : : <� 0m+1. Given an arbitrary � 2 �Ab̀(t; z; �), we 
an then 
onstru
t by indu
tion a tradingstrategy �0 2 Ab̀(t; z; �) su
h that X 0T � XT a.s. By the nonde
reasing monotoni
ity of theutility fun
tion U , this yieldsE [U(XT )℄ � E [U(X 0T )℄ � vb(t; z; �);and we 
on
lude from the arbitrariness of � 2 ~Ab̀(t; z; �): ~vb � vb, and thus v = �vb = ~vb =vb.3. Fix now an element (t; z; �) 2 [0; T ℄� ( �S n �LS), and denote by v+ the r.h.s of (3.13). Itis 
lear that v � v+. Conversely, take some arbitrary � = (�k; �k)k 2 Ab̀(t; z; �), asso
iatedwith the state pro
ess (Z;�), and denote by N = NT (�) the �nite number of trading timesin �. Consider the �rst time before T when the liquidation value rea
hes zero, i.e. �� =infft � s � T : L(Zs;�s) = 0g ^ T with the 
onvention inf ; = 1. We 
laim that thereexists 1 � m � N + 1 (depending on ! and �) su
h that �� = �m, with the 
onventionthat m = N + 1, �N+1 = T if �� = T . On the 
ontrary, there would exist 1 � k � N su
h17



that �k < �� < �k+1, and L(Z�� ;���) = 0. Between �k and �k+1, there is no trading, andso (Xs; Ys) = (X�k ; Y�k), �s = s� �k for �k � s < �k+1. We then getL(Zs;�s) = X�k + Y�kPsf�� Y�k ; s� �k�; �k � s < �k+1: (3.14)Moreover, sin
e 0 < L(Z�k ;��k) = X�k , and L(Z�� ;���) = 0, we see with (3.14) for s = ��that Y�kP��f��Y�k ; ����k� should ne
essarily be stri
tly negative: Y�kP��f��Y�k ; ����k�< 0, a 
ontradi
tion with the admissibility 
onditions and the nonnegative property of f .We then have �� = �m for some 1 � m � N + 1. Observe that if m � N , i.e.L(Z�m ;��m) = 0, then U(L(ZT ;�T )) = 0. Indeed, suppose that Y�m > 0 and m � N .From the admissibility 
ondition, and by Itô's formula to L(Z;�) in (3.14) between �� and��m+1, we get0 � L(Z��m+1 ;���k+1) = L(Z��m+1 ;���m+1)� L(Z�� ;���)= Z �m+1�� Y�mPsh�(Y�m ; s� �m)ds+ �f�� Y�k ; s� �m�dWsi; (3.15)where �(y; �) = bf(�y; �) + �f�� (�y; �) is bounded on R+ � [0; T ℄ by (H
f)(ii). Sin
e theintegrand in the above sto
hasti
 integral w.r.t Brownian motion W is stri
tly positive,thus nonzero, we must have �� = �m+1. Otherwise, there is a nonzero probability that ther.h.s. of (3.15) be
omes stri
tly negative, a 
ontradi
tion with the inequality (3.15).Hen
e we get Y�m = 0, and thus L(Z��m+1 ;���m+1) = X�m = 0. From the Markov featureof the model and Corollary 3.1, we then haveEhU�L(ZT ;�T )����F�mi � v(�m; Z�m ;��m) = U(X�m) = 0:Sin
e U is nonnegative, this implies that U�L(ZT ;�T )� = 0. Let us next 
onsider thetrading strategy �0 = (� 0k; � 0k)0�k�(m�1) 2 A 
onsisting in following � until time ��, andliquidating all sto
k shares at time �� = �m�1, and de�ned by:(� 0k; � 0k) = ( (�k; �k); for 0 � k < m� 1��m�1;�Y��(m�1)�; for k = m� 1;and we denote by (Z 0;�0) the asso
iated state pro
ess. It is 
lear that (Z 0s;�0s) = (Zs;�s)for t � s < �m�1, and so L(Z 0s;�0s) = L(Zs;�s) > 0 for t � s � �m�1. The liquidationat time �m�1 (for m � N) yields X�m�1 = L(Z��m�1 ;���m�1) > 0, and Y�m�1 = 0. Sin
ethere is no more trading after time �m�1, the liquidation value for �m�1 � s � T is givenby: L(Zs;�s) = X�m�1 > 0. This shows that �0 2 Ab̀+(t; z; �). When m = N + 1, wehave � = �0, and so X 0T = L(Z 0T ;�0T ) = L(ZT ;�T ) = XT . For m � N , we have U(X 0T ) =U(L(Z 0T ;�0T )) � 0 = U(L(ZT ;�T )) = U(XT ). We then get U(X 0T ) � U(XT ) a.s., and soE [U(XT )℄ � E [U(X 0T )℄ � v+(t; z; �):We 
on
lude from the arbitrariness of � 2 �Ab̀(t; z; �): v � v+, and thus v = v+. 218



Remark 3.2 If we suppose that the fun
tion e 2 R 7! ef(e; �) is in
reasing for � 2 (0; T ℄,we get the value of v on the bound �LS�: v(t; z; �) = U(0) = 0 for (t; z = (x; y; p); �) 2[0; T ℄ � �LS�. Indeed, �x some point (t; z = (x; y; p); �) 2 [0; T ℄ � �LS�, and 
onsideran arbitrary � = (�k; �k)k 2 Ab̀(t; z; �) with state pro
ess (Z;�), and denote by N thenumber of trading times. We distinguish two 
ases: (i) If �1 = t, then by Lemma 3.1, thetransa
tion �1 is equal to �y, whi
h leads to Y�1 = 0, and a liquidation value L(Z�1 ;��1)= X�1 = L(z; �) = 0. At the next trading date �2 (if it exists), we get X��2 = Y��2 = 0with liquidation value L(Z��2 ;���2 ) = 0, and by using again Lemma 3.1, we see that afterthe transa
tion at �2, we shall also obtain X�2 = Y�2 = 0. By indu
tion, this leads at the�nal trading time to X�N = Y�N = 0, and �nally to XT = YT = 0. (ii) If �1 > t, we 
laimthat y = 0. On the 
ontrary, by arguing similarly as in (3.15) between t and ��1 , we havethen proved that any admissible trading strategy � 2 Ab̀(t; z; �) provides a �nal liquidationvalue XT = 0, and sov(t; z; �) = U(0) = 0; 8(t; z; �) 2 [0; T ℄� �LS�: (3.16)Remark 3.3 The representation (3.12) of the optimal portfolio liquidation reveals inte-resting e
onomi
al and mathemati
al features. It shows that the liquidation problem ina 
ontinuous-time illiquid market model with dis
rete-time orders and temporary pri
eimpa
t with the presen
e of a bid-ask spread as 
onsidered in this paper, leads to nearlyoptimal trading strategies with a �nite number of orders and with stri
tly in
reasing tradingtimes. While most models dealing with trading strategies via an impulse 
ontrol formulationassumed �xed transa
tion fees in order to justify the dis
rete nature of trading times,we prove in this paper that dis
rete-time trading appears naturally as a 
onsequen
e oftemporary pri
e impa
t and bid-ask spread.The representation (3.13) shows that when we are in an initial state with stri
tly posi-tive liquidation value, then we 
an restri
t in the optimal portfolio liquidation problem toadmissible trading strategies with stri
tly positive liquidation value up to time T�. Therelation (3.16) means that when the initial state has a zero liquidation value, whi
h is nota result of an immediate trading time, then the liquidation value will stay at zero until the�nal horizon.4 Dynami
 programming and vis
osity propertiesIn the sequel, the 
onditions (H1f), (H2f), (H3f), (H
f) and (HU) stand in for
e, andare not re
alled in the statement of Theorems and Propositions.We use a dynami
 programming approa
h to derive the equation satis�ed by the valuefun
tion of our optimal portfolio liquidation problem. Dynami
 programming prin
iple(DPP) for impulse 
ontrols was frequently used starting from the works by Bensoussanand Lions [4℄, and then 
onsidered e.g. in [28℄, [20℄, [17℄ or [26℄. In our 
ontext (re
all theexpression (2.10) of the value fun
tion), this is formulated as:19



Dynami
 programming prin
iple (DPP). For all (t; z; �) 2 [0; T ℄� �S, we havev(t; z; �) = sup�2A(t;z;�) E [v(�; Z� ;�� )℄; (4.1)where � = �(�) is any stopping time valued in [t; T ℄ eventually depending on the strategy� in (4.1). More pre
isely we have :(i) for all � 2 A(t; z; �), for all � 2 Tt;T , the set of stopping times valued in [t; T ℄:E [v(�; Z� ;�� )℄ � v(t; z; �) (4.2)(ii) for all " > 0, there exists �̂" 2 A(t; z; �) s.t. for all � 2 Tt;T :v(t; z; �)� " � E [v(�; Ẑ"� ; �̂"� )℄; (4.3)with (Ẑ"; �̂") the state pro
ess 
ontrolled by �̂".The 
orresponding dynami
 programming Hamilton-Ja
obi-Bellman (HJB) equation isa quasi-variational inequality (QVI) written as:min h� �v�t � �v�� �Lv ; v �Hvi = 0; in [0; T )� �S; (4.4)together with the relaxed terminal 
ondition:min �v � UL ; v �Hv� = 0; in fTg � �S: (4.5)The rigorous derivation of the HJB equation satis�ed by the value fun
tion from thedynami
 programming prin
iple is a
hieved by means of the notion of vis
osity solutions,and is by now rather 
lassi
al in the modern approa
h of sto
hasti
 
ontrol (see e.g. thebooks [11℄ and [21℄). There are some spe
i�
ities here related to the impulse 
ontrol andthe liquidation state 
onstraint, and we re
all in Appendix, de�nitions of (dis
ontinuous)
onstrained vis
osity solutions for paraboli
 QVIs. The main result of this se
tion is statedas follows.Theorem 4.1 The value fun
tion v is a 
onstrained vis
osity solution to (4.4)-(4.5).Proof. The proof of the vis
osity supersolution property on [0; T ) � S and the vis
ositysubsolution property on [0; T ) � �S follows the same lines of arguments as in [17℄, and isthen omitted here. We fo
us on the terminal 
ondition (4.5).We �rst 
he
k the vis
osity supersolution property on fTg � S. Fix some (z; �) 2 S,and 
onsider some sequen
e (tk; zk; �k)k�1 in [0; T ) � S, 
onverging to (T; z; �) and su
hthat limk v(tk; zk; �k) = v�(T; z; �). By taking the no impulse 
ontrol strategy on [tk; T ℄, wehave v(tk; zk; �k) � E�UL(Z0;tk;zkT ;�0;tk;�kT )�:20



Sin
e (Z0;tk;zkT ;�0;tk;zkT ) 
onverges a.s. to (z; �) when k goes to in�nity by 
ontinuity of(Z0;t;z;�0;t;�) in its initial 
ondition, we dedu
e by Fatou's lemma thatv�(T; z; �) � UL(z; �): (4.6)On the other hand, we know from the dynami
 programming QVI that v � Hv on [0; T )�S,and thus v(tk; zk; �k) � Hv(tk; zk; �k) � Hv�(tk; zk; �k); 8k � 1:Re
alling that Hv� is ls
, we obtain by sending k to infnity:v�(T; z; �) � Hv�(T; z; �):Together with (4.6), this proves the required vis
osity supersolution property of (4.5).We now prove the vis
osity subsolution property on fTg� �S, and argue by 
ontradi
tionby assuming that there exists (�z; ��) 2 �S su
h thatmin �v�(T; �z; ��)� UL(�z; ��) ; v�(T; �z; ��)�Hv�(T; �z; ��)� := 2" > 0: (4.7)One 
an �nd a sequen
e of smooth fun
tions ('n)n�0 on [0; T ℄� �S su
h that 'n 
onvergespointwisely to v� on [0; T ℄� �S as n!1. Moreover, by (4.7) and re
alling that Hv� is us
,we may assume that the inequalitymin �'n � UL ; 'n �Hv�� � "; (4.8)holds on some bounded neighborhood Bn of (T; �z; ��) in [0; T ℄� �S, for n large enough. Let(tk; zk; �k)k�1 be a sequen
e in [0; T )�S 
onverging to (T; �z; ��) and su
h that limk v(tk; zk; �k)= v�(T; �z; ��). There exists Æn > 0 su
h that Bnk := [tk; T ℄�B(zk; Æn)��(�k� Æn; �k+ Æn)\[0; T ℄� � Bn for all k large enough, so that (4.8) holds on Bnk . Sin
e v is lo
ally bounded,there exists some � > 0 su
h that jv�j � � on Bn. We 
an then assume that 'n � �2� onBn. Let us de�ne the smooth fun
tion ~'nk on [0; T )� S by~'nk(t; z; �) := 'n(t; z; �) + 4� jz � zkj2jÆnj2 +pT � tand observe that (v� � ~'nk)(t; z; �) � ��; (4.9)for (t; z; �) 2 [tk; T ℄� �B(zk; Æn)��(�k � Æn; �k + Æn)\ [0; T ℄�. Sin
e �pT � t�t �! �1 ast! T , we have for k large enough� � ~'nk�t � � ~'nk�� �L ~'nk � 0; on Bnk : (4.10)Let �k = (�kj ; �kj )j�1 be a 1k�optimal 
ontrol for v(tk; zk; �k) with 
orresponding statepro
ess (Zk;�k), and denote by �kn = inffs � tk : (Zks ;�ks) =2 Bnk g ^ �k1 ^ T . From theDPP (4.3), this means thatv(tk; zk; �k)� 1k � Eh1�kn<(�k1 ^T ) v(�kn; Zk�kn)i+ Eh1�kn=T<�k1 UL(Zk�kn ;�k�kn)i+ Eh1�k1��kn v��k1 ;�(Zk(�k1 )� ;�k(�k1 )� ; �k1 ); 0�i (4.11)21



Now, by applying Itô's Lemma to ~'kn(s; Zks ;�ks) between tk and �kn, we get from (4.8)-(4.9)-(4.10),~'nk (tk; zk; �k) � Eh1�kn<�k1 ~'nk(�kn; Zk�kn ;�k�kn)i+ Eh1�k1��kn ~'nk��k1 ; Zk(�k1 )� ;�k(�k1 )��i� Eh1�kn<(�k1 ^T )�v�(�kn; Zk�kn ;�k�kn) + ��i+ Eh1�kn=T<�k1 �UL(Zk�kn ;�k�kn) + "�i+ Eh1�k1��kn�v���k1 ;�(Zk(�k1 )� ;�k(�k1 )� ; �k1 ); 0�+ "�i:Together with (4.11), this implies~'nk (tk; zk; �k) � v(tk; zk; �k)� 1k + " ^ �:Sending k, and then n to in�nity, we get the required 
ontradi
tion: v�(T; �z; ��)� v�(T; �z; ��)+" ^ �. 2Remark 4.1 In order to have a 
omplete 
hara
terization of the value fun
tion throughits HJB equation, we need a uniqueness result, thus a 
omparison prin
iple for the QVI(4.4)-(4.5). A key argument originally due to Ishii [14℄ for getting a uniqueness result forvariational inequalities with impulse parts, is to produ
e a stri
t vis
osity supersolution.However, in our model, this is not possible. Indeed, suppose we 
an �nd a stri
t vis
osityls
 supersolution w to (4.4), so that (w � Hw)(t; z; �) > 0 on [0; T ) � S. But for z =(x; y; p) and � = 0, we have �(z; 0; e) = (x; y + e; p) for any e C(z; 0). Sin
e 0 2 C(z; 0) wehave Hw(t; z; 0) = supe2[�y;0℄w(t; x; y + e; p; 0) � w(t; z; 0) > Hw(t; z; 0), a 
ontradi
tion.A
tually, the main reason why one 
annot obtain a stri
t supersolution is the absen
e of�xed 
ost in the impulse fun
tion � or in the obje
tive fun
tional.5 An approximating problem with �xed transa
tion feeIn this se
tion, we 
onsider a small variation of our original model by adding a �xedtransa
tion fee " > 0 at ea
h trading. This means that given a trading strategy � =(�n; �n)n�0, the 
ontrolled state pro
ess (Z = (X;Y; P );�) jumps now at time �n+1, by:(Z�n+1 ;��n+1) = ��"(Z��n+1 ;���n+1 ; �n+1); 0�; (5.1)where �" is the fun
tion de�ned on R �R+ �R�+ � [0; T ℄�R into R [ f�1g�R �R�+ by:�"(z; �; e) = �(z; �; e)� ("; 0; 0) = �x� epf(e; �)� "; y + e; p�;for z = (x; y; p). The dynami
s of (Z;�) between trading dates is given as before. We alsointrodu
e a modi�ed liquidation fun
tion L" de�ned by:L"(z; �) = max[x;L(z; �)� "℄; (z; �) = (x; y; p; �) 2 R � R+ � R�+ � [0; T ℄:The interpretation of this modi�ed liquidation fun
tion is the following. Due to the presen
eof the transa
tion fee at ea
h trading, it may be advantageous for the investor not to22



liquidate his position in sto
k shares (whi
h would give him L(z; �)� "), and rather bin hissto
k shares, by keeping only his 
ash amount (whi
h would give him x). Hen
e, the investor
hooses the best of these two possibilities, whi
h indu
es a liquidation value L"(z; �).We then introdu
e the 
orresponding solven
y region S" with its 
losure �S" = S" [ �S",and boundary �S" = �yS" [ �LS":S" = n(z; �) = (x; y; p; �) 2 R � R+ � R�+ � [0; T ℄ : y > 0 and L"(z; �) > 0o;�yS" = n(z; �) = (x; y; p; �) 2 R � R+ � R�+ � [0; T ℄ : y = 0 and L"(z; �) � 0o;�LS" = n(z; �) = (x; y; p; �) 2 R � R+ � R�+ � R+ : L"(z; �) = 0o:We also introdu
e the 
orner lines of �S". For simpli
ity of presentation, we 
onsider atemporary pri
e impa
t fun
tion f in the form:f(e; �) = ~f�e�� = exp��e����a1e>0 + 1e=0 + �b1e<0�1�>0;where 0 < �b < 1 < �a, and � > 0. A straightforward analysis of the fun
tion L showsthat y 7! L(x; y; p; �) is in
reasing on [0; �=�℄, de
reasing on [�=�;1) with L(x; 0; p; �) =x = L(x;1; p; �), and maxy>0 L(x; y; p; �) = L(x; �=�; p; �) = x+ p �� ~f(�1=�). We �rst getthe form of the sets C(z; �): C(z; �) = [�y; �e(z; �)℄ ;where the fun
tion �e is de�ned in Lemma 3.1. We then distinguish two 
ases: (i) Ifp �� ~f(�1=�) < ", then L"(x; y; p; �) = x. (ii) If p �� ~f(�1=�) � ", then there exists an uniquey1(p; �) 2 (0; �=�℄ and y2(p; �) 2 [�=�;1) su
h that L(x; y1(p; �); p; �) = L(x; y2(p; �); p; �)= x, and L"(x; y; p; �) = x for y 2 [0; y1(p; �))[ (y2(p; �);1), L"(x; y; p; �) = L(x; y; p; �)�"for y 2 [y1(p; �); y2(p; �)℄. We then denote byD0 = f0g � f0g � R�+ � [0; T ℄ = �yS" \ �LS";D1;" = n(0; y1(p; �); p; �) : p �� ~f��1� � � "; � 2 [0; T ℄o;D2;" = n(0; y2(p; �); p; �) : p �� ~f��1� � � "; � 2 [0; T ℄o:Noti
e that the inner normal ve
tors at the 
orner lines D1;" and D2;" form an a
ute angle(positive s
alar produ
t), while we have a right angle at the 
orner D0.Next, we de�ne the set of admissible trading strategies as follows. Given (t; z; �) 2[0; T ℄ � �S", we say that the impulse 
ontrol � is admissible, denoted by � 2 A"(t; z; �), if�0 = t� �, �n � t, n � 1, and the 
ontrolled state pro
ess (Z";�) solution to (2.1)-(2.2)-(2.3)-(2.6)-(5.1), with an initial state (Z"t� ;�t�) = (z; �) (and the 
onvention that (Z"t ;�t)= (z; �) if �1 > t), satis�es (Z"s ;�s) 2 [0; T ℄ � �S" for all s 2 [t; T ℄. Here, we stress thedependen
e of Z" = (X"; Y; P ) in " appearing in the transa
tion fun
tion �", and we noti
ethat it a�e
ts only the 
ash 
omponent. Noti
e that A"(t; z; �) is nonempty for any (t; z; �)2 [0; T ℄ � �S". Indeed, for (z = (x; y; p); �) 2 �S", i.e. L"(z; �) = max(x;L(z; �) � ") � 0,we distinguish two 
ases: (i) if x � 0, then by doing none transa
tion, the asso
iated state23
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pro
ess (Z" = (X"; Y; P );�) satis�es X"s = x � 0, t � s � T , and thus this zero transa
tionis admissible; (ii) if L(z; �) � " � 0, then by liquidating immediately all the sto
k shares,and doing nothing more after, the asso
iated state pro
ess satis�es X"s = L(z; �)� ", Ys =0, and thus L"(Z"s ;�s) = X"s � 0, t � s � T , whi
h shows that this immediate transa
tionis admissible.Given the utility fun
tion U on R+ , and the liquidation utility fun
tion de�ned on �S"by UL"(z; �) = U(L"(z; �)), we then 
onsider the asso
iated optimal portfolio liquidationproblem de�ned via its value fun
tion by:v"(t; z; �) = sup�2A"(t;z;�) E�UL"(Z"T ;�T )�; (t; z; �) 2 [0; T ℄ � �S": (5.2)Noti
e that when " = 0, the above problem redu
es to the optimal portfolio liquidationproblem des
ribed in Se
tion 2, and in parti
ular v0 = v. The main purpose of this se
tionis to provide a unique PDE 
hara
terization of the value fun
tions v", " > 0, and to provethat the sequen
e (v")" 
onverges to the original value fun
tion v as " goes to zero.We de�ne the set of admissible transa
tions in the model with �xed transa
tion fee by:C"(z; �) = ne 2 R : ��"(z; �; e); 0� 2 �S"o; (z; �) 2 �S":A similar 
al
ulation as in Lemma 3.1 shows that for (z = (x; y; p); �) 2 �S",C"(z; �) = ( [�y; �e"(z; �)℄; if � > 0 or x � ";;; if � = 0 and x < ";where �e(z; �) = supfe 2 R : ep ~f(e=�) � x� "g if � > 0 and �e(z; 0) = 0 if x � ". Here, theset [�y; �e"(z; �)℄ should be viewed as empty when �e(z; �) < y, i.e. x+ py ~f(�y=�)� " < 0.We also easily 
he
k that C" is 
ontinuous for the Hausdor� metri
. We then 
onsider theimpulse operator H" byH"w(t; z; �) = supe2C"(z;�)w(t;�"(z; �; e); 0); (t; z; �) 2 [0; T ℄ � �S";for any lo
ally bounded fun
tion w on [0; T ℄� �S", with the 
onvention that H"w(t; z; �) =�1 when C"(z; �) = ;.Next, 
onsider again the Merton liquidation fun
tion LM , and observe similarly as in(3.7) that LM (�"(z; �; e)) � LM (z) = ep�1� f�e; ���� "� �"; 8(z; �) 2 �S"; e 2 R: (5.3)This implies in parti
ular that H"LM < LM on �S": (5.4)Sin
e L" � LM , we observe from (5.3) that if (z; �) 2 N" := f(z; �) 2 �S" : LM (z) < "g,then C"(z; �) = ;. Moreover, we dedu
e from (5.3) that for all � = (�n; �n)n�0 2 A"(t; z; �)26



asso
iated to the state pro
ess (Z;�), (t; z; �) 2 [0; T ℄ � �S":0 � LM (ZT ) = LM (Z0;t;zT ) +Xn�0�LM (Z�n)� LM (Z0;t;zT )� "NT (�);where we re
all that NT (�) is the number of trading times over the whole horizon T . Thisshows that NT (�) � 1"LM (Z0;t;zT ) < 1 a:s:In other words, we see that, under the presen
e of �xed transa
tion fee, the number ofintervention times over a �nite interval for an admissible trading strategy is �nite almostsurely.The dynami
 programming equation asso
iated to the 
ontrol problem (5.2) ismin h� �w�t � �w�� �Lw ; w �H"wi = 0; in [0; T )� �S"; (5.5)min �w � UL" ; w �H"w� = 0; in fTg � �S": (5.6)The main result of this se
tion is stated as follows.Theorem 5.1 (1) The sequen
e (v")" is nonin
reasing, and 
onverges pointwise on [0; T ℄�( �S n �LS) towards v as " goes to zero.(2) For any " > 0, the value fun
tion v" is 
ontinuous on [0; T )�S", and is the unique (in[0; T ) � S") 
onstrained vis
osity solution to (5.5)-(5.6), satisfying the growth 
ondition:jv"(t; z; �)j � K(1 + LM (z)
); 8(t; z; �) 2 [0; T ℄� �S"; (5.7)for some positive 
onstant K, and the boundary 
ondition:lim(t0;z0;�0)!(t;z;�) v"(t0; z0; �0) = v(t; z; �)= U(0); 8(t; z = (0; 0; p); �) 2 [0; T ℄ �D0: (5.8)We �rst prove the 
onvergen
e of the sequen
e of value fun
tions (v").Proof of Theorem 5.1 (1).Noti
e that for any 0 < "1 � "2, we have L"2 � L"1 � L, A"2(t; z; �) � A"1(t; z; �) �A(t; z; �), for t 2 [0; T ℄, (z; �) 2 �S"2 � �S"1 � �S, and for � 2 A"2(t; z; �), L"2(Z"2 ;�) �L"2(Z"1 ;�) � L"1(Z"1 ;�) � L(Z;�). This shows that the sequen
e (v") is nonin
reasing,and is upper-bounded by the value fun
tion v without transa
tion fee, so thatlim"#0 v"(t; z; �) � v(t; z; �); 8(t; z; �) 2 [0; T ℄� �S: (5.9)Fix now some point (t; z; �) 2 [0; T ℄ � ( �S n �LS). From the representation (3.13) ofv(t; z; �), there exists for any n � 1, an 1=n-optimal 
ontrol �(n) = (� (n)k ; �(n)k )k 2 Ab̀+(t; z; �)27



with asso
iated state pro
ess (Z(n) = (X(n); Y (n); P );�(n)) and number of trading timesN (n): E�U(X(n)T )� � v(t; z; �)� 1n: (5.10)We denote by (Z";(n);�(n)) = (X";(n); Y (n); P );�(n)) the state pro
ess 
ontrolled by �(n) inthe model with transa
tion fee " (only the 
ash 
omponent is a�e
ted by "), and we observethat for all t � s � T ,X";(n)s = X(n)s � "N (n)s % X(n)s ; as " goes to zero. (5.11)Given n, we 
onsider the family of stopping times:�(n)" = inf �s � t : L(Z";(n)s ;�(n)s ) � "	 ^ T; " > 0:Let us prove that lim"&0�(n)" = T a:s: (5.12)Observe that for 0 < "1 � "2, X"2;(n)s � X"1;(n)s , and so L(Z"2;(n)s ;�s) � L(Z"1;(n)s ;�s)for t � s � T . This implies 
learly that the sequen
e (�(n)" )" is nonin
reasing. Sin
e thissequen
e is bounded by T , it admits a limit, denoted by �(n)0 = lim"#0 " �(n)" . Now, byde�nition of �(n)" , we have L(Z";(n)�(n)" ;�(n)�(n)" ) � ", for all " > 0. By sending " to zero, we thenget with (5.11): L(Z(n)�(n);�0 ;�(n)�(n);�0 ) = 0 a:s:Re
alling the de�nition ofAb̀+(t; z; �), this implies that �(n)0 = � (n)k for some k 2 f1; : : : ; N (n)+1g with the 
onvention � (n)N(n)+1 = T . If k � N (n), arguing as in (3.15), we get a 
ontradi
tionwith the solven
y 
onstraints. Hen
e we get �(n)0 = T .Consider now the trading strategy ~�";(n) 2 A 
onsisting in following �(n) until time �(n)"and liquidating all the sto
k shares at time �(n)" , i.e.~�";(n) = (� (n)k ; �(n)k )1�k<�(n)" [ (�(n)" ;�Y�(n);�" ):We denote by ( ~Z";(n) = ( ~X";(n); ~Y ";(n); P ); ~�";(n)) the asso
iated state pro
ess in the marketwith transa
tion fee ". By 
onstru
tion, we have for all t � s < �(n)" : L( ~Z";(n)s ; ~�";(n)s ) =L(Z";(n)s ;�(n)s ) � ", and thus L"( ~Z";(n)s ; ~�";(n)s ) � 0. At the transa
tion time �(n)" , we thenhave ~X";(n)�(n)" = L( ~Z";(n)�(n);�" ; ~�";(n)�(n);�" )� " = L(Z(n)�";(n);�" ;�(n)�(n);�" )� ", ~Y ";(n)�(n)" = 0. After time �(n)" ,there is no more transa
tion in ~�";(n), and so~X";(n)s = ~X";(n)�(n)" = L(Z(n)�";(n);�" ;�(n)�(n);�" )� " � 0; (5.13)~Y ";(n)s = ~Y ";(n)�(n)" = 0; �(n)" � s � T; (5.14)28



and thus L"( ~Z";(n)s ; ~�";(n)s ) = ~X";(n)s � 0 for �(n)" � s � T . This shows that ~�";(n) lies inA"(t; z; �), and thus by de�nition of v":v"(t; z) � E�UL"� ~Z";(n)T ; ~�";(n)T ��: (5.15)Let us 
he
k that given n,lim"#0 L"� ~Z";(n)T ; ~�";(n)T � = X(n)T ; a:s: (5.16)To alleviate notations, we set N = N (n)T the total number of trading times of �(n). If thelast trading time of �(n) o

urs stri
tly before T , then we do not trade anymore until the�nal horizon T , and soX(n)T = X(n)�N ; and Y (n)T = Y (n)�N = 0; on f�N < Tg: (5.17)By (5.12), we have for " small enough: �(n)" > �N , and so ~X";(n)�(n);�" = X";(n)�N , ~Y ";(n)�(n);�" = Y (n)�N= 0. The �nal liquidation at time �(n)" yields: ~X";(n)T = ~X";(n)�(n)" = ~X";(n)�(n);�" � " = X";(n)�N � ",and ~Y ";(n)T = ~Y ";(n)�(n)" = 0. We then obtainL"� ~Z";(n)T ; ~�";(n)T � = max� ~X";(n)T ; L� ~Z";(n)T ; ~�";(n)T �� "�= ~X";(n)T = X";(n)�N � " on f�N < Tg= X(n)T � (1 +N)" on f�N < Tg;by (5.11) and (5.17), whi
h shows that the 
onvergen
e in (5.16) holds on f�N < Tg. If thelast trading of �(n) o

urs at time T , this means that we liquidate all sto
k shares at T ,and so X(n)T = L(Z(n)T� ;�(n)T�); Y (n)T = 0 on f�N = Tg: (5.18)On the other hand, by (5.13)-(5.14), we haveL"� ~Z";(n)T ; ~�";(n)T � = ~X";(n)T = L(Z(n)�";(n);�" ;�(n)�(n);�" )� "�! L(Z(n)T� ;�(n)T�) as " goes to zero;by (5.12). Together with (5.18), this implies that the 
onvergen
e in (5.16) also holds onf�N = Tg, and thus almost surely. Sin
e 0 � L" � L, we immediately see by Proposition3.1 that the sequen
e fUL"� ~Z";(n)T ; ~�";(n)T �; " > 0g is uniformly integrable, so that by sending" to zero in (5.15) and using (5.16), we getlim"#0 v"(t; z; �) � E�U(X(n)T )� � v(t; z) � 1n;from (5.10). By sending n to in�nity, and re
alling (5.9), this 
ompletes the proof ofassertion (1) in Theorem 5.1. 229



We now turn to the vis
osity 
hara
terization of v". The vis
osity property of v" isproved similarly as for v, and is then omitted. From Proposition 3.1, and sin
e 0 � v"� v, we know that the value fun
tions v" lie in the set of fun
tions satisfying the growth
ondition in (5.7), i.e.G
([0; T ℄� �S") = nw : [0; T ℄� �S" ! R; sup[0;T ℄� �S" jw(t; z; �)j1 + LM (z)
 < 1o:The boundary property (5.8) is immediate. Indeed, �x (t; z = (x; 0; p); �) 2 [0; T ℄ � �yS",and 
onsider an arbitrary sequen
e (tn; zn = (xn; yn; pn); �n)n in [0; T ℄ � �S" 
onverging to(t; z; �). Sin
e 0 � L"(zn; �n) = max(xn; L(zn; �n)�"), and yn goes to zero, this implies thatfor n large enough, xn = L"(zn; �n) � 0. By 
onsidering from (tn; zn; �n) the admissiblestrategy of doing none transa
tion, whi
h leads to a �nal liquidation value XT = xn,we have U(xn) � v"(tn; zn; �n) � v(tn; zn; �n). Re
alling Corollary 3.1, we then obtain the
ontinuity of v" on �yS" with v"(t; z; �) = U(x) = v(t; z; �) for (z; �) = (x; 0; p; �) 2 �yS", andin parti
ular (5.8). Finally, we address the uniqueness issue, whi
h is a dire
t 
onsequen
eof the following 
omparison prin
iple for 
onstrained (dis
ontinuous) vis
osity solution to(5.5)-(5.6).Theorem 5.2 (Comparison prin
iple)Suppose u 2 G
([0; T ℄ � �S") is a us
 vis
osity subsolution to (5.5)-(5.6) on [0; T ℄� �S", andw 2 G
([0; T ℄ � �S") is a ls
 vis
osity supersolution to (5.5)-(5.6) on [0; T ℄� S" su
h thatu(t; z; �) � lim inf(t0; z0; �0) ! (t; z; �)(t0; z0; �0) 2 [0; T ) � S" w(t0; z0; �0); 8(t; z; �) 2 [0; T ℄ �D0: (5.19)Then, u � w on [0; T ℄� S": (5.20)Noti
e that with respe
t to usual 
omparison prin
iples for paraboli
 PDEs where we
ompare a vis
osity subsolution and a vis
osity supersolution from the inequalities on thedomain and at the terminal date, we require here in addition a 
omparison on the boundaryD0 due to the non smoothness of the domain �S" on this right angle of the boundary.A similar feature appears also in [17℄, and we shall only emphasize the main argumentsadapted from [3℄, for proving the 
omparison prin
iple.Proof of Theorem 5.2.Let u and w as in Theorem 5.2, and (re)de�ne w on [0; T ℄� �S" byw(t; z; �) = lim inf(t0; z0; �0)! (t; z; �)(t0; z0; �0) 2 [0; T ) � S" w(t0; z0; �0); (t; z; �) 2 [0; T ℄ � �S": (5.21)In order to obtain the 
omparison result (5.20), it suÆ
es to prove that sup[0;T ℄� �S"(u�w)� 0, and we shall argue by 
ontradi
tion by assuming thatsup[0;T ℄� �S"(u� w) > 0: (5.22)30



� Step 1. Constru
tion of a stri
t vis
osity supersolution.Consider the fun
tion de�ned on [0; T ℄� �S" by (t; z; �) = e�0(T�t)LM(z)
0 ; t 2 [0; T ℄; (z; �) = (x; y; p; �) 2 �S";where �0 > 0, and 
0 2 (0; 1) will be 
hosen later. The fun
tion  is smooth C2 on[0; T ) � ( �S" nD0), and by the same 
al
ulations as in (3.10), we see that by 
hoosing �0 >
01�
0 b22�2 , then � � �t � � �� �L > 0 on [0; T )� ( �S" nD0): (5.23)Moreover, from (5.4), we have( �H" )(t; z; �) = e�0(T�t)hLM (z)
0 � (H"LM(z))
0i =: �(t; z) (5.24)> 0 on [0; T ℄� �S":For m � 1, we denote by~u(t; z; �) = etu(t; z; �); and ~wm(t; z; �) = et�w(t; z; �) + 1m (t; z; �)℄:From the vis
osity subsolution property of u, we immediately see that ~u is a vis
ositysubsolution to min �~u� �~u�t � �~u�� �L~u ; ~u�H"~u� � 0; on [0; T ) � �S" (5.25)min �~u� ~UL" ; ~u�H"~u� � 0; on fTg � �S"; (5.26)where we set ~UL"(z; �) = eTUL"(z; �). From the vis
osity supersolution property of w, andthe relations (5.23)-(5.24), we also derive that ~wm is a vis
osity supersolution to~wm � � ~wm�t � � ~wm�� �L ~wm � 0 on [0; T ) � (S" nD0) (5.27)~wm �H" ~wm � 1m� on [0; T ℄� S": (5.28)~wm � ~UL" � 0 on fTg � S": (5.29)On the other hand, from the growth 
ondition on u and w in G
([0; T ℄� �S"), and by 
hoosing
0 2 (
; 1), we have for all (t; �) 2 [0; T ℄2,limjzj!1(u� wm)(t; z; �) = �1:Therefore, the us
 fun
tion ~u � ~wm attains its supremum on [0; T ℄ � �S", and from (5.22),there exists m large enough, and (�t; �z; ��) 2 [0; T ℄� �S" s.t.~M = sup[0;T ℄� �S"(~u� ~wm) = (~u� ~wm)(�t; �z; ��) > 0: (5.30)� Step 2. From the boundary 
ondition (5.19), we know that (�z; ��) 
annot lie in D0, andwe have then two possible 
ases: 31



(i) (�z; ��) 2 S" nD0(ii) (�z; ��) 2 �S" nD0.The 
ase (i) where (�z; ��) lies in S" is standard in the 
omparison prin
iple for (non
on-stained) vis
osity solutions, and we fo
us here on the 
ase (ii), whi
h is spe
i�
 to 
ons-trained vis
osity solutions. From (5.21), there exists a sequen
e (tn; zn; �n)n�1 in [0; T )�S"su
h that (tn; zn; �n; ~wm(tn; zn; �n)) �! (�t; �z; ��; ~wm(�t; �z; ��)) as n!1:We then set Æn = jzn � �zj+ j�n � ��j, and 
onsider the fun
tion �n de�ned on [0; T ℄� ( �S")2by: �n(t; z; �; z0; �0) = ~u(t; z; �)� ~wm(t; z0; �0)� 'n(t; z; �; z0; �0)'n(t; z; �; z0; �0) = jt� �tj2 + jz � �zj4 + j� � ��j4+ jz � z0j2 + j� � �0j22Æn + � d(z0; �0)d(zn; �n) � 1�4:Here, d(z; �) denotes the distan
e from (z; �) to �S". Sin
e (�z; ��) =2 D0, there exists anopen neighborhood �V of (�z; ��) satisfying �V \D0 = ;, su
h that the fun
tion d(:) is twi
e
ontinuously di�erentiable with bounded derivatives. This is well known (see e.g. [12℄)when (�z; ��) lies in the smooth parts of the boundary �S" n (D1;" [D2;"). This is also truefor (�z; ��) 2 Dk;" for k 2 f1; 2g. Indeed, at these 
orner lines, the inner normal ve
torsform an a
ute angle (positive s
alar produ
t), and thus one 
an extend from (�z; ��) theboundary to a smooth boundary so that the distan
e d is equal, lo
ally on the neighborhood,to the distan
e to this smooth boundary. From the growth 
onditions on u and w inG
([0; T ℄� �S"), there exists a sequen
e (t̂n; ẑn; �̂n; ẑ0n; �̂0n) attaining the maximum of the us
�n on [0; T ℄� ( �S")2. By standard arguments (see e.g. [3℄ or [17℄), we have(t̂n; ẑn; �̂n; ẑ0n; �̂0n) �! (�t; �z; ��; �z; ��) (5.31)jẑn � ẑ0nj2 + j�̂n � �̂0nj22Æn + �d(ẑ0n; �̂0n)d(zn; �n) � 1�4 �! 0 (5.32)~u(t̂n; ẑn; �̂n)� ~wm(t̂n; ẑ0n; �̂0n) �! (~u� ~wm)(�t; �z; ��): (5.33)The 
onvergen
e in (5.32) shows in parti
ular that for n large enough, d(ẑ0n; �̂0n)� d(zn; �n)=2> 0, and so (ẑ0n; �̂0n) 2 S". From the 
onvergen
e in (5.31), we may also assume that forn large enough, (ẑn; �̂n), (ẑ0n; �̂0n) lie in the neighborhood �V of (�z; ��) so that the derivativesupon order 2 of d(:) at (ẑn; �̂n) and (ẑ0n; �̂0n) exist and are bounded.� Step 3. We show that for n large enough,~u(t̂n; ẑn; �̂n)�H"~u(t̂n; ẑn) > 0: (5.34)Otherwise, up to a subsequen
e, we would have for all n:~u(t̂n; ẑn; �̂n)�H"~u(t̂n; ẑn) � 0:32



By sending n to in�nity, and from the upper-semi
ontinuity ofH"~u, we get with (5.31): �1< ~u(�t; �z; ��) � H"~u(�t; �z; ��), whi
h shows in parti
ular that C"(�z; ��) is not empty. Moreover,by the vis
osity supersolution property (5.28), we have~wm(t̂n; ẑ0n; �̂0n)�H" ~wm(t̂n; ẑ0n; �̂0n) � 1m�(t̂n; ẑ0n; �̂0n):By substra
ting the two previous inequalities, we would get~u(t̂n; ẑn; �̂n)� ~wm(t̂n; ẑ0n; �̂0n) � H"~u(t̂n; ẑn)�H" ~wm(t̂n; ẑ0n; �̂0n)� 1m�(t̂n; ẑ0n; �̂0n):By sending n to in�nity, and from the upper-semi
ontinuity ofH"~u, the lower-semi
ontinuityof H" ~wm and �, this yields with (5.31), (5.33)(~u� ~wm)(�t; �z; ��) � H"~u(�t; �z; ��)�H" ~wm(�t; �z; ��)� 1m�(�t; �z; ��):Now, by 
ompa
tness of C"(�z; ��) 6= ;, there exists �e 2 C"(�z; ��) su
h that H"~u(�t; �z; ��) =~u(t;�"(�z; ��; �e); 0) and so~M = (~u� ~wm)(�t; �z; ��) � ~u(�t;�"(�z; ��; �e); 0)� ~wm(�t;�"(�z; ��; �e); 0) � 1m�(�t; �z; ��)� ~M � 1m�(�t; �z; ��);a 
ontradi
tion.� Step 4. We 
he
k that, up to a subsequen
e, t̂n < T for all n. On the 
ontrary, t̂n = �t =T for n large enough, and we would get from (5.34) and the vis
osity subsolution property(5.26): ~u(T; ẑn; �̂n) � ~UL"(ẑn; �̂n):Moreover, by (5.29), we have ~wm(T; ẑ0n; �̂0n) � ~UL"(ẑ0n; �̂0n), whi
h 
ombined with the formerinequality, implies~u(T; ẑn; �̂n)� ~wm(T; ẑ0n; �̂0n) � ~UL"(ẑn; �̂n)� ~UL"(ẑ0n; �̂0n):By sending n to in�nity, this yields with (5.31), (5.33) and 
ontinuity of ~UL" : ~M = (~u �~wm)(�t; �z; ��) � 0, a 
ontradi
tion with (5.30).� Step 5. We use the vis
osity subsolution property (5.25) of ~u at (t̂n; ẑn; �̂n) 2 [0; T )� �S",whi
h is written by (5.34) as(~u� �~u�t � �~u�� �L~u)(t̂n; ẑn; �̂n) � 0: (5.35)The above inequality is understood in the vis
osity sense, and applied with the test fun
tion(t; z; �) ! 'n(t; z; �; ẑ0n; �̂0n), whi
h is C2 in the neighborhood [0; T ℄ � �V of (t̂n; ẑn; �̂n). Wealso write the vis
osity supersolution property (5.27) of ~wm at (t̂n; ẑ0n; �̂0n) 2 [0; T )�(S"nD0):( ~wm � � ~wm�t � � ~wm�� �L ~wm)(t̂n; ẑ0n; �̂0n) � 0: (5.36)The above inequality is again understood in the vis
osity sense, and applied with the testfun
tion (t; z0; �0) ! �'n(t; ẑn; �̂n; z0; �0), whi
h is C2 in the neighborhood [0; T ℄ � �V of(t̂n; ẑ0n; �̂0n). The 
on
lusion is a
hieved by arguments similar to [17℄: we invoke Ishii'sLemma, substra
t the two inequalities (5.35)-(5.36), and �nally get the required 
ontradi
-tion ~M � 0 by sending n to in�nity with (5.31)-(5.32)-(5.33). 233



6 An approximating problem with utility penalizationWe 
onsider in this se
tion another perturbation of our initial optimization problem byadding a 
ost " to the utility at ea
h trading. We then de�ne the value fun
tion �v" on[0; T ℄ � �S by�v"(t; z; �) = sup�2Ab̀(t;z;�) EhUL�ZT ;�T �� "NT (�)i; (t; z; �) 2 [0; T ℄� �S: (6.1)The 
onvergen
e of this approximation is immediate.Proposition 6.1 The sequen
e (�v")" is nonde
reasing and 
onverges pointwise on [0; T ℄� �Stowards v as " goes to zero.Proof. It is 
lear that the sequen
e (�v")" is nonde
reasing and that �v" � v on [0; T ℄ � �Sfor any " > 0. Let us prove that lim"&0 �v" = v. Fix n 2 N� and (t; z; �) 2 [0; T ℄ � �S and
onsider some �(n) 2 Ab̀(t; z; �) su
h thatEhUL�Z(n)T ;�(n)T �i � v(t; z; �)� 1n;where (Z(n);�(n)) is the asso
iated 
ontrolled pro
ess. From the monotone 
onvergen
etheorem, we then getlim"&0 �v"(t; z; �) � EhUL�Z(n)T ;�(n)T �i � v(t; z; �) � 1n:By the arbitrariness of n 2 N� , we 
on
lude that lim" �v" � v, whi
h ends the proof sin
ewe already have �v" � v. 2The nonlo
al impulse operator �H" asso
iated to (6.1) is given by�H"'(t; z; �) = H'(t; z; �)� ";and we 
onsider the 
orresponding dynami
 programming equation:min h� �w�t � �w�� �Lw ; w � �H"wi = 0; in [0; T )� �S; (6.2)min �w � UL ; w � �H"w� = 0; in fTg � �S: (6.3)By similar arguments as in Se
tion 5, we 
an show that �v" is a 
onstrained vis
ositysolution to (6.2)-(6.3), and the following 
omparison prin
iple holds:Suppose u 2 G
([0; T ℄� �S) is a us
 vis
osity subsolution to (6.2)-(6.3) on [0; T ℄� �S, and w2 G
([0; T ℄� �S) is a ls
 vis
osity supersolution to (6.2)-(6.3) on [0; T ℄� S, su
h thatu(t; z; �) � lim inf(t0; z0; �0) ! (t; z; �)(t0; z0; �0) 2 [0; T ) � S w(t0; z0; �0); 8(t; z; �) 2 [0; T ℄�D0:Then, u � w on [0; T ℄� S: (6.4)The proof follows the same lines of arguments as in the proof of Theorem 5.2 (the fun
tion is still a stri
t vis
osity supersolution to (6.2)-(6.3) on [0; T ℄� �S), and so we omit it.As a 
onsequen
e, we obtain a PDE 
hara
terization of the value fun
tion v.34



Proposition 6.2 The value fun
tion v is the minimal 
onstrained vis
osity solution inG
([0; T ℄ � �S) to (4.4)-(4.5), satisfying the boundary 
onditionlim(t0;z0;�0)!(t;z;�) v(t0; z0; �0) = v(t; z; �) = U(0); 8(t; z; �) 2 [0; T ℄ �D0: (6.5)Proof. Let V 2 G
([0; T ℄ � �S) be a vis
osity solution in G
([0; T ℄ � �S) to (4.4)-(4.5),satisfying the boundary 
ondition (6.5). Sin
e H � �H", it is 
lear that V� is a vis
ositysupersolution to (6.2)-(6.3). Moreover, sin
e lim(t0;z0;�0)!(t;z;�) V�(t0; z0; �0) = U(0) = v(t; z; �)� �v�"(t; z; �) for (t; z; �) 2 [0; T ℄ �D0, we dedu
e from the 
omparison prin
iple (6.4) thatV � V� � �v�" � �v" on [0; T ℄ � S. By sending " to 0, and from the 
onvergen
e result inProposition 6.1, we obtain: V � v, whi
h proves the required result. 2Appendix: 
onstrained vis
osity solutions to paraboli
 QVIsWe 
onsider a paraboli
 quasi-variational inequality in the form:min h� �v�t + F (t; x; v;Dxv;D2xv) ; v �Hvi = 0; in [0; T )� �O; (A.1)together with a terminal 
onditionmin �v � g ; v �Hv� = 0; in fTg � �O: (A.2)Here, O � Rd is an open domain, F is a 
ontinuous fun
tion on [0; T ℄� Rd � R � Rd � Sd(Sd is the set of positive semide�nite symmetri
 matri
es in Rd�d), nonin
reasing in its lastargument, g is a 
ontinuous fun
tion on �O, and H is a nonlo
al operator de�ned on the setof lo
ally bounded fun
tions on [0; T ℄ � �O by:Hv(t; x) = supe2C(t;x) �v(t;�(t; x; e)) + 
(t; x; e)�:C(t; x) is a 
ompa
t set of a metri
 spa
e E, eventually empty for some values of (t; x), inwhi
h 
ase we set Hv(t; x) = �;, and is 
ontinuous for the Hausdor� metri
, i.e. if (tn; xn)
onverges to (t; x) in [0; T ℄ � �O, and (en) is a sequen
e in C(tn; xn) 
onverging to e, thene 2 C(t; x). The fun
tions � and 
 are 
ontinuous, and su
h that �(t; x; e) 2 �O for all e 2C(t; x; e).Given a lo
ally bounded fun
tion u on [0; T ℄ � �O, we de�ne its lower-semi
ontinuous(ls
 in short) envelope u� and upper-semi
ontinuous (us
) envelope u� on [0; T ℄� �S by:u�(t; x) = lim inf(t0; x0)! (t; x)(t0; x0) 2 [0; T ) �O u(t0; x0); u�(t; x) = lim sup(t0; x0)! (t; x)(t0; x0) 2 [0; T )�O u(t0; x0):One 
an 
he
k (see e.g. Lemma 5.1 in [17℄) that the operator H preserves lower and upper-semi
ontinuity:(i) Hu� is ls
, and Hu� � (Hu)�, (ii) Hu� is us
, and (Hu)� � Hu�.We now give the de�nition of 
onstrained vis
osity solutions to (A.1)-(A.2). This notion,whi
h extends the de�nition of vis
osity solutions of Crandall, Ishii and Lions (see [10℄),35



was introdu
ed in [27℄ for �rst-order equations for taking into a

ount boundary 
onditionsarising in state 
onstraints, and used in [29℄ for sto
hasti
 
ontrol problems in optimalinvestment.De�nition A.1 A lo
ally bounded fun
tion v on [0; T ℄� �O is a 
onstrained vis
osity solu-tion to (A.1)-(A.2) if the two following properties hold:(i) Vis
osity supersolution property on [0; T ℄ � O: for all (�t; �x) 2 [0; T ℄ � O, and ' 2C1;2([0; T ℄ �O) with 0 = (v� � ')(�t; �x) = min(v� � '), we havemin h� �'�t (�t; �x) + F (�t; �x; '�(�t; �x);Dx'(�t; �x);D2x'(�t; �x)) ;v�(�t; �x)�Hv�(�t; �x)i � 0; (�t; �x) 2 [0; T )�O;min �v�(�t; �x)� g(�x) ; v�(�t; �x)�Hv�(�t; �x)i � 0; (�t; �x) 2 fTg � O:(ii) Vis
osity subsolution property on [0; T ℄ � �O: for all (�t; �x) 2 [0; T ℄ � �O, and ' 2C1;2([0; T ℄ � �O) with 0 = (v� � ')(�t; �x) = max(v� � '), we havemin h� �'�t (�t; �x) + F (�t; �x; '�(�t; �x);Dx'(�t; �x);D2x'(�t; �x)) ;v�(�t; �x)�Hv�(�t; �x)i � 0; (�t; �x) 2 [0; T )� �O;min �v�(�t; �x)� g(�x) ; v�(�t; �x)�Hv�(�t; �x)i � 0; (�t; �x) 2 fTg � �O:
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