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Abstract— The aim of this paper is to explore yet another
variant of the Delta-Modulation Coding structure to improve
data transmission efficiency in the context of Networked Con-
trolled Systems. High compression rates can only be reached
by the use of entropy coding. Entropy coding assigns some
probability distribution to the events. In that way, the mean
code length can be improved. The paper studies several issues
resulting from this type of coding design and assets the stability
properties needed for this type of coding to operate properly.

Index Terms— Entropy coding, Networked controlled sys-
tems, NCS, quantized systems.

I. INTRODUCTION

THis paper deals with systems interconnected by a com-

munication network where information is transmitted

via a particular coding algorithm. Many of such type of

control architectures have been studied in the past. Some

examples are: [8], [4], [11], [12], [14], [10], [6], [1], among

others.

In particular, delta modulation (∆-M ) has been used

recently in this context [3] as a mean of reducing the number

of transmitted bits while preserving a methodological and

simple closed-form algorithm for the coding design. Delta

modulation is a well-known differential coding technique

used for reducing the data rate required for voice communica-

tion, see [13]. The standard technique is based on synchroniz-

ing a state predictor on emitter and receiver and just sending

a one–bit error signal corresponding to the innovation of the

sampled data with respect to the predictor. The prediction

is then updated by adding a positive or negative quantity

(determined by the bit that has been transmitted) of absolute

value ∆, a known parameter shared between emitter and

receiver.

We have recently investigate the closed-loop properties

of the ∆-M algorithm when used in the feedback loop.

Our results in [3] have suggested some modification of the

original form of the ∆-M algorithm to improve the closed-

loop properties when used in feedback within the context

of Networked controlled systems (NCS). The results showed

that the stability domain and the resulting precision of the

∆-M is limited by the position of the largest unstable pole

of the system. Although this can be improved by increasing

the sampling rate, or by the use of extra bits [7], both

possibilities are clearly limited by the maximum permissible

data transmission rate. Further studies, have also shown that

it is possible to make the modulation gain adaptive so as to

improve the global stability results [5].

The aim of this work is to explore yet another variant of

the ∆-M structure to improve data transmission efficiency

in the context of NCS. High compression rates can only be

reached by the use of entropy coding. Entropy coding is a

source coding that assigns some probability distribution to the

events. In that way, the mean code length can be reduced, as

it will be shown here.

A pre-requisite for the entropy coding strategy is to design

a mechanism with the ability to quantify and to differentiate

stand-still signal events, to changes in the source (level

crossing detector, denoted here as ϕLD ). For instance,

this can be done by defining an alphabet where the source

signal information is contained in the time interval between

level crossing and in the direction of the level crossing. As

suggested in [9], by assigning strings of the 2-tuple 00 to

represent the time between signal level crossing, and 01 and

10 to denote the direction of level crossing, the output of the

level crossing detector contains a high probability of the 0
symbol with makes it suitable for an entropy encoder to attain

a “good” overall compression ratio. A fundamental difference

with the classical ∆-M algorithm is that the error is coded

on the basis of a 3-valued alphabet rather than a 2-valued

one. The role of the entropy coding here is to render more

efficient the transmission by improving in the mean number

of bits per unit of time needed for the transmission.

The overall coding strategy studied here is composed of

two main blocks: an event-based (EB) coding, and a vari-

able length-block entropy (VLE)coding scheme. The overall

scheme is shown in Figure 1. The paper aims at studding the

closed-loop properties of such arrangement, and investigate

the possible improvement in terms of compaction ration. Due

to the fact that the VLE block is a distortion-less coding,

and for simplicity reasons, the focus of this study is directed

toward the study of the stability properties of the first coding

block only.

A. Definitions

Signals are sampled on the basis of the time interval Ts,

that is at Ts, 2Ts, ...kTs.

rk: reference signal,

xk: system output,

x̂k: estimated(reconstructed) output,

x̃k: true estimated error, x̃k = xk − x̂k,
ˆ̃xk: approximated estimated error, obtained after reconstruc-

tion, i.e. ˆ̃xk = {ϕ−1
LD ◦ϕLD}(x̃k), with ϕ−1

LD ◦ϕLD 6= 1.
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Fig. 1. Block diagram of the non uniform entropy coding in the feedback loop.

∆: step interval used for level detection and to reconstruct
ˆ̃xk,

δk: 3-level valued integer signal: {−1, 0, 1}
νk: 2-bits binary signal

ηj : variable length binary signal to be send by the channel

(output of the VLE block) in asynchronous fashion, at

the time instants multiples of Ts. The index j captures

this asynchronism.

uk: control input

B. Assumptions

The hypothesis used in the results presented in this paper,

are the following:

• The transmitted information is binary

• Only encoder-to-decoder information transmission is

allowed (feedback between decoder to encoder is for-

bidden),

• Reliable noiseless channel transmission is considered

(no data lost, or information distortion, no transmission

delays). See [2] for the treatment of transmission delay

in this context.

II. PROBLEM SET UP

We consider the following SISO discrete-time linear sys-

tem (possible unstable), of the form,

xk =
B(q−1)

A(q−1)
uk (1)

together with a RST controller,

uk =
R(q−1)

S(q−1)

{
γ

T (q−1)
rk − x̂k

}

(2)

where rk is the reference, x̂k is the estimated of the sys-

tem output xk, and R(q−1), S(q−1), T (q−1) are the control

polynomials in the delay operator q−1. They also satisfy:

T = RB, SA + RB = Acl, γ
△
= Acl(1)

with Acl being the stable closed-loop polynomial, and γ the

static gain needed to reach unitary zero-frequency gain. For

simplicity, we will omit the use of the argument (q−1) when

not explicitly needed.

The coding process consists in: 1) encoding the system

output xk, 2) transmitting the coding sequence through the

communication channel, and 3) decoding the received infor-

mation to produce the estimated x̂k. The complete sequence

can be seen as estimation process.

a) Forced synchronization under asynchronous trans-

mission: The time basis for the system and the controller

description is defined with respect to Ts. However, due to

the variable length characteristic inherent to the entropy

coding, the transmission of the coded signal νj is then done

asynchronously at multiples of Ts. For instance, for a choice

of a VLE coding of length N = 3, the coded signal can be

sent either at; Ts, or 2Ts, or 3Ts as shown in Table I. The

index j captures this asynchronism.

It is assumed here that when the receiver does not receive

information (this may happen if the run sequence include

a stand-still event for some k) the receiver hold the last-

received value η̂k−1 until a new change of level is detected.

By this mechanism, the signals at the receiver can be re-

synchronized to the time basis Ts. This is the reason why the

control formulation is stated in a discrete-time synchronous

representation with the sole index k, as described next.

b) Nominal closed-loop transfer function: Assume a

perfect transmission process (i.e. x̂k ≡ xk), then the control

law (2) gives the following nominal closed-loop relation,

xk =
γ

Acl(q−1)
rk

c) Perturbed closed-loop transfer function: Consider

the case of interest where information is transmitted by the

channel and quantized, i.e. x̂k 6= xk. Then, the error transfer

function is



xk =
γ

Acl(q−1)
rk + W (q−1)x̃k

where x̃k = xk − x̂k is the estimation error, and W =
BR/Acl. As Acl defines a stable polynomial, the output xk

is kept bounded as long as x̃k is bounded as well.

The problem is then to design the coding process that

defines the output x̂k preserving closed-loop properties. This

process is described next.

III. CODING PROCESS

The coding (encoding/decoding) process is composed of

several steps, described by the following operations:

xk 7→
︸︷︷︸

EBE

νk 7→
︸︷︷︸

V LE

ηk ⇒
︸︷︷︸

channel

η̂k 7→
︸︷︷︸

V LD

ν̂k 7→
︸︷︷︸

EBD

x̂k

As shown in Figure 1, the encoder (respectively the inverse

decoder) operation is composed of two separate blocks:

• The event-based encoder EBE (respectively, event-based

decoder EBD). This block maps xk 7→ νk (respectively,

the decoder maps ν̂k 7→ x̂k). This block includes a

level detector ϕLD, and a model-based predictor, MBP,

similar to the one proposed in [3], and

• A variable length entropy encoder VLE (respectively,

variable length decoder VLD) mapping the binary signal

νk (run sequence, see TableI) to the N -bits ηj (respec-

tively, the decoder maps η̂j 7→ ν̂k). This block includes

the synchronization process described before.

A. Description of the Event-based Coding EBC

Elements composing the Event-based Coding EBC are the

level detector ϕLD, and the model-based predictor.

1) The Level Detector: The operation principe of the

level detector is shown in Figure 2. The signal detection

levels are uniformly spaced by the quantum ∆. The level

detector device produces a signal (identified by ′01′ or ′10′)
whenever a level crossing takes place, and a ′00′ if the signal

remains within the level. While two symbols are used to

characterize the level changes, one more symbol can be used

to quantize time intervals. Then 01 indicates upward crossing,

10 downward crossing, and 00 is used to code the time-

interval between crossing.

To illustrate this consider the example of Figure 2, see

[9]. We assume that uniform samples are taken every time

Ts, then m samples are taken in the time interval Ti = ti −
ti−1 before a cross level takes place. As two levels (upward)

crossing happen within this interval, the binary representation

of this situation by the level crossing detector produce the

following signal,

01, 00, 00, . . . 00
︸ ︷︷ ︸

m−pairs

, 01

This sequence has then high probability of 0′s, and thus

suited for entropy coding.

To make this process operational, we introduce the oper-

ator ϕLD : x̃k 7→ νk, which takes the error signal, x̃k, and

νk

−

∆

2

Ts

time

x̃(t)

+
∆

2

+
3∆

2 ˆ̃xk

−

3∆

2

00 0001 1001 00 00 00 10 00

Fig. 2. Illustration of the level detector working operation principe.

codes the output νk into a 3-valued one δk ∈ {−1, 0, 1}.

That is:

lk =

⌊
x̃k

∆
−

1

2

⌋

δk =







1 if lk > lk−1; one level is crossed upwards

0 if lk = lk−1; signal stay at the actual level

−1 if lk < lk−1; one level is crossed downwards

with ∆ the level threshold and ⌊·⌋ the floor operator which

rounds to the smaller integer.

Finally, the 3-valued signal δk is transform into a 2-bits

binary number νk ∈ {00, 01, 10}, by the following operation.

νk =







00 if δk = 0
01 if δk = −1
10 if δk = 1

The combination ‘11′ is not used in this process.

2) The model-based predictor: Has the role to estimate

(reconstruct) the encoded signal xk, namely x̂k, from the

2-bits binary signal νk. It is composed of:

• The inverse of the level detector: ϕ−1
LD : νk 7→ δk 7→ ˆ̃xk,

which equations are:

δk =







0 if νk = 00
−1 if νk = 01

1 if νk = 10

and,
ˆ̃xk = ˆ̃xk−1 + ∆ · δk

Due to the quantization, this map does not describe an

“exact inverse operator” as it will be explained latter.

• The predictor. The model-based predictor, as its name

indicated, uses the target closed-loop model as a basis

for its design. The predictor is a dynamic operator map-

ping the “reconstructed” error ˆ̃xk to the “reconstructed”

state x̂k. Its structure is inspired by our previous works

in [3], [5], and also in [6]. The predictor is a dynamic

linear discrete-time operator that maps the output of the



inverse level detector, to the signal prediction x̂k. Its

structure depends upon the particular control used (state

feedback or output feedback). For instance, for the RST-

control discussed here, it has the following form:

x̂k = W
[ γ

T
rk + ˆ̃xk

]

, W
△
=

BR

Acl

(3)

Which results in the following error equation:

x̃k = W
[

x̃k − ˆ̃xk

]

(4)

B. Description of the variable length entropy coding VLE

As mentioned in the introduction, high compression rates

can only be reached by the use of entropy coding. By

assigning some probability distribution to the events, the

mean code length can be optimized. Run-length codes1, are

a class of variable-length codes that are sub-optimal (when

compared to the Huffman code), but have the advantage

of avoiding buffering at the decoder side, and therefore

reducing data transmission latency. An example used in [9]

is described in Table I.

The VLE of length N can be described as a memory

map from νk to ηj . The VLE block contains a buffer of

dimension l that stores information of past values of νk. The

buffer dimension l depends on N . The buffer information is

used to build a run sequence resulting from the composition

of νk−l, ..., νk. This sequence, which is a variable-length

binary signal, is named the “run sequence” used to produce

the output ηj . The variable-length nature of this sequence

introduces a variable latency (asynchronous output) which is

multiple of Ts. An example of a coding scheme of block

length N = 3 is shown below.

Run sequence Transmission period Output ηj

νk−2, νk−1, νk (sec) (N = 3)
01 Ts 000
10 Ts 001

00 01 2Ts 010
00 10 2Ts 011

00 00 01 3Ts 100
00 00 10 3Ts 101
00 00 00 3Ts 110

unused - 111

TABLE I

RUN-LENGTH ENCODING.

Assuming that the coding sequence is independent and

identically distributed, and that the upward crossing fre-

quency equals the downwards crossing frequency, i.e.

p = P (00), P (01) = P (10) =
1

2
(1 − p)

where p ∈ [0, 1] is the probability to have an stand-still event.

According to [9], the mean coding length, CL, of this scheme

is:

CL = 2
1 − p(2(N−1)

−1)

1 − p
bits

1Class of coding strategy that can decode information instantaneously.

which has the limiting value: limp→1 CL = 2N − 2. The

compaction ratio is CR = CL

N
.

Let Rν be the transmission rate when the 2-bits signal νk

is sent synchronously at each Ts without using an entropy

code. This rate is given by Rν = 2[bits/Ts].
When the VLE coding is used assuming a probability p to

the stand-still event, the mean transmission rate Rm [bits/Ts]
associated to a code of length N is

Rm =
number of bits sent

mean transmission period
=

N

Tm

where Tm = CL

2 [Ts]. This gives

Rm =
2N

CL

= Rν

N

CL

From this expression we can evaluate the potential improve-

ment due to the entropy coding in terms of the mean rate

needed for this scheme to work. In particular if p is large

enough so that N
CL

< 1, then the VLE scheme will provide

lowest rates. Table II compares these rates for different values

of N and p. Note that very low rates are required for large

N and probabilities close to one(the bit rate is reduced by

an order of magnitude at p = 1).

N Rm (with VLE) Rν

p = 0; p = 0.5; p = 1 (without VLE)

3 3 1.7 1.00 2
4 4 2.0 0.57 2
5 5 2.5 0.33 2
6 6 3.0 0.19 2

TABLE II

MEAN TRANSMISSION RATE Rm FOR p = 0,p = 0.5 AND p = 1

IV. ERROR SYSTEM AND STABILITY CONDITIONS

Following the assumptions maid in this paper (lossless

channel transmission), we then have that νk = ν̂k, and that

δk = δ̂k. In this case binary variables are not needed, and

hence error equation can be described by real variables only.

A. Error equations

Introducing the following error definitions:

• ek = xk − γ
Acl

rk: the tracking error,

• x̃k = xk − x̂k: the prediction error, and

• εk = x̃k−ˆ̃xk: error due to the non exact inverse mapping

of the level detector, i.e. due to the map ϕLD ◦ ϕ−1
LD.

we have the closed-loop error system:

ek = W (q−1)x̃k (5)

x̃k = W (q−1)εk (6)

with W = BR/Acl being the stable operator defined pre-

viously. Note that the εk = εk(x̃k), and thereby the above

error equation can be seen as two systems in cascade, i.e.

the output of the autonomous system (6) is the input of the

stable system (5). For stability purposes it is thus sufficient

to demonstrate the stability properties of the sub-system (6).



Note that εk writes as:

εk = x̃k − ˆ̃xk

= x̃k − ϕLD ◦ ϕ−1
LD {x̃k}

= x̃k − ϕ̃LD {x̃k}

where ϕ̃LD
△
= ϕLD ◦ ϕ−1

LD : x̃k 7→ ˆ̃xk. Note that this map is

dynamic, defined by the following relation:

ˆ̃xk = ˆ̃xk−1 + ∆ · δk (7)

with δk = f(x̃k) as defined before. The sub-system (6)-(7)

can be then seen as a feedback system,i.e.

x̃k = W (q−1)εk

= W (q−1)
(

x̃k − ˆ̃xk

)

= W (q−1)

(

x̃k −
∆

1 − q−1
δk(x̃k)

)

Ideally we would like that the map ϕ̃LD be a linear map with

unitary gain. This ideal goal is hampered by several factors:

• unknown initial conditions of x̃0,

• badly chosen Ts, and ∆, and

• chattering in the neighborhood of the quantum ∆.

In particular, large sampling times Ts, and too small quantum

∆ may results in signal variation of more than one level,

which may leads to unrecovered bias in the estimated, leading

to potential instabilities for unstable open-loop systems. This

stabilities issues are analyzed next for a system of one

dimension.

B. Stability properties

Consider the stabilization problem (r = 0) of the following

simple unstable system
B(q−1)
A(q−1) = bq−1

1−aq−1 , with 2 > |a| > 1,

and the control law u = kxk. Let 1 > ac > 0 be the desired

closed loop poles, the required gain to reach such closed-loop

specification is k = (a−ac)/b. This particular choice leads to

the error equations (5)-(6) with W (q−1) = (a−ac)q
−1

1−acq−1 . Due to

the cascade structure of such error equation arrangement, we

mainly will concentrate in the equation (6) which captures

most of the difficulties. To this aim we will concentrate on the

following set of equations, which describes the error feedback

interconnection.

x̃k+1 = acx̃k + (a − ac)εk, εk = x̃k − ˆ̃xk (8)

ˆ̃xk = ˆ̃xk−1 + ∆sign (lk − lk−1) , lk =

⌊
x̃k

∆
−

1

2

⌋

(9)

The analysis is divided into two steps:

• Rate level condition. We first derive conditions on a, and

a domain Bρ1
for x̃k that ensures that no more than one

level change can be effectuated, i.e. |lk − lk−1| 6 1,

• Invariance condition. Then, by a Lyapunov-like analysis

we show that this domain is indeed an invariant; solu-

tions x̃k starting in Bρ1 do not leave this domain.

C. Rate level condition

We seek here to establish condition on |x̃k|, ∀k ∈ Z
+ such

that the rate change in the level detector be at most one. To be

consistent with this aim, we need to assume in the sequel that

the encoder/deconder internal states are suitable initialized.

That is, x̂0, and l0 are such that: ε0 < ∆/2, and ˆ̃x0 = ∆l0
at k = 0.

Lemma 1: Consider unstable systems limited by the rela-

tion a < 2 + ac < 3, and let define the compact set, Bρ1
,

as:

Bρ1 = {x̃k : |x̃k| < ρ1} , ρ1 =
(1 − (a−ac)

2 )

1 − ac

∆

with ρ1 > 0. Then for all |x̃k| ∈ Bρ1 the following holds,

∀k ∈ Z
+:

i) |x̃k − x̃k−1| < ∆,

furthermore, i) implies the following two equivalent inequal-

ities:

ii) |lk − lk−1| 6 1
iii) |εk| 6 ∆/2

Proof: Let us start with the last part of this result, i.e. (i)
⇒ {(ii) ⇔ (iii)}. By inspection, it is easy to see that (i) ⇒
(ii); if the rate of change of x̃k is strictly smaller than ∆ then

the level change is limited, by definition, to a maximum one.

In turn, (ii) ⇒ (iii), results from the following arguments.

If the initialization condition ˆ̃x0 = ∆l0 and (ii) holds, then

we have that ˆ̃xk = ∆lk, ∀k ∈ Z
+. Then it follows that the

error between the true estimation error, and the reconstructed

one is bounded by the amount ∆/2, i.e.

εk = x̃k − ˆ̃xk = x̃k − ∆lk = x̃k −

⌊
x̃k

∆
−

1

2

⌋

= ∆

(
x̃k

∆
−

⌊
x̃k

∆
−

1

2

⌋)

6
∆

2
.

Inversely, if (iii) holds, it is easy by inspection to see that

(ii) is true.

Now the first part of the lemma (i) is proven. From (8)

we have

|x̃k+1 − x̃k| < (1 − ac)|x̃k| + (a − ac)|εk|

assume for the moment that (iii) holds, then condition for

fulfilling i) is that

|x̃k+1 − x̃k| < (1 − ac)|x̃k| + (a − ac)|∆/2 < ∆

or equivalently that

|x̃k| <
(1 − (a−ac)

2 )

1 − ac

∆ = ρ1 (10)

For this expression to be valid (i.e. ρ1 > 0) , we require the

condition a < 2 + ac < 3. To conclude, assume that (10)

holds independently to (i) − (iii) (as it will be shown latter

in the next section). Now if (i) holds we just show that this

implies (iii), which in turn and together with (10), implies

(i).
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Fig. 3. Φ(|x̃k|).

D. Invariance condition

Question here is to find under which conditions we can en-

sure the invariance of the set Bρ1 . This invariance condition is

clearly needed to preserve the rate level condition mentioned

previously. We assume initially that the observation error is

inside that set, and we look for the condition such that this

signal does not leaves Bρ1 .

To this aim, consider the Lyapunov function Vk = x̃2
k, and

its rate variation ∇Vk
△
= x̃2

k+1 − x̃2
k, i.e.

∇Vk = (a2
c − 1)|x̃k|

2 + 2(a − ac)acεkx̃k + (a − ac)
2ε2

k

6 (a2
c − 1)|x̃k|

2 + (a − ac)ac|x̃k|∆ +
(a − ac)

4

2

∆2

△
= Φ(|x̃k|)

Where the last inequality is results from the hypothesis that

initially we assume x̃k ∈ Bρ1
, or equivalently (see Lemma 1)

that |εk| 6 ∆/2.

The shape of the polynomial Φ(|x̃k|) is shown in Figure 3,

this function has two roots, one negative and other positive.

The positive root, is ρ0, and is given by

ρ0 =
(a − ac)

2(1 − ac)
∆

It is necessary for stability that ρ0 < ρ1, else a local stability

region may not exist. It is easy to show that this condition

is valid as long as a < ac + 1, which is the same condition

already assumed by Lemma 1.

The value of ρ0 defines the limit (somewhat conservative)

after which the function Vk, and hence the norm of xk

decrease. Below that limit the function may grow. The worst

case growth in the interval |x̃k| ∈ [0, ρ0], can be estimated

from the relation

x̃2
k+1 6

(

ac|x̃k| +
(a − ac)

2
∆

)2
△
= ψ(|x̃k|)

As the function ψ(|x̃k|) is convex in |x̃k| ∈ [0, ρ0] its

maximum is located at the extremes of this interval. The

worst case growth is then defined by the following relation:

xmax = max
{√

ψ(0),
√

ψ(ρ0)
}

= ∆
(a − ac)

2(1 − ac)

Finally, the set Bρ1
is invariant if xmax < ρ1, i.e.

∆
(a − ac)

2(1 − ac)
< ∆

(1 − (a−ac)
2 )

1 − ac

working out details of this inequality, it can be shown that

this equality holds if a − ac < 1, for all ac ∈ (0, 1). Note

that this is a stronger condition than the one in Lemma 1 as

it is derived from a more conservative analysis.

The following theorem summarizes the main result.

Theorem 1: Assume that the coding algorithm is initial-

ized such that x̂0, and l0 are such that: ε0 < ∆/2, and
ˆ̃x0 = ∆l0. Consider system satisfying a − ac < 1, with

initial condition in the set x̃0 ∈ Bρ1 . Then:

• x̃k ∈ Bρ1
, ∀k ∈ Z

+,

• ∃k0 : |x̃k| 6 ρ0, ∀k > k0, and

• limk→∞ d(xk,Bβ) = 0.

where d(xk,Bβ) is the minimum Euclidean distance from xk

to any point within the ball

Bβ := {x ∈ R : ‖x‖ < β},

and β is a constant that depends on ρ0, and on the infinite

norm of W (q−1).

Proof: The first two statements follow from the previous

analysis, the last statement result from equation (5), i.e;

|xk| 6 ||W || · |x̃k|. Details for the derivation of this property

are similar to the ones used in [3], and [5].

V. SIMULATION EVALUATION

We consider the following simple system

B(q−1)

A(q−1)
=

bq−1

1 − aq−1
(11)

The controller is: uk = −kx̂k+γrk obtained from the closed-

loop specification given by Acl = (1 − aclq
−1), k = a−acl

b

and γ = 1− ac. Parameter used in simulations are: a = 1.1,

b = 1, ac = 0.9, Ts = 0.05 (sec), ∆ = 0.02, x0 = 0 and

x̂0 = −0.01 so x̃0 = 0.01.

The purpose of this section is to evaluate in simulation the

proposed algorithm and to discuss several issues concerning

the algorithm implementation. Among these, we have: initial

synchronization, effect of the quantum ∆ and the sampling

time Ts, among others.

A. Initial conditions

Initial conditions of the predictor at the encoder side x̂0

need to be synchronized with initial condition predictor at the

decoder side. This requires a specific initialization procedure

that send this initial information before the coding process is

triggered.
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Fig. 4. Simulation results with ∆ = 0.02 ; Ts = 0.05 yielding |lk − lk−1| 6 1. Output and reference (upper), x̃ vs.ˆ̃x (middle), and lk − lk−1 (lower)

B. Quantum ∆ and sampling time Ts

The value of ∆ has an important impact on the quality

of the estimates and the system stability. Larger values of

∆ will enlarge the attraction domain, but it will degrade the

estimated quality. Inversely, small values for ∆ will improve

the reconstructed signal quality, but it will diminish the local

attraction domain.

The impact of Ts can be seen from the necessary condition

for stabilization, i.e. a = eαTs < 2, where α is the open-loop

pole of the continuous system. For unstable systems, Ts is

limited by the relation Ts < ln(2)/α. The more the system is

unstable the smaller need to be Ts and hence the transmission

bit rates need to be increased.

The Figure 4, shows a simulation where parameters are

selected to satisfy the stability conditions. As a consequence,

the change of level is limited to one.

C. Event distribution and its impact in the mean transmission

rate

Note that practically all parameters of the control scheme

affects the spectrum of the evolution of δk, and in particular

the ∆, and Ts, but also the magnitude of open-loop unstable

poles. Figure 5 shows the resulting histogram of δk for two

simulations with two different values of a.

The results show that for small values of a the frequency

spectrum of δk is reduced, and hence the event δk = 0
has higher probability to occur. We recall that distributions

with high roll-off will be benefic for data compression, as

illustrated by the VLE algorithm. We can then conclude that

open-loop instable systems with a high degree of instability

are less adapted for entropy coding. The resulting compres-

sion ratio are reported in Table III. Higher compression rates
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Fig. 5. Simulations with ∆ = 0.02; Ts = 0.05; a = 1.6 (upper),
∆ = 0.02; Ts = 0.05; a = 1.1 (bottom), Time evolution of δk (left),
histogram of events (right)

are thus obtained for the cases where p is higher, i.e. the

bottom figures in Fig.5.

From the Table III we can see that for a = 1.1, the best

choice is a VLE coding of length N = 4, or N = 5, whereas

for the system with a = 1.6 only the VLE with N = 3
improves over the one without entropy coding.

VI. CONCLUSIONS

In this paper we have investigated the possibility to use

entropy coding in the context of networked controlled sys-



N Rm (with VLE) Rν

p = 0.4; p = 0.8 (without VLE)
a = 1.6; a = 1.1

3 1.92 1.23 2
4 2.40 1.01 2
5 3.00 1.03 2
6 3.60 1.20 2

TABLE III

MEAN TRANSMISSION RATES FROM DATA SHOWN IN FIG. 5.

tems. The main motivation has been to explore the benefits

in terms of mean transmission rate. In particular we have

analyzed the case of variable-length encoder VLE, which in

spite of its sub-optimality do not require buffering at the

decoder side, and hence reduce latency.

We have shown that the scheme results in a local stable

system with an attraction domain and a final precision

depending on the value of the level granularity ∆. Finally

we have demonstrated by simulation the benefits that can be

reached by using this type of coding, and for a given system

with a fixed scenario, how to select the length of the VLE

code. From this study it results also that system with a low

degree of instability (eigenvalues closed to one), the optimal

value of N is in general larger than for system with high

degree of instability.
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