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Revisiting the LuGre Model

Stick-slip motion and rate dependence

K. J. Astrom and C. Canudas-de-Wit — July 16, 2008

Friction is a classical field that goes back to Leonardo daiyi@uilliame Amonton, and
Charles Augustin de Coulomb. Amonton found that frictiorcéis proportional to normal load,
but surprisingly is independent of the area of the apparentact surface. This observation is
known as the Amonton’s paradox. Theparentcontact surface is the geometric object surface
projected to the contact surface. Threie contact surface is the effective surface in contact
between the object and the surface. The apparent contdatsus often much larger than the

effective contact surface.

Friction also plays a major role in understanding earthgaakMeasurements of the
contact surface of rocks [1] show that the friction force repgmrtional to true contact area,

finally resolving Amonton’s paradox.

Coulomb found that the friction force is opposite to the dil@en of velocity but
independent of the magnitude of the velocity. Major advarineunderstanding the mechanisms
generating friction were made by Bowden and Tabor [2] andheyttibologist Rabinowizc [3],
who performed extensive experiments to understand theasempic properties of friction. By
measuring the velocity dependence of friction in ball bagsi Stribeck [4] found that friction
decreases with increasing velocity in certain velocityimegs. This phenomenon is called the
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Stribeck effect. Friction models developed in the physi@simunity also include theate-and-

state modelsn which friction is a function of the velocity and a state redale, [5], [6], [7].

Major advances in understanding friction have recentlyobee possible because of the
availability of measurement techniques and equipment ascgtanning probe microscopy, laser
interferometry, and the surface force apparatus [8], winake it possible to measure friction

at the nanoscale.

Friction also plays a major role in control-system perfonee Friction limits the
precision of positioning and pointing systems, and can gise to instabilities. The effects
of friction can be alleviated to some extent by friction canpation. For control applications
it is useful to have simple models that capture the essegmtagderties of friction. An example
is the memoryless Coulomb friction model, in which the foatforce depends on the velocity
direction, and a linear viscous friction. Neverthelesgsth simple memoryless models may
have limitions for some high-precision control applicatisince they cannot reproduce friction

characteristics that depend to time.

Indeed, friction is known to have memory-dependent belmatAibenomena such as pre-
displacement, rate-dependence, and hysteresis, have dxgenimentally identified, and are
reproduced only by models with memory, that is including aycs. The Dahl model [9],
which was developed in the late 1950s, is a dynamic model onth state, and is widely used
to simulate aerospace systems, [9]. Several friction nsokaVe been developed in seismology,
[10], [11], to describe how concrete structures respondhstieally when subjected to strong
seismic excitations. The main motivation is to characeeti®e hysteretic behavior of a structure

excited beyond its elastic range. The model reported in fletjves from the Maxwell model



for hysteresis, and has the same form as the Dahl model.

The Dahl model captures many properties of friction but doescapture the Stribeck
effect, and thus cannot predict stick-slip motion. The Le@wodel [12], [13], [14], which resulted
from a collaboration between control groups in Lund and @b, is an extension of the Dahl
model that captures the Stribeck effect and thus can desstitk-slip motion. The LuGre model
contains only a few parameters, and thus can easily be nthtolexperimental data. This model
has passivity properties that are useful for designingidmccompensators that give stable closed-
loop systems. This model has been applied to a wide rangestérag [15], [16], [17], [18].
Although experiments generally show good agreement weehLthGre model, discrepancies are
observed in [17]. To overcome these discrepancies severdifications are considered in [19],
[20], [21] based on the Preisach, Duhem, Maxwell-slip, amdidWen models. In addition, ad
hoc extensions of the LuGre model based on the inclusion efaa done to separate the plastic

and elastic zones are considered in [22].

In this article we first review properties of the LuGre modgicluding zero-slip
displacement, invariance, and passivity. An extension ridude velocity-dependent micro
damping is discussed. The resulting model is then used fgznstick-slip motion. The analysis
shows that stick-slip motion modeled by the LuGre model isfbsystem with different behavior
in the stick and slip regimes, with dramatic transitionsassn these regimes. The dependence

of limit cycles on parameters is discussed along with théonodf rate dependence.



LuGre Model

The LuGre model, is described by

% . UO%Z — v — h(v)z, 1)
F = ogz+ o012+ f(v), (2)

where v is the velocity between the two surfaces in contacis the internal friction state,
and F' is the predicted friction force. Compared with the Dahl mo@e "Dahl's model”),
the LuGre model has a velocity-dependent functign) instead of a constant, an additional
dampingo; associated with micro-displacement, and a general fé(m) for the memoryless
velocity-dependent term. The statewhich is analogous to the strain in the Dahl model, can be
interpreted as the average bristle deflection. The LuGreem@gbroduces spring-like behavior
for small displacements, where the parameigis the stiffnessg; is the micro damping, and
f(v) represents viscous friction, typically(v) = o9v. For constant velocity, the steady-state

friction force F, is given by

Fos(v) = g(v)sgn(v) + f(v), (3)

whereg(v) captures Coulomb friction and the Stribeck effect. A readde choice of;(v) giving

a good approximation of the Stribeck effect is
g(’U) = F.+ (Fs - Fc)e—\v/vSP" (4)

where F, corresponds to the stiction force, ar{l is the Coulomb friction force. A typical
shape ofg(v) is shown in Figure 1, whereg(v) takes values in the rangé. < g(v) < F;. The
parameten, determines how quickly(v) approacheg.. The valuex = 1 is suggested in [23],
while [24] finds values in the range 0.5 to 1, and [25] uses 2.
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The functiong(v), and the viscous parametes can be determined experimentally by
measuring friction for various (constant) velocities. Buwc measurement gives,, in (3). To
have a complete model we must also determine the paramgters from multiple experiments.
In practice we find that friction in motors may be asymmetfibis asymmetry can be handled
by using different values of the parameters for positive aedative values of the velocity. For

simplicity of exposition, however we assume symmetry.

Analysis of The LuGre Model

We now consider properties of the standard LuGre model2{1)ith ¢(v) as in (4) and

f(v) = o9v.

PROPERTY 1: Boundedness. It follows from (4) thak g(v) < Fi. ThenQ = {z: |z| <

F;/oy} is an invariant set for the LuGre model. That is,

#0)| < F. /o, then|2(t)| < F, /oo

for all t > 0.

Property 1 is a consequence of the fact that the time derevafi the quadratic function

V = 2?/2 along solutions of (1) is given by

ﬂ _ZU—UﬂZ:—UZ Uﬁ— v z
i = A=) = ol (o0 L - sartvsan) ).

:L > 0, and that sgfv)sgn(z) can only be eithet or —1. When sgifw)sgn(z) = —1

Note thato g‘(v) >

<00 - sgr(v)sgr(z)) is positive, and hencé” is negative semidefinite. Alternatively, when
sgnv)sgnz) = 1 and|z| > g(v)/ay, thenZZ is negative. Since(v) is positive and bounded

by F,, we see that the sét is an invariant set for the solutions of (1). For further dstesee

[13].



Property 1 indicates that if the internal statés initially below the upper bound of the
functiong(v), that is, below the normalized stiction forég/o,, then the state remains bounded,

specifically z(t), < Fs/o, for all t > 0.

Passivity is a related energy-dissipation property. TH®Wong results summarize the

passivity properties of the LuGre model.

PROPERTY 2: Internal state dissipativity. The map— = defined by (1) is dissipative

with respect to the storage functioif (z(¢)) = 12%(¢), that is,

/Ot z(T)v(r) dr = W (z(t)) — W(z(0)), vt > 0. (5)

Property 2 indicates that the LuGre model is input-to-spatesive for all positive values of the
model parameters. Next, we wish characterize conditiomguuwhich the input-to-output map
v — F'is also passive, that is, there exigts> 0 such thatfot Fv > —p, forall t > 0. For

details see [13] and [26].

PROPERTY 3: /O dissipativity with constant;. The mapv — F, defined by the LuGre

standard parameterization (1), (2), is input strictly pass that is, for allt > 0,

t t
/ Fvdr > W(z(t)) — W(z(0)) + ,0/ vidr > —W(2(0)) (6)
0 0
with the storage functiofiV (z) = %2, and p = 05 — 0, 7552 > 0 if and only if
oy > Ulw‘ (7)
Fe



The sufficiency part of Property 3 is shown in [14],while thecassary part is proven in
[27]. The passivity condition (7) relies on the existenceadfufficiently large viscous damping
o9, Which is expected to dominate over the dampingssociated with the bristles. For systems
in which the Coulomb and Stiction terms are close to eachrothat is F's ~ F-, this condition
can easily be satisfied. However, Condition 7 may thereferéob restrictive by imposing too
low values foro;. Small values otr; can result in the undamped linearized (about v = 0)

model

d
mo + (01 + 09)v + oo = Fy. (8)

since the natural system dampingis likely to be low. Therefore, there is a tradeoff to be found
while designingrs;, namely, low values are needed to preserve passivity, idnidge values are
suited for damping the linearized model. This tradeoff carrddaxed by making; depends on

v, as discuss next.

Velocity-dependent micro damping

The parametes; represents the damping in the pre-displacement (or gtictegime. It
is important to stress that away from this regime, its infaeers negligible since tends (on
a faster time-scale tham(t)) to zero as the system leaves the pre-displacement zone \theer

velocity v is close to zero.

The impact ofo; on the ability of the model to accurately predict frictionmdes depends
on the application at hand. For systems where slow motiorthenmicro and nano scale are
important (AFM, satellites pointers, ultrasonic motors)js important and most be identified by
using sensed information with the appropriate resolutitowever, in mechanical systems where
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the sensor resolution and its expected accuracy are witkimillimeter scale (industrial robots,
tool machines, drives), the impact ef is minor and its main role is to damp the linearized
equation in the pre-sliding regime rather than to finely matee data in a region where the
sensed information (position and velocity) is rather pdorthe latter case, imposing a given
relative damping; in the pre-sliding regime gives, = 2(,/oom — 09, With the typical choice

of ( =1, to obtain well-behaved stick-slip transitions.

In either cased; identified or fixed), to guarantee passivity we must requie &; <

-z2fc_ However, this condition gives a bound grof the form
S c

09 FC
<<2\/<70—J<F5—Fc+1)' (9)

In some applications, obtaining both passivity and critidamping may be difficult. This

difficulty can be overcome by using a velocity dependent fionca,(v), where these two

properties can be set independently.

PROPERTY 4: I/O dissipativity with velocity dependeft(v). Suppose that; (v) satisfies

the following conditions:

i) |vlgi(v) < 4g(v), forall v,

i) 51(0) = 0y = 20\/Gom — 0.

Then, the map — F defines an input strictly passive operator, thatfé,Fv dr = W(z(t)) —
W(2(0))+o fot v2dr, YT > 0 with the storage functiofi’(z) = %2>, In addition, the linearized

model (8) has the arbitrary damping coefficient

If 71(v) > 0 is an exponentially decaying function, then the produ¢t, (v) is positive
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and concave function, with its maximum atax,{|v|a,(v)}. Since F. < g(v) < Fy, Vo, it

suffices to choose a function (v) that has the property
max{[v[a (v)} < 4.
together with the conditiom). A choice ofa, (v) fulfilling the above condition is
51 (v) = aye” /)

where o, 2 2¢\/agm — o, and v, < 4\/276%. The local behavior of the system in stiction
is well damped, while the dissipation I/O property of the mloi recovered. Note that this
behavior holds for arbitrarily large parameters. The ftitéors speed ofa, (v) is determined by
the parameter.. This parameter can be selected small enough)tsatisfy 7, (v) = oye~(*/%)*,
and, i7) make 7, (v) vary fast enough so that the rate of variation of the produc¢v)z is
dominated by the rate of variation af,(v). In that way,,(v)Z ~ o2 whenv ~ 0, and

a1(v)z =~ 0 whenv > e.

Zero-Slip Displacement

An experiment that gives insight into the zero-slip behawb a given friction model
consists in applying a force that is smaller than the stictarce to a mass that is at rest. Using

the LuGre model, the experiment can be modeled by

mi = Fy;—F, (10)

z = v—aoﬂz, 11
g(v)

F = + @ (22)
= 0p< o1 dt



where F; is an external force. Since mass velocitys low in this particular context, viscous

friction, o, is neglected. Linearizing these two equations around(0 and z = 0 yields
mo + ov + ogx = Fy, 13)

wherex is the displacement. The motion is thus characterized bgrgtorder dynamics with
the undamped frequency, = \/m. Conceptually, we can think of the motion as a micro-
motion, where the mass interacts with the bristles. The dagnmatio of the micro-motion is
¢ = 0.50,//may. The system is critically damped when = 2,/mo,, where the main role of

o1 Is to damp the motion at low velocities.

If the time-profile of the external forcé; has no a bias, and its magnitude is small
enough compared to the stiction forég, then the friction behaves as a pure spring force, that
is, F' =~ ogx, as described by the linearized equation (13). In this daselastic effect dominates
the plastic effect, and hence the model exhibitstarn-to-zeroposition when the external force
is set back to zero. Nevertheless, if the applied fafgehas a constant bias, then the system

exhibits a zero-slip displacement, as shown in the next raxjeat.

Simulation of the experiment is shown in Figure 2. The fox@pplied at timg = 0,
set to zero at = 0.1, and reapplied at = 0.2. When the force is applied, the system reacts like
a spring, the mass moves a small distance, and the frictime flouilds up as the friction state
z is increased. The system settles at steady state with a digplacement. When the force is

set to zero, the state returns to zero, but the mass doestoot te its original position.

The friction forces predicted by the nonlinear LuGre and IDabdels cover the elasto-
plastic domain. The accumulated drift on the mass posisatuie to small excursions from the
purely elastic region, where the models are approximatelyal. This effect, callegbosition
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drift in stiction orplastic sliding is also exhibited by other models as discussed in detafien t
companion paper by Armstrong and Chen. This effect can biwtid to the fact that some

models have multiple equilibria.

Stick-Slip Motion

Stick-slip is a common behavior associated with frictiovefyday examples are the
squeaking sounds when opening a door, braking a car, or whigéngvon a blackboard with
a chalk. A typical stick-slip experiment is illustrated ingkre 3, where a mass is pulled by
a spring. The mass, which is initially at rest, is pulled ahstant rate. When the spring is
elongated so that the force exerted by the spring exceeddithien force, the mass accelerates.
The spring is then compressed and under certain conditfmmsnbtion of the mass stops and
the process repeats, creating a periodic motion consisfiqhases where the mass sticks and
slips. A simple hybrid model , see “A hybrid model”, gives sammsight into the limit cycle

behavior.

Using the LuGre Model

We now analyze the stick-slip experiment using the LuGretiem model. Introducing

the elongatiory of the pulling spring, the experiment can be described by

(= v,—wv, (14)

mo = ki—F, (15)

z = v—aoﬂz:v—zh(v), (16)
9(v)



whereh(v) 2 oolv|/g(v), and the friction force, F, is given by
dz
F =o0pz+ o1 + f(v) =0v+ f(v) + (00 — o1h(v))2. a7

The simulation in Figure 4 shows that a stable limit cyclehwstick-slip motion is rapidly
established. Stick regimes appear, for example, betweeandl § s, where the velocity is small.
When the trajectory enters the stick regime the frictionestacreases rapidly, and the friction
force effectively stops the motion. The friction stateand friction force F' then drop rapidly
before increasing almost linearly to compensate for theefdrom the spring. When the spring-
force is larger than the stiction, the mass starts to mow tfae friction force drops rapidly with

a small overshoot. Notice that the friction state and foictiorce have similar shapes. The gross
features of the behavior using the LuGre model are similathtse obtained with the hybrid

model, but the transitions are now captured by dynamicgaasof logic.

To see the similarities with the simulation of the hybrid mabah Figure 13 we project
the solution of the LuGre model to thle— v plane. Figure 5 shows projections of trajectories
of the LuGre model on thé — v plane. A comparison of Figure 5 and Figure 13 shows that
the gross features are the same. The limit cycles in bothsdaee similar shapes. Trajectories
starting outside the limit cycles or inside and close to eoge to the limit cycle representing
stick-slip motion. Trajectories starting close to the diquum do not give stick slip. There
are also some subtle differences. The projections of theaneddgreen trajectories in Figure 5,
starting atv = —1 with ¢ close to2, cross each other, but similar trajectories for the hybrid

model cannot cross because the system is of second order.

Considerable insight can be obtained by making some appeaidns. First we notice
from Figure 4 that the stateis essentially constant in the slip phase. Assumingihsitconstant
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it follows from (17) thatz = v/h(v) = g(v)sgn(v)/oo. Equation (17) then becomes

e
p7a At (18)
dv

mo = kt — f(v) — 09z

= kt— f(v) = g(v)sgn(v)
= Kkl — Fss(v)a (19)
where F, is the steady state friction function given by (3). In theostbne the system is thus

approximately given by a second-order system with the aafeequencywsjip = +/k/m and

damping coefficient given b@%.

Next we investigate the behavior in the stick zone. Sinceiféig shows that the velocity

is small in the stick zone, and we therefore linearize (14)( whose Jacobiai is given by

0 ~1 0
J=| b _aQ=sWe)+f@) _o-oih@) | (20)
0 1—zh —h

Where the notatiori stands for the partial derivative of a function with respigstargument.
Assuming thatf(v) = o9v we find that the linear approximation at= z = 0 is a dynamical

system with the dynamics matrix

0 -1 0
J=|kt _ate _a |. (21)
0 1 0

The characteristic polynomial of (21) is given by

o1+ o0 oo+ k
2+1 2+0
m m

),
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which constitutes thenicro motiondynamics. Notice that the behavior in this regime is similar
to that observed in the start-stop experiment. The dynaaresharacterized by an integrator,
along with an oscillatory system with natural frequengyick = /(o0 + k)/m. The presence
of the integrator explains the linear time evolutionzofas well ast” in Figure 4, while the large

value ofwgijck €xplains the rapid variations in the transition from stiokstip.

Modeling stick-slip by the LuGre model shows that the groskavior is characterized
by two regimes. In the slip regime the dynamics are approtéimasecond-order spring-mass-
damper dynamics with the characteristic frequengyp = \/W We call this the macro
dynamics. In the stick regime the dynamics are charactébyean integrator along with spring-
mass dynamics with the characteristic frequengyk = /(0o + k)/m. Sincea, is much larger
than k, the ratiowsgick/wslip is large, making the system stiff. A dramatic change in dyicam
occurs in the transition between the regimes. In the sinmrah Figure 40, is reduced in order

to show the transition more clearly. The transition zonengisraso, increases.

Effects of parameter changes

We now investigate the effects of parameter variations erithit cycles. First we observe

that (14)-(16) has the equilibrium

/ — Fss(vp) — g(vp)sgn(vp)+f(vp)

e k k )
" = v, (22)
ze = 2= Wgon(y )

e Rop) — a0 O8MUp);

where the functiont;;(v) is the steady-state friction function

Fyo(v) = g(v)sgn(v) + f(v) = Fo + (F — F)e /™" 4 ap0. (23)
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The equilibrium (22) corresponds to the situation in whibk tmass is moving forward at the
constant pulling velocity,. The stability of this equilibrium is given by evaluatingethnearized
dynamics matrix of system (14)-(16) at the equilibrium. Aagghtforward calculation shows that

the matrix (20) has the characteristic polynomial
p(s) = s* 4+ a15% + azs + as, (24)

where

o1(1 = zh' (v)) + f'(v)

m mg g
vy — U W) SO Tk aulel )k
m g m
k:h(v) Uok’|U|
as = = .
m  mg(v)

The Routh-Hurwitz criterion implies that, the equilibriusistable if and only ifaq, as, andas

are positive andi;a, > as.

We first consider the effect of viscous damping, wheie) = o.v. To discuss the
behavior we focus on the invariant sets given by (22) and imé ktycle corresponding to
stick-slip motion. We first observe that the equilibrium YZhifts to the right with increasing
damping. Figure 6 shows stick-slip behavior for variousueal ofo,. For small values of, the
equilibrium (22) changes from being Lyapunov stable to gsytically stable. A limit cycle is

reached for large perturbations. As the damping is incce&seher, the limit cycle disappears.

Next we investigate the effect of the pulling velocity. It follows from (22) that changes
in v, shift the equilibrium to the new point = v,, and hence moves the projection of the system
trajectories vertically in the — [ plane as shown in Figure 7. Figure 7 shows stick-slip bemavio
for various values of),. For low pulling velocities the equilibrium is close to tlieaxis, and,
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unless the viscous damping is very large, is unstable. Tihé Bycle is then asymptotically
stable. As the pulling velocity increases, the equilibri(22) changes from unstable to stable,
while the limit cycle remains a locally stable solution. Harge values ofu, the limit cycle
disappears. It follows from (22), (23) and (23) that the &uum shifts to the right with

increasing values of,.

A bifurcation occurs where the equilibrium (22) changesrfranstable to stable. This

transition can be studied using the Routh-Hurwitz criterithat is by looking when the quantity

/ / k: k:
ajas —az = (UOM + Ulgv+fg) (UO|U|FS/S(U) + —,) _ Goklu
g mg m mg(v)
v? v k(org'v+ f'
= 0’8—2FSIS(U)+Uo‘—|2(0'1g,’l}+f/g)FS,8(U)—|' (019 5 /'9)
g mg m=g
2
2V !
~ oy—=I (v
092 ( )
= h*(v)F,(v)

goes from positive to negative. The approximate expressiaitained by observing that, is
large and thus the term involvingt dominates the remaining terms. The approximate condition
implies that the equilibrium is unstable when the pullindgpedty is in the range where the slope

of the static friction curve is negative.

Finally we explore the effects of the spring stiffnésdt follows from (22) that changes in
k shift the equilibrium (22) horizontally, that is moves tawdhe left with increasing values &t
Figure 8 shows stick-slip behavior for different values:ofor small values of the equilibrium
(22) is stable. The limit cycle is also stable but large pddtions from the equilibrium are
required to reach the limit cycle. The limit cycle disapmeahen the stiffness is sufficiently
large but the equilibrium (22) remains stable.
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Rate Independence

refers here to the property of an

A friction operator,H : v — F' is rate-independernit it is invariant with respect any affine
transformation of the time-scale. That is, if the inputpuitpair (v(¢), F(t)) is an admissible
solution of a rate-independent friction operator, thietu + bt), F'(a + bt)) is also an admissible
pair for any reala, and positiveb. An operator that does not satisfy such a property is called

rate dependent

Rate-independent models

Rate independence describes processes that have thetehatiado produce input-output
closed-loop that are independent of the rate of variaticth@input. Examples ademit problems
in mechanics, where the inertia forces can be neglectedraecdhal friction generates hysteretic
behavior. For example, in the pre-sliding regime, wheretialeforces can be neglected, every
point of the velocity reversals is recovered in the forceipon plane once the force resumes
the corresponding value, independently of the number afoigl reversals [28]. In the literature

of systems with hysteresis, this property is sometimesddrasreversal point memory

In rate-independent friction models, if the input (velglit(¢) is periodic, then the
output (force) F'(t) is also periodic, and hence closed loops are formed in thatioptput
(force-velocity) F — v plane, but also in the force-positidn— = plane. By the rate-independent
property, these hysteresis loops are invariant with rdsfme¢ime-scaling, and thus invariant

with respect to the input signal frequency. The Dahl modeais independent as shown in the
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“Example of a rate-independent friction model: the Dahl'sdal”. Experiments with periodic
inputs to this model are shown in Fig 9. The figufe$ — (f) show that closed-curves in the
F—z plane are formed as a consequence of a periodic input withcamponent. These loops
are also independent to the input signal frequency; theesu) — (d) are done withf = 2
Hz, whereas(e) — (f) are simulated withf = 4 Hz. In addition, figurega) — (b) shows that
the shape of the hysteresis loop remains invariant if a lsiaibtracted from the input signal.
A bias in the input signal shifts the loop but does not inflieeits shape. The models discussed

in [29], [30], [31] are also rate-independent at the costraféasing the number of states.

More generally, consider a friction model of the form

dr
- = X(Ev) =y (Fsgn(v)n(v), (25)
wheren(v) is positively homogenous, that igav) = an(v), for all « > 0. Then, by imparting
a positive change of time-coordinates= ¢(¢), with the properties described in “Example of a

rate-independent friction model: the Dahl's model”, th@b)(writes as

¢ |5 = ot smmen] = |5 (o] <o (26)

with v, 2 & and¢’ > 0. It follows from (26) that solutiongF'(¢), v(t)) are invariant with

respect to a positively homogeneous time scaling, and teseritbes a rate-invariant model.

Rate-dependence of the LuGre model

Although, the Dahl model is rate independent, the LuGre rh@&leot since the right
hand side of (1) is not affine ifw|, see [32]. This rate dependence is due to the attempt to
model the Stribeck effect by introducing the functigfv) defined in (4). Figure 10 compares
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the rate-dependencies of the Dahl and LuGre models. As teghebe loops in thé” — = plane
obtained from the LuGre model are not invariant to changethénvelocity of the input. The
differences between the shapes of these loops decreakge agsgproaches .. The presence of

viscous frictionoy, does not influence this behaviour.

Figure 11 shows an experiment reported in [17], where erpartal data from a vertical
electro-discharge machining axis are compared to sinomstising the LuGre model. The gross
features of the experiment are captured by the LuGre modtlas discussed above, the LuGre
model is not rate independent, and hence does not captureubesal point memory observed

experimentally.

Conclusions

In this article we have described some properties of the bu@odel, which is a simple
dynamic friction model. The LuGre model has few parametieas tan be fitted by measuring
friction as a function of velocity. The model has interegttheoretical properties, the state is
bounded, it has passivity properties, and is rate dependém’t LuGre model captures many
properties of real friction behavior, but it does not havweersal point memory. The model has
been used extensively for simulation, as well as for desifyfriction compensators. In the
article it is also shown that the limit cycle behavior in kt&lip motion are well described by
the model. Rate dependence is also discussed. The analysite alependent micro damping,

and rate dependency indicate areas where the model can beviedp
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Figure 1. Functions that characterize the LuGre frictiondeio(a) shows the function(v)

that captures Coulomb friction and the Stribeck effect,l@v/fib) shows the steady-state friction
function Fi,(v) = g(v)sgn(v) + f(v), where f(v) represents viscous friction, typicallf{v) =
o9v. Itis also possible to introduce asymmetric friction bababy letting g(v) having a different
shape for positive and negative velocitiés. describes the Coulomb values, wherégsdenotes

the Stiction level.
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Figure 2. Simulation of start-stop experiment. The fofcec F, is applied to a mass at time
t = 0. The force is set to zero at time= 0.1, and is applied again at time= 0.2. When the
force is applied, the system initially reacts like a spritigg mass moves a small distance, and
the friction force builds up as friction state is increaséle system settles at steady state with
a small displacement. When the force is set back to zero,téte seturns to zero but the mass
does not return to its original position. The net motion oied (zero-slip displacement) can be
attributed to the nonlinear nature of the model that intcedusmall excursions from the purely
elastic regions where the model is approximately linearafaters used in the simulation are

m=1,a=1,09=39x 10% 0, = 395, 05 =0, F. = 2.94, F, = 5.88, andv, = 0.01
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Figure 3. Stick-slip experiment. The mass is attached taiagpg, which is pulled at constant

speed. In response, the mass alternates between stickingjipping.
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Figure 4. Behavior of the system in Figure 3 when the rightdhside of the spring is pulled
with constant velocity. The graph show the elongation ofdpeng! , the velocity of the mass
v, the statez of the friction model, and the friction forcé. The parameters are = 1, k = 2,
v, = 2, and f = 0. The functiong is given by (4) with parameters = 1, oy = 2900, oy = 107,

F, =294, F, = 5.88 f(v) =0, andv, = 0.1.
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-2 -1 0 1 2 3 4 5

Figure 5. Projections of trajectories of the third-ordestsyn (14)-(16) on the — ¢ plane. The
stick slip motion is the heavy blue line. All trajectoriesing outside the blue line approach
stick slip motion. Trajectories starting close to the euiim give sinusoidal nonsliding motion,

whereas trajectories starting inside but close to the laydle converge to stick-slip motion.
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Figure 6. Change of behavior with viscous frictien. The equilibrium shifts to the right
with increasing values of,. The equilibrium in (a) is stable but not asymptoticallytdéa The
equilibrium becomes asymptotically stable tor > 0 and shifts to the right with increasing.
The equilibrium is critically damped for, = Q\f(2) in (d). The left part of the limit cycle
shrinks whens, changes front) to 0.2 in (b), and it disappears for larger valuesomefas shown

in (c) and (d). The parameter values arg:= 0 (a), o5 = 0.2 (b), 02 = 0.5 (c), 09 = 2¢/2 (d).
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Figure 7. Change of behavior with pulling velocity. The equilibrium shifts vertically with
increasingv, and to smaller degree in the horizontal direction, see (ZBg equilibrium is
unstable for lowv, as shown in (a) unless the damping is very large. All solgtithren approach
the limit cycle. The equilibrium moves upwards when the ipgllvelocity increases as shown
in (c), the left part of the limit cycle shrinks and the limyae disappears when the pulling
velocity is sufficiently large as shown in (d). The equilibr is then also stable, stick-slip motion
disappears and the mass moves steadily with constant yeldtie parameter values afe)

v, = 0.2, (b) v, = 0.5, (c) v, =2, (d) v, = 2.3V/2.
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Change of behavior with spring coefficiéntThe equilibrium shifts toward the left

with increasing spring coefficient. Fér= 2, (a) shows two red trajectories, one converges to the

equilibrium the other converges to the limit cycle. Asncreases, the region of attraction of the

equilibrium increases as shown in (b) and (c). The limit eydisappears wheh is sufficiently

large as shown in (d). The stiffness is (@x 0.5, (b) k =2, (c) £k =5, (d) kK = 8.
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Figure 9. lllustration of the rate-independent propertythbef Dahl model. The left plots show
phase planes while the right plots the position as a funaifdime. The input is sinusoidal with
frequency 2 Hz in the curve) — (b). A bias at the inputs is added in the experiments shown
in (¢) and(d); the output is shifted but the produced path does not charue plots(e) — (f)
show that the limit cycle does remains the same when the drexyuat the input is changed to

4 Hz.
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Figure 10. Behavior of the LuGre) and Dahl(b) models for sinusoidal inputs with frequencies
of 1,3, and6 Hz. The plots show friction force as a function of displacem&lotice that the
closed curves produced by the Dahl model are all rate indbp#nwhereas the closed curves

produced by the LuGre model depend on frequency. Both maaelshus rate dependent. This
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difference is mainly due to the presence of the Stribeck @mapt through the functiop(v)

in the LuGre model.
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Figure 11. Experiments reported in [17] showing limitasaat the LuGre model in predicting
behavior at velocity reversals. The solid curve shows erpantal data from a vertical electro-

discharge machining axis. Figure reproduced with permissi
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Sidebars

Dahl’s M odel

The starting point for modeling friction in mechanical sgs\vs an observation made by
Dahl in 1968, namely, that ball-bearing friction is similar solid friction. This similarity is

illustrated by the experimental data shown in Figure 12.

Figure 12. Oscillation of a pendulum supported by ball begsi Notice that the amplitude

decays linearly, indicating that ball-bearing frictionssnilar to solid friction.

Figure 12 shows that the amplitude decays linearly rathem #exponentially as a result
of viscous friction. The linear decay of the amplitude is gatible with Coulomb friction. Dahl
found a similar behavior when he replaced the pendulum wahgwire. This led to a friction

model inspired from the stress-strain curve. A simple werss the exponential function

F = F,(1 — e~ o0lel/Fe) sgn(ccll—f), (27)

where I is the force (stress)y is the displacement (strainyy is the stiffness, and,. is the
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Coulomb friction force. Differentiation of (27) shows thidite force-displacement relation is a

particular solution (withsgn(z) = sgn(v)), of the differential equation

Ccli—i = 0y <1 — %Sgn(z—f)) = 00<1 - %sgn(v)). (28)

Introducingz = F/o, as a state variable, and using the chain rule we find

dz 1dFdx_1dF

0o
=1 — —

dz _ 1abdz _ 1aF 2
dt oo dr dt oy dr . FJ”'Z’ (29)

which is Dahl friction model. In steady state we have- F.sgn(v)/og. This result implies that
Fys = F.sgn(v). (30)

Dahl friction model (29) is thus a first-order dynamic systefmose steady-state behavior gives
Coulomb friction (30). The state represents the elongation= F'/o, corresponding to the
friction force F'. The state can be also be interpreted as the local straineoawbrage bristle
deflection as described in [33]. The model is elegant and histwo parameters,, and F,..
The model captures many properties of friction in mechdrigstems [14], and it has been used
extensively to simulate friction particularly for pre@si pointing systems. However Dahl model

does not capture the Stribeck effect, and stick-slip motion
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A Hybrid M odel

A simple model of stick-slip motion is obtained by consideritwo regimes, namely
stick and slip. In the stick regime the mass is stationary, tie spring is pulled with velocity

v,. Let ¢ be the elongation of the spring. In the stick regime the edtiog of the spring is given

by
al
% = ’Up. (31)
The system remains in the stick regime as long as the sprirng is smaller than the stiction
force F,. Let k be the spring coefficient we find that the mass is stuck as lengkacity is zero
and|/| < (s, wherel, = F,/k is the elongation of the spring required to give the sticfiorce

F,. In the sliding regime the mass moves subject to the springefaand the friction force is

modeled as Coulomb frictiod’ = —F_. sgn (v). The equation of motion in the slipping regime

is
dl
o= WU (32)
dv
mo = kl — F.sgnv = k(¢ — {.sgnv), (33)

wherel. = F./k. The system remains in the slip regime as long a0 orv = 0, and|(| > /.
The system is a simple example of a hybrid system whose swgatonditions are
slip, ifv#0,0rv=0and|(| > {,,

g = (34)
stick, otherwise

Simulation of the hybrid model requires care. Integrationtines with event detection are
necessary to avoid switches are missing which can resulisteading results. In our particular
case the equations can be integrated analytically. In tio& ségime we havev = 0, and
¢ = vyt + c; wWherec; is a constant.
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Integrating the equations for the slip regime, we have
m(v —v,)? + k(0 — €.)* = ¢y,

wherec, is a constant. With proper scaling the trajectories ardasrsegments in thé v plane
with centers in¢ = /., andv = v, > 0. The circle segment corresponds to the slip regime, and
the line segment corresponds to the stick regime. Patchiagalution we find that the system

is described by the phase plane shown in Figure 13.

0,

Figure 13. Phase plane for the hybrid model of stick-slipioro{see "Hybrid Model”). The
sticking regime is the lin&l, — ¢, < ¢ < /,. The slipping motion forms arcs of circles with
center at(¢,, v,n/m/k), for v > 0. The center is marked with a circle. The dashed curve is
a circle with center at., v,\/m/k) and radiusv,/m/k. All trajectories starting outside this

circle converge to the limit cycle.

The stick regime corresponds to the line segm@&ipt— ¢, < ¢ < /,, andv = 0.
The trajectories are segments of circles with centerglin v,/m/k) for positive v. If the
trajectory hits the stick regime it moves toward the right.tle right end of the stick regime
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the solution follows the circle segment counter-clockwiaed it continues to move counter-
clockwise along the limit cycle. Trajectories starting ©ide the dashed circle converge to the
limit cycle. Trajectories inside the dashed line are cscl€he limit cycle is thus stable. The
center, corresponding to the mass moving at the pulling imdso stable but not asymptotically

stable.

It is easy to see what happens when parameters or the modehanged. For viscous
friction the circle segments are replaced by logarithmicadg, and the center becomes stable.

The limit cycle disappears when the damping is large.
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Example of a Rate-independent friction model: the Dahl Model

The Dahl model is one of the simplest friction models thatai® independent. Naively,
rate independence follows from the fact that the model isvddrfrom the stress-strain curve.
Formally, rate independence can be shown as follows. ket ¢t — 7 be an increasing

homeomorphism, that ig’ 2 %—‘f > 0 mapping the time-coordinatec [0, o) to the transform

time-coordinater € [0,00), whereT = ¢(t). To demonstrate that the hysteresis operator

H : v +— F associated with the Dahl differential equation

1 dF F||
—— = U — —/|U|.
Uodt FC

is rate independent, we need to show that for an input-oytaint (v(t), F'(t)), solutions of the
above equation, then the corresponding scaled(pair), F'(7)), with v, = 4, are also solutions
of the same equation, in the time-scaleUsing the chain rule, and the fact thaty'| = |v,|¢’

resulting from the positive growing property of the transgfation , we obtain

2 ST ]
(paodr R

which from propertyy’ > 0, shows that(v,(7), F(7)) is an admissible solution ofo% =

UT—F—IZ|UT|.

40



Author’s Bio

Karl JohanAstrom was educated at the Royal Institute of Technologystiackholm,
Sweden. After graduating he worked five years for IBM Redeato 1965 he became a
professor at Lund Institute of Technology/Lund Universishere he founded the Department
of Automatic Control. Astrom has broad interests in control, and its applicatiode has
coauthored 10 books and numerous articles covering wide @fréheory and applications. He
is a Fellow of IFAC and a Life Fellow of IEEE. He has receivednypawards, including 1987

IFAC Quazza medal, the 1990 IEEE Control Systems Award, hed 993 IEEE Medal of Honor.

Carlos Canudas-de-Wit received his B.Sc. degree in el@cs@nd communications from
the Technological Institute of Monterrey, Mexico in 1980. 1987 he received his Ph.D. in
automatic control from the Insitute Polytechnic of Gremofdepartment of Automatic Control),
France. Since then he has been working at the same deparselitector of research at the
National Center for Scientific Research (CNRS), where hehiesand conducts research in the
area of nonlinear control of mechanical systems and newdbdontrolled system. He is leader
of the NeCS joint CNRS-INRIA team-project on networked coléd systems. His research
interests include networked controlled systems, vehiol&rol, adaptive control, identification,
control of robots, and systems with friction. He is a pastoesde editor for the IEEE-

Transactions on Automatic Control, and for AUTOMATICA.

41



