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Revisiting the LuGre Model

Stick-slip motion and rate dependence

K. J. Åström and C. Canudas-de-Wit — July 16, 2008

Friction is a classical field that goes back to Leonardo da Vinci, Guilliame Amonton, and

Charles Augustin de Coulomb. Amonton found that friction force is proportional to normal load,

but surprisingly is independent of the area of the apparent contact surface. This observation is

known as the Amonton’s paradox. Theapparentcontact surface is the geometric object surface

projected to the contact surface. Thetrue contact surface is the effective surface in contact

between the object and the surface. The apparent contact surface is often much larger than the

effective contact surface.

Friction also plays a major role in understanding earthquakes. Measurements of the

contact surface of rocks [1] show that the friction force is proportional to true contact area,

finally resolving Amonton’s paradox.

Coulomb found that the friction force is opposite to the direction of velocity but

independent of the magnitude of the velocity. Major advances in understanding the mechanisms

generating friction were made by Bowden and Tabor [2] and by the tribologist Rabinowizc [3],

who performed extensive experiments to understand the macroscopic properties of friction. By

measuring the velocity dependence of friction in ball bearings Stribeck [4] found that friction

decreases with increasing velocity in certain velocity regimes. This phenomenon is called the
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Stribeck effect. Friction models developed in the physics community also include therate-and-

state modelsin which friction is a function of the velocity and a state variable, [5], [6], [7].

Major advances in understanding friction have recently become possible because of the

availability of measurement techniques and equipment suchas scanning probe microscopy, laser

interferometry, and the surface force apparatus [8], whichmake it possible to measure friction

at the nanoscale.

Friction also plays a major role in control-system performance. Friction limits the

precision of positioning and pointing systems, and can giverise to instabilities. The effects

of friction can be alleviated to some extent by friction compensation. For control applications

it is useful to have simple models that capture the essentialproperties of friction. An example

is the memoryless Coulomb friction model, in which the friction force depends on the velocity

direction, and a linear viscous friction. Nevertheless, these simple memoryless models may

have limitions for some high-precision control application since they cannot reproduce friction

characteristics that depend to time.

Indeed, friction is known to have memory-dependent behavior. Phenomena such as pre-

displacement, rate-dependence, and hysteresis, have beenexperimentally identified, and are

reproduced only by models with memory, that is including dynamics. The Dahl model [9],

which was developed in the late 1950s, is a dynamic model withone state, and is widely used

to simulate aerospace systems, [9]. Several friction models have been developed in seismology,

[10], [11], to describe how concrete structures respond inelastically when subjected to strong

seismic excitations. The main motivation is to characterize the hysteretic behavior of a structure

excited beyond its elastic range. The model reported in [11]derives from the Maxwell model
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for hysteresis, and has the same form as the Dahl model.

The Dahl model captures many properties of friction but doesnot capture the Stribeck

effect, and thus cannot predict stick-slip motion. The LuGre model [12], [13], [14], which resulted

from a collaboration between control groups in Lund and Grenoble, is an extension of the Dahl

model that captures the Stribeck effect and thus can describe stick-slip motion. The LuGre model

contains only a few parameters, and thus can easily be matched to experimental data. This model

has passivity properties that are useful for designing friction compensators that give stable closed-

loop systems. This model has been applied to a wide range of systems [15], [16], [17], [18].

Although experiments generally show good agreement with the LuGre model, discrepancies are

observed in [17]. To overcome these discrepancies several modifications are considered in [19],

[20], [21] based on the Preisach, Duhem, Maxwell-slip, and Bouc-Wen models. In addition, ad

hoc extensions of the LuGre model based on the inclusion of a dead zone to separate the plastic

and elastic zones are considered in [22].

In this article we first review properties of the LuGre model,including zero-slip

displacement, invariance, and passivity. An extension to include velocity-dependent micro

damping is discussed. The resulting model is then used to analyze stick-slip motion. The analysis

shows that stick-slip motion modeled by the LuGre model is a stiff system with different behavior

in the stick and slip regimes, with dramatic transitions between these regimes. The dependence

of limit cycles on parameters is discussed along with the notion of rate dependence.
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LuGre Model

The LuGre model, is described by

dz

dt
= v − σ0

|v|
g(v)

z = v − h(v)z, (1)

F = σ0z + σ1ż + f(v), (2)

where v is the velocity between the two surfaces in contact,z is the internal friction state,

and F is the predicted friction force. Compared with the Dahl model (see ”Dahl’s model”),

the LuGre model has a velocity-dependent functiong(v) instead of a constant, an additional

dampingσ1 associated with micro-displacement, and a general formf(v) for the memoryless

velocity-dependent term. The statez, which is analogous to the strain in the Dahl model, can be

interpreted as the average bristle deflection. The LuGre model reproduces spring-like behavior

for small displacements, where the parameterσ0 is the stiffness,σ1 is the micro damping, and

f(v) represents viscous friction, typically,f(v) = σ2v. For constant velocity, the steady-state

friction forceFss is given by

Fss(v) = g(v)sgn(v) + f(v), (3)

whereg(v) captures Coulomb friction and the Stribeck effect. A reasonable choice ofg(v) giving

a good approximation of the Stribeck effect is

g(v) = Fc + (Fs − Fc)e
−|v/vs|α, (4)

whereFs corresponds to the stiction force, andFc is the Coulomb friction force. A typical

shape ofg(v) is shown in Figure 1, whereg(v) takes values in the rangeFc 6 g(v) 6 Fs. The

parametervs determines how quicklyg(v) approachesFc. The valueα = 1 is suggested in [23],

while [24] finds values in the range 0.5 to 1, and [25] usesα = 2.
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The functiong(v), and the viscous parameterσ2 can be determined experimentally by

measuring friction for various (constant) velocities. Such a measurement givesFss in (3). To

have a complete model we must also determine the parametersσ0, σ1 from multiple experiments.

In practice we find that friction in motors may be asymmetric.This asymmetry can be handled

by using different values of the parameters for positive andnegative values of the velocity. For

simplicity of exposition, however we assume symmetry.

Analysis of The LuGre Model

We now consider properties of the standard LuGre model (1),(2), with g(v) as in (4) and

f(v) = σ2v.

PROPERTY 1: Boundedness. It follows from (4) that0 < g(v) 6 Fs. Then,Ω = {z : |z| 6

Fs/σ0} is an invariant set for the LuGre model. That is, if|z(0)| 6 Fs/σ0, then |z(t)| 6 Fs/σ0

for all t > 0.

Property 1 is a consequence of the fact that the time derivative of the quadratic function

V = z2/2 along solutions of (1) is given by

dV

dt
= z(v − σ0

|v|
g(v)

z) = −|v||z|
(

σ0
|z|
g(v)

− sgn(v)sgn(z)

)

.

Note thatσ0
|z|

g(v)
> 0, and that sgn(v)sgn(z) can only be either1 or−1. When sgn(v)sgn(z) = −1

(

σ0
|z|

g(v)
− sgn(v)sgn(z)

)

is positive, and hencedV
dt

is negative semidefinite. Alternatively, when

sgn(v)sgn(z) = 1 and |z| > g(v)/σ0, then dV
dt

is negative. Sinceg(v) is positive and bounded

by Fs, we see that the setΩ is an invariant set for the solutions of (1). For further details, see

[13].
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Property 1 indicates that if the internal statez is initially below the upper bound of the

functiong(v), that is, below the normalized stiction forceFs/σ0, then the state remains bounded,

specificallyz(t),6 Fs/σ0 for all t > 0.

Passivity is a related energy-dissipation property. The following results summarize the

passivity properties of the LuGre model.

PROPERTY 2: Internal state dissipativity. The mapv 7→ z defined by (1) is dissipative

with respect to the storage functionW (z(t)) = 1
2
z2(t), that is,

∫ t

0

z(τ)v(τ) dτ > W (z(t)) −W (z(0)), ∀t > 0. (5)

Property 2 indicates that the LuGre model is input-to-statepassive for all positive values of the

model parameters. Next, we wish characterize conditions under which the input-to-output map

v 7→ F is also passive, that is, there existsβ > 0 such that
∫ t

0
Fv > −β, for all t > 0. For

details see [13] and [26].

PROPERTY 3: I/O dissipativity with constantσ1. The mapv 7→ F , defined by the LuGre

standard parameterization (1), (2), is input strictly passive, that is, for allt > 0,

∫ t

0

Fv dτ > W (z(t)) −W (z(0)) + ρ

∫ t

0

v2dτ > −W (z(0)) (6)

with the storage functionW (z) = σ0

2
z2, andρ = σ2 − σ1

FS−FC

FC
> 0 if and only if

σ2 > σ1
(FS − FC)

FC
. (7)
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The sufficiency part of Property 3 is shown in [14],while the necessary part is proven in

[27]. The passivity condition (7) relies on the existence ofa sufficiently large viscous damping

σ2, which is expected to dominate over the dampingσ1 associated with the bristles. For systems

in which the Coulomb and Stiction terms are close to each other, that isFS ≈ FC , this condition

can easily be satisfied. However, Condition 7 may therefore be too restrictive by imposing too

low values forσ1. Small values ofσ1 can result in the undamped linearized (aboutz = v = 0)

model

m
d

dt
v + (σ1 + σ2)v + σ0x = Fd. (8)

since the natural system dampingσ2 is likely to be low. Therefore, there is a tradeoff to be found

while designingσ1, namely, low values are needed to preserve passivity, whilelarge values are

suited for damping the linearized model. This tradeoff can be relaxed by makingσ1 depends on

v, as discuss next.

Velocity-dependent micro damping

The parameterσ1 represents the damping in the pre-displacement (or stiction) regime. It

is important to stress that away from this regime, its influence is negligible sincėz tends (on

a faster time-scale thanv(t)) to zero as the system leaves the pre-displacement zone where the

velocity v is close to zero.

The impact ofσ1 on the ability of the model to accurately predict friction forces depends

on the application at hand. For systems where slow motions inthe micro and nano scale are

important (AFM, satellites pointers, ultrasonic motors),σ1 is important and most be identified by

using sensed information with the appropriate resolution.However, in mechanical systems where

7



the sensor resolution and its expected accuracy are within the millimeter scale (industrial robots,

tool machines, drives), the impact ofσ1 is minor and its main role is to damp the linearized

equation in the pre-sliding regime rather than to finely match the data in a region where the

sensed information (position and velocity) is rather poor.In the latter case, imposing a given

relative dampingζ in the pre-sliding regime givesσ1 = 2ζ
√
σ0m− σ2, with the typical choice

of ζ = 1, to obtain well-behaved stick-slip transitions.

In either case (σ1 identified or fixed), to guarantee passivity we must require that σ1 <

σ2FC

FS−FC
. However, this condition gives a bound onζ of the form

ζ <
σ2

2
√
σ0J

(

FC

FS − FC
+ 1

)

. (9)

In some applications, obtaining both passivity and critical damping may be difficult. This

difficulty can be overcome by using a velocity dependent function σ̄1(v), where these two

properties can be set independently.

PROPERTY 4: I/O dissipativity with velocity dependentσ̄1(v). Suppose that̄σ1(v) satisfies

the following conditions:

i) |v|σ̄1(v) < 4g(v), for all v,

ii) σ̄1(0) = σ1
△
= 2ζ

√
σ0m− σ2.

Then, the mapv 7→ F defines an input strictly passive operator, that is,
∫ t

0
Fv dτ > W (z(t)) −

W (z(0))+σ2

∫ t

0
v2dτ, ∀T > 0 with the storage functionW (z) = σ0

2
z2. In addition, the linearized

model (8) has the arbitrary damping coefficientζ .

If σ̄1(v) > 0 is an exponentially decaying function, then the product|v|σ̄1(v) is positive
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and concave function, with its maximum atmaxv{|v|σ̄1(v)}. SinceFc 6 g(v) 6 Fs, ∀v, it

suffices to choose a function̄σ1(v) that has the property

max
v

{|v|σ̄1(v)} < 4Fc,

together with the conditionii). A choice of σ̄1(v) fulfilling the above condition is

σ̄1(v) = σ1e
−(v/vc)2

whereσ1
△
= 2ζ

√
σ0m − σ2, and vc < 4

√
2eFC

σ1

. The local behavior of the system in stiction

is well damped, while the dissipation I/O property of the model is recovered. Note that this

behavior holds for arbitrarily large parameters. The transition speed ofσ̄1(v) is determined by

the parametervc. This parameter can be selected small enough to:i) satisfyσ̄1(v) = σ1e
−(v/vc)2 ,

and, ii) make σ̄1(v) vary fast enough so that the rate of variation of the productσ̄1(v)ż is

dominated by the rate of variation of̄σ1(v). In that way, σ̄1(v)ż ≈ σ1ż when v ≈ 0, and

σ̄1(v)ż ≈ 0 whenv > ǫ.

Zero-Slip Displacement

An experiment that gives insight into the zero-slip behavior of a given friction model

consists in applying a force that is smaller than the stiction force to a mass that is at rest. Using

the LuGre model, the experiment can be modeled by

mv̇ = Fd − F, (10)

ż = v − σ0
|v|
g(v)

z, (11)

F = σ0z + σ1
dz

dt
. (12)
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whereFd is an external force. Since mass velocityv is low in this particular context, viscous

friction, σ2 is neglected. Linearizing these two equations aroundv = 0 andz = 0 yields

mv̇ + σ1v + σ0x = Fd, (13)

wherex is the displacement. The motion is thus characterized by second-order dynamics with

the undamped frequencyω0 =
√

m/σ0. Conceptually, we can think of the motion as a micro-

motion, where the mass interacts with the bristles. The damping ratio of the micro-motion is

ζ = 0.5σ1/
√
mσ0. The system is critically damped whenσ1 = 2

√
mσ0, where the main role of

σ1 is to damp the motion at low velocities.

If the time-profile of the external forceFd has no a bias, and its magnitude is small

enough compared to the stiction forceFs, then the friction behaves as a pure spring force, that

is,F ≈ σ0x, as described by the linearized equation (13). In this case the elastic effect dominates

the plastic effect, and hence the model exhibits areturn-to-zeroposition when the external force

is set back to zero. Nevertheless, if the applied forceFd has a constant bias, then the system

exhibits a zero-slip displacement, as shown in the next experiment.

Simulation of the experiment is shown in Figure 2. The force is applied at timet = 0,

set to zero att = 0.1, and reapplied att = 0.2. When the force is applied, the system reacts like

a spring, the mass moves a small distance, and the friction force builds up as the friction state

z is increased. The system settles at steady state with a smalldisplacement. When the force is

set to zero, the state returns to zero, but the mass does not return to its original position.

The friction forces predicted by the nonlinear LuGre and Dahl models cover the elasto-

plastic domain. The accumulated drift on the mass position is due to small excursions from the

purely elastic region, where the models are approximately linear. This effect, calledposition
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drift in stiction orplastic sliding, is also exhibited by other models as discussed in detail in the

companion paper by Armstrong and Chen. This effect can be attributed to the fact that some

models have multiple equilibria.

Stick-Slip Motion

Stick-slip is a common behavior associated with friction. Everyday examples are the

squeaking sounds when opening a door, braking a car, or when writing on a blackboard with

a chalk. A typical stick-slip experiment is illustrated in Figure 3, where a mass is pulled by

a spring. The mass, which is initially at rest, is pulled at constant rate. When the spring is

elongated so that the force exerted by the spring exceeds thestiction force, the mass accelerates.

The spring is then compressed and under certain conditions the motion of the mass stops and

the process repeats, creating a periodic motion consistingof phases where the mass sticks and

slips. A simple hybrid model , see “A hybrid model”, gives some insight into the limit cycle

behavior.

Using the LuGre Model

We now analyze the stick-slip experiment using the LuGre Friction model. Introducing

the elongationℓ of the pulling spring, the experiment can be described by

ℓ̇ = vp − v, (14)

mv̇ = kℓ− F, (15)

ż = v − σ0
|v|
g(v)

z = v − z h(v), (16)
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whereh(v)
△
= σ0|v|/g(v), and the friction force, F, is given by

F = σ0z + σ1
dz

dt
+ f(v) = σ1v + f(v) + (σ0 − σ1h(v))z. (17)

The simulation in Figure 4 shows that a stable limit cycle with stick-slip motion is rapidly

established. Stick regimes appear, for example, between 4 sand 7 s, where the velocity is small.

When the trajectory enters the stick regime the friction state increases rapidly, and the friction

force effectively stops the motion. The friction statez and friction forceF then drop rapidly

before increasing almost linearly to compensate for the force from the spring. When the spring-

force is larger than the stiction, the mass starts to move, and the friction force drops rapidly with

a small overshoot. Notice that the friction state and friction force have similar shapes. The gross

features of the behavior using the LuGre model are similar tothose obtained with the hybrid

model, but the transitions are now captured by dynamics instead of logic.

To see the similarities with the simulation of the hybrid model in Figure 13 we project

the solution of the LuGre model to theℓ − v plane. Figure 5 shows projections of trajectories

of the LuGre model on theℓ − v plane. A comparison of Figure 5 and Figure 13 shows that

the gross features are the same. The limit cycles in both cases have similar shapes. Trajectories

starting outside the limit cycles or inside and close to converge to the limit cycle representing

stick-slip motion. Trajectories starting close to the equilibrium do not give stick slip. There

are also some subtle differences. The projections of the redand green trajectories in Figure 5,

starting atv = −1 with ℓ close to2, cross each other, but similar trajectories for the hybrid

model cannot cross because the system is of second order.

Considerable insight can be obtained by making some approximations. First we notice

from Figure 4 that the statez is essentially constant in the slip phase. Assuming thatz is constant
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it follows from (17) thatz = v/h(v) = g(v)sgn(v)/σ0. Equation (17) then becomes

dℓ

dt
= vp − v, (18)

m
dv

dt
= kℓ− f(v) − σ0z

= kℓ− f(v) − g(v)sgn(v)

= kℓ− Fss(v), (19)

whereFss is the steady state friction function given by (3). In the slip zone the system is thus

approximately given by a second-order system with the natural frequencyωslip =
√

k/m and

damping coefficient given by∂Fss

∂v
.

Next we investigate the behavior in the stick zone. Since Figure 4 shows that the velocity

is small in the stick zone, and we therefore linearize (14)-(16), whose JacobianJ is given by

J =















0 −1 0

k
m

−σ1(1−zh′(v))+f ′(v)
m

−σ0−σ1h(v)
m

0 1 − zh′ −h















. (20)

Where the notation′ stands for the partial derivative of a function with respectits argument.

Assuming thatf(v) = σ2v we find that the linear approximation atv = z = 0 is a dynamical

system with the dynamics matrix

J =















0 −1 0

k
m

−σ1+σ2

m
−σ0

m

0 1 0















. (21)

The characteristic polynomial of (21) is given by

p(s) = s(s2 +
σ1 + σ2

m
+
σ0 + k

m
),
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which constitutes themicro motiondynamics. Notice that the behavior in this regime is similar

to that observed in the start-stop experiment. The dynamicsare characterized by an integrator,

along with an oscillatory system with natural frequencyωstick =
√

(σ0 + k)/m. The presence

of the integrator explains the linear time evolution ofz, as well asF in Figure 4, while the large

value ofωstick explains the rapid variations in the transition from stick to slip.

Modeling stick-slip by the LuGre model shows that the gross behavior is characterized

by two regimes. In the slip regime the dynamics are approximately second-order spring-mass-

damper dynamics with the characteristic frequencyωslip =
√

k/m. We call this the macro

dynamics. In the stick regime the dynamics are characterized by an integrator along with spring-

mass dynamics with the characteristic frequencyωstick =
√

(σ0 + k)/m. Sinceσ0 is much larger

thank, the ratioωstick/ωslip is large, making the system stiff. A dramatic change in dynamics

occurs in the transition between the regimes. In the simulation in Figure 4σ0 is reduced in order

to show the transition more clearly. The transition zone shrinks asσ0 increases.

Effects of parameter changes

We now investigate the effects of parameter variations on the limit cycles. First we observe

that (14)-(16) has the equilibrium

ℓe = Fss(vp)
k

= g(vp)sgn(vp)+f(vp)
k

,

ve = vp,

ze = vp

h(vp)
= g(vp)

σ0

sgn(vp),

(22)

where the functionFss(v) is the steady-state friction function

Fss(v) = g(v)sgn(v) + f(v) = Fc + (Fs − Fc)e
−|v/vs|α + σ2v. (23)
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The equilibrium (22) corresponds to the situation in which the mass is moving forward at the

constant pulling velocityvp. The stability of this equilibrium is given by evaluating the linearized

dynamics matrix of system (14)-(16) at the equilibrium. A straightforward calculation shows that

the matrix (20) has the characteristic polynomial

p(s) = s3 + a1s
2 + a2s+ a3, (24)

where

a1 =
σ1(1 − zh′(v)) + f ′(v)

m
+ h(v) =

σ1g
′v + f ′g

mg
+
σ0|v|
g

,

a2 =
σ0(1 − zh′(v)) + f ′(v)h(v) + k

m
=
σ0|v|
g

F ′
ss(v) +

k

m
,

a3 =
kh(v)

m
=
σ0k|v|
mg(v)

.

The Routh-Hurwitz criterion implies that, the equilibriumis stable if and only if,a1, a2, anda3

are positive anda1a2 > a3.

We first consider the effect of viscous damping, wheref(v) = σ2v. To discuss the

behavior we focus on the invariant sets given by (22) and the limit cycle corresponding to

stick-slip motion. We first observe that the equilibrium (22) shifts to the right with increasing

damping. Figure 6 shows stick-slip behavior for various values ofσ2. For small values ofσ2 the

equilibrium (22) changes from being Lyapunov stable to asymptotically stable. A limit cycle is

reached for large perturbations. As the damping is increased further, the limit cycle disappears.

Next we investigate the effect of the pulling velocityvp. It follows from (22) that changes

in vp shift the equilibrium to the new pointv = vp, and hence moves the projection of the system

trajectories vertically in thev− l plane as shown in Figure 7. Figure 7 shows stick-slip behavior

for various values ofvp. For low pulling velocities the equilibrium is close to theℓ axis, and,
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unless the viscous damping is very large, is unstable. The limit cycle is then asymptotically

stable. As the pulling velocity increases, the equilibrium(22) changes from unstable to stable,

while the limit cycle remains a locally stable solution. Forlarge values ofvp the limit cycle

disappears. It follows from (22), (23) and (23) that the equilibrium shifts to the right with

increasing values ofσ2.

A bifurcation occurs where the equilibrium (22) changes from unstable to stable. This

transition can be studied using the Routh-Hurwitz criterion, that is by looking when the quantity

a1a2 − a3 =
(σ0|v|

g
+
σ1g

′v + f ′g

mg

)(σ0|v|
g

F ′
ss(v) +

k

m
,
)

− σ0k|v|
mg(v)

= σ2
0

v2

g2
F ′

ss(v) + σ0
|v|
mg2

(σ1g
′v + f ′g)F ′

ss(v) +
k(σ1g

′v + f ′g)

m2g

≈ σ2
0

v2

g2
F ′

ss(v)

= h2(v)F ′
ss(v)

goes from positive to negative. The approximate expressionis obtained by observing thatσ0 is

large and thus the term involvingσ2
0 dominates the remaining terms. The approximate condition

implies that the equilibrium is unstable when the pulling velocity is in the range where the slope

of the static friction curve is negative.

Finally we explore the effects of the spring stiffnessk. It follows from (22) that changes in

k shift the equilibrium (22) horizontally, that is moves toward the left with increasing values ofk.

Figure 8 shows stick-slip behavior for different values ofk. For small values ofk the equilibrium

(22) is stable. The limit cycle is also stable but large perturbations from the equilibrium are

required to reach the limit cycle. The limit cycle disappears when the stiffness is sufficiently

large but the equilibrium (22) remains stable.
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Rate Independence

refers here to the property of an

A friction operator,H : v 7→ F is rate-independentif it is invariant with respect any affine

transformation of the time-scale. That is, if the input-output pair (v(t), F (t)) is an admissible

solution of a rate-independent friction operator, then(v(a+ bt), F (a+ bt)) is also an admissible

pair for any reala, and positiveb. An operator that does not satisfy such a property is called

rate dependent.

Rate-independent models

Rate independence describes processes that have the characteristic to produce input-output

closed-loop that are independent of the rate of variation ofthe input. Examples arelimit problems

in mechanics, where the inertia forces can be neglected and internal friction generates hysteretic

behavior. For example, in the pre-sliding regime, where inertial forces can be neglected, every

point of the velocity reversals is recovered in the force-position plane once the force resumes

the corresponding value, independently of the number of velocity reversals [28]. In the literature

of systems with hysteresis, this property is sometimes termed asreversal point memory.

In rate-independent friction models, if the input (velocity) v(t) is periodic, then the

output (force)F (t) is also periodic, and hence closed loops are formed in the input-output

(force-velocity)F − v plane, but also in the force-positionF −x plane. By the rate-independent

property, these hysteresis loops are invariant with respect to time-scaling, and thus invariant

with respect to the input signal frequency. The Dahl model israte independent as shown in the

17



“Example of a rate-independent friction model: the Dahl’s model”. Experiments with periodic

inputs to this model are shown in Fig 9. The figures(c) − (f) show that closed-curves in the

F −x plane are formed as a consequence of a periodic input with a dccomponent. These loops

are also independent to the input signal frequency; the curves (c) − (d) are done withf = 2

Hz, whereas(e) − (f) are simulated withf = 4 Hz. In addition, figures(a) − (b) shows that

the shape of the hysteresis loop remains invariant if a bias is subtracted from the input signal.

A bias in the input signal shifts the loop but does not influence its shape. The models discussed

in [29], [30], [31] are also rate-independent at the cost of increasing the number of states.

More generally, consider a friction model of the form

dF

dt
= χ(F, v) = ψ (F, sgn(v)) η(v), (25)

whereη(v) is positively homogenous, that isη(αv) = αη(v), for all α > 0. Then, by imparting

a positive change of time-coordinatesτ = ϕ(t), with the properties described in “Example of a

rate-independent friction model: the Dahl’s model”, then (25) writes as

ϕ′

[

dF

dτ
− ψ(F, sgn(v))η(vτ)

]

= ϕ′

[

dF

dτ
− χ(F, vτ )

]

= 0, (26)

with vτ
△
= dx

dτ
, andϕ′ > 0. It follows from (26) that solutions(F (t), v(t)) are invariant with

respect to a positively homogeneous time scaling, and thus describes a rate-invariant model.

Rate-dependence of the LuGre model

Although, the Dahl model is rate independent, the LuGre model is not since the right

hand side of (1) is not affine in|v|, see [32]. This rate dependence is due to the attempt to

model the Stribeck effect by introducing the functiong(v) defined in (4). Figure 10 compares

18



the rate-dependencies of the Dahl and LuGre models. As expected, the loops in theF −x plane

obtained from the LuGre model are not invariant to changes inthe velocity of the input. The

differences between the shapes of these loops decrease asFs approachesFc. The presence of

viscous frictionσ2 does not influence this behaviour.

Figure 11 shows an experiment reported in [17], where experimental data from a vertical

electro-discharge machining axis are compared to simulations using the LuGre model. The gross

features of the experiment are captured by the LuGre model, but, as discussed above, the LuGre

model is not rate independent, and hence does not capture thereversal point memory observed

experimentally.

Conclusions

In this article we have described some properties of the LuGre model, which is a simple

dynamic friction model. The LuGre model has few parameters that can be fitted by measuring

friction as a function of velocity. The model has interesting theoretical properties, the state is

bounded, it has passivity properties, and is rate dependent. The LuGre model captures many

properties of real friction behavior, but it does not have reversal point memory. The model has

been used extensively for simulation, as well as for design of friction compensators. In the

article it is also shown that the limit cycle behavior in stick-slip motion are well described by

the model. Rate dependence is also discussed. The analysis of rate dependent micro damping,

and rate dependency indicate areas where the model can be improved.
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(a) (b)g(v)

Fs

Fc

v

Fss(v)

FS

FC

−FS

−FC

v

Figure 1. Functions that characterize the LuGre friction model. (a) shows the functiong(v)

that captures Coulomb friction and the Stribeck effect, while (b) shows the steady-state friction

function Fss(v) = g(v)sgn(v) + f(v), wheref(v) represents viscous friction, typicallyf(v) =

σ2v. It is also possible to introduce asymmetric friction behavior by lettingg(v) having a different

shape for positive and negative velocities.FC describes the Coulomb values, whereasFS denotes

the Stiction level.
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Figure 2. Simulation of start-stop experiment. The forceF < Fs is applied to a mass at time

t = 0. The force is set to zero at timet = 0.1, and is applied again at timet = 0.2. When the

force is applied, the system initially reacts like a spring,the mass moves a small distance, and

the friction force builds up as friction state is increased.The system settles at steady state with

a small displacement. When the force is set back to zero, the state returns to zero but the mass

does not return to its original position. The net motion obtained (zero-slip displacement) can be

attributed to the nonlinear nature of the model that introduces small excursions from the purely

elastic regions where the model is approximately linear. Parameters used in the simulation are

m = 1, α = 1, σ0 = 3.9 × 104, σ1 = 395, σ2 = 0, Fc = 2.94, Fs = 5.88, andvs = 0.01
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k

vpv

m
F

Figure 3. Stick-slip experiment. The mass is attached to a spring k, which is pulled at constant

speed. In response, the mass alternates between sticking and slipping.
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Figure 4. Behavior of the system in Figure 3 when the right hand side of the spring is pulled

with constant velocity. The graph show the elongation of thespring l , the velocity of the mass

v, the statez of the friction model, and the friction forceF . The parameters arem = 1, k = 2,

vp = 2, andf = 0. The functiong is given by (4) with parametersα = 1, σ0 = 2900, σ1 = 107,

Fc = 2.94, Fs = 5.88 f(v) = 0, andvs = 0.1.

27



−2 −1 0 1 2 3 4 5
−1

0

1

2

3

4

5

6

l

v

Figure 5. Projections of trajectories of the third-order system (14)-(16) on thev− ℓ plane. The

stick slip motion is the heavy blue line. All trajectories starting outside the blue line approach

stick slip motion. Trajectories starting close to the equilibrium give sinusoidal nonsliding motion,

whereas trajectories starting inside but close to the limitcycle converge to stick-slip motion.
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Figure 6. Change of behavior with viscous frictionσ2. The equilibrium shifts to the right

with increasing values ofσ2. The equilibrium in (a) is stable but not asymptotically stable. The

equilibrium becomes asymptotically stable forσ2 > 0 and shifts to the right with increasingσ2.

The equilibrium is critically damped forσ2 = 2
√

(2) in (d). The left part of the limit cycle

shrinks whenσ2 changes from0 to 0.2 in (b), and it disappears for larger values ofσ2 as shown

in (c) and (d). The parameter values are:σ2 = 0 (a), σ2 = 0.2 (b), σ2 = 0.5 (c), σ2 = 2
√

2 (d).
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Figure 7. Change of behavior with pulling velocityvp. The equilibrium shifts vertically with

increasingvp and to smaller degree in the horizontal direction, see (22).The equilibrium is

unstable for lowvp as shown in (a) unless the damping is very large. All solutions then approach

the limit cycle. The equilibrium moves upwards when the pulling velocity increases as shown

in (c), the left part of the limit cycle shrinks and the limit cycle disappears when the pulling

velocity is sufficiently large as shown in (d). The equilibrium is then also stable, stick-slip motion

disappears and the mass moves steadily with constant velocity. The parameter values are(a)

vp = 0.2, (b) vp = 0.5, (c) vp = 2, (d) vp = 2.3
√

2.
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Figure 8. Change of behavior with spring coefficientk. The equilibrium shifts toward the left

with increasing spring coefficient. Fork = 2, (a) shows two red trajectories, one converges to the

equilibrium the other converges to the limit cycle. Ask increases, the region of attraction of the

equilibrium increases as shown in (b) and (c). The limit cycle disappears whenk is sufficiently

large as shown in (d). The stiffness is (a)k = 0.5, (b) k = 2, (c) k = 5, (d) k = 8.
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Figure 9. Illustration of the rate-independent property ofthe Dahl model. The left plots show

phase planes while the right plots the position as a functionof time. The input is sinusoidal with

frequency 2 Hz in the curves(a)− (b). A bias at the inputs is added in the experiments shown

in (c) and(d); the output is shifted but the produced path does not change.The plots(e)− (f)

show that the limit cycle does remains the same when the frequency at the input is changed to

4 Hz.
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Figure 10. Behavior of the LuGre(a) and Dahl(b) models for sinusoidal inputs with frequencies

of 1, 3, and6 Hz. The plots show friction force as a function of displacement. Notice that the

closed curves produced by the Dahl model are all rate independent, whereas the closed curves

produced by the LuGre model depend on frequency. Both modelsare thus rate dependent. This

difference is mainly due to the presence of the Stribeck component through the functiong(v)

in the LuGre model.
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Figure 11. Experiments reported in [17] showing limitations at the LuGre model in predicting

behavior at velocity reversals. The solid curve shows experimental data from a vertical electro-

discharge machining axis. Figure reproduced with permission.
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Sidebars

Dahl’s Model

The starting point for modeling friction in mechanical servos is an observation made by

Dahl in 1968, namely, that ball-bearing friction is similarto solid friction. This similarity is

illustrated by the experimental data shown in Figure 12.

0 1 2 3 4 5 6 7

−0.2

−0.1

0

0.1

0.2

t

y
[R
a
d
]

Time [sec]

Figure 12. Oscillation of a pendulum supported by ball bearings. Notice that the amplitude

decays linearly, indicating that ball-bearing friction issimilar to solid friction.

Figure 12 shows that the amplitude decays linearly rather than exponentially as a result

of viscous friction. The linear decay of the amplitude is compatible with Coulomb friction. Dahl

found a similar behavior when he replaced the pendulum with piano wire. This led to a friction

model inspired from the stress-strain curve. A simple version is the exponential function

F = Fc(1 − e−σ0|x|/Fc) sgn
(dx

dt

)

, (27)

whereF is the force (stress),x is the displacement (strain),σ0 is the stiffness, andFc is the
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Coulomb friction force. Differentiation of (27) shows thatthe force-displacement relation is a

particular solution (withsgn(x) = sgn(v)), of the differential equation

dF

dx
= σ0

(

1 − F

Fc
sgn

(dx

dt

))

= σ0

(

1 − F

Fc
sgn(v)

)

. (28)

Introducingz = F/σ0 as a state variable, and using the chain rule we find

dz

dt
=

1

σ0

dF

dx

dx

dt
=

1

σ0

dF

dx
v = v − σ0

Fc
|v|z, (29)

which is Dahl friction model. In steady state we havez = Fcsgn(v)/σ0. This result implies that

Fss = Fcsgn(v). (30)

Dahl friction model (29) is thus a first-order dynamic systemwhose steady-state behavior gives

Coulomb friction (30). The statez represents the elongationz = F/σ0 corresponding to the

friction force F . The state can be also be interpreted as the local strain or the average bristle

deflection as described in [33]. The model is elegant and has only two parametersσ0, andFc.

The model captures many properties of friction in mechanical systems [14], and it has been used

extensively to simulate friction particularly for precision pointing systems. However Dahl model

does not capture the Stribeck effect, and stick-slip motion.
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A Hybrid Model

A simple model of stick-slip motion is obtained by considering two regimes, namely

stick and slip. In the stick regime the mass is stationary, and the spring is pulled with velocity

vp. Let ℓ be the elongation of the spring. In the stick regime the elongation of the spring is given

by

dℓ

dt
= vp. (31)

The system remains in the stick regime as long as the spring force is smaller than the stiction

forceFs. Let k be the spring coefficient we find that the mass is stuck as long as velocity is zero

and |ℓ| < ℓs, whereℓs = Fs/k is the elongation of the spring required to give the stictionforce

Fs. In the sliding regime the mass moves subject to the spring force, and the friction force is

modeled as Coulomb frictionF = −Fc sgn (v). The equation of motion in the slipping regime

is

dℓ

dt
= vp − v, (32)

m
dv

dt
= kℓ− Fc sgn v = k(ℓ− ℓc sgn v), (33)

whereℓc = Fc/k. The system remains in the slip regime as long asv 6= 0 or v = 0, and|ℓ| > ℓs.

The system is a simple example of a hybrid system whose switching conditions are

S =















slip, if v 6= 0, or v = 0, and |ℓ| > ℓs,

stick, otherwise.
(34)

Simulation of the hybrid model requires care. Integration routines with event detection are

necessary to avoid switches are missing which can result in misleading results. In our particular

case the equations can be integrated analytically. In the stick regime we havev = 0, and

ℓ = vpt+ c1 wherec1 is a constant.
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Integrating the equations for the slip regime, we have

m(v − vp)
2 + k(ℓ− ℓc)

2 = c2,

wherec2 is a constant. With proper scaling the trajectories are circles segments in theℓ, v plane

with centers inℓ = ℓc, andv = vp > 0. The circle segment corresponds to the slip regime, and

the line segment corresponds to the stick regime. Patching the solution we find that the system

is described by the phase plane shown in Figure 13.

v
√

m/k

ℓℓc−ℓc ℓs2ℓc − ℓs

Figure 13. Phase plane for the hybrid model of stick-slip motion (see ”Hybrid Model”). The

sticking regime is the line2lc − ℓs 6 ℓ 6 ℓs. The slipping motion forms arcs of circles with

center at(ℓc, vp

√

m/k ), for v > 0. The center is marked with a circle. The dashed curve is

a circle with center at(ℓc, vp

√

m/k) and radiusvp

√

m/k. All trajectories starting outside this

circle converge to the limit cycle.

The stick regime corresponds to the line segment2lc − ℓs 6 ℓ 6 ℓs, and v = 0.

The trajectories are segments of circles with centers in(ℓc, vp

√

m/k ) for positive v. If the

trajectory hits the stick regime it moves toward the right. At the right end of the stick regime
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the solution follows the circle segment counter-clockwise, and it continues to move counter-

clockwise along the limit cycle. Trajectories starting outside the dashed circle converge to the

limit cycle. Trajectories inside the dashed line are circles. The limit cycle is thus stable. The

center, corresponding to the mass moving at the pulling rate, is also stable but not asymptotically

stable.

It is easy to see what happens when parameters or the model arechanged. For viscous

friction the circle segments are replaced by logarithmic spirals, and the center becomes stable.

The limit cycle disappears when the damping is large.

39



Example of a Rate-independent friction model: the Dahl Model

The Dahl model is one of the simplest friction models that is rate independent. Naively,

rate independence follows from the fact that the model is derived from the stress-strain curve.

Formally, rate independence can be shown as follows. Letϕ : t 7→ τ be an increasing

homeomorphism, that isϕ′ △
= ∂ϕ

∂t
> 0 mapping the time-coordinatet ∈ [0,∞) to the transform

time-coordinateτ ∈ [0,∞), where τ = ϕ(t). To demonstrate that the hysteresis operator

H : v 7→ F associated with the Dahl differential equation

1

σ0

dF

dt
= v − F

FC

|v|.

is rate independent, we need to show that for an input-outputpair, (v(t), F (t)), solutions of the

above equation, then the corresponding scaled pair(vτ (τ), F (τ)), with vτ = dx
dτ

, are also solutions

of the same equation, in the time-scaleτ . Using the chain rule, and the fact that|vτϕ
′| = |vτ |ϕ′

resulting from the positive growing property of the transformationϕ, we obtain

ϕ′

{

1

σ0

dF

dτ
− vτ +

F

FC

|vτ |
}

= 0,

which from propertyϕ′ > 0, shows that(vτ (τ), F (τ)) is an admissible solution of1
σ0

dF
dτ

=

vτ − F
FC

|vτ |.
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of Automatic Control. Åström has broad interests in control, and its applications. He has

coauthored 10 books and numerous articles covering wide area of theory and applications. He

is a Fellow of IFAC and a Life Fellow of IEEE. He has received many awards, including 1987

IFAC Quazza medal, the 1990 IEEE Control Systems Award, and the 1993 IEEE Medal of Honor.

Carlos Canudas-de-Wit received his B.Sc. degree in electronics and communications from

the Technological Institute of Monterrey, Mexico in 1980. In 1987 he received his Ph.D. in

automatic control from the Insitute Polytechnic of Grenoble (Department of Automatic Control),

France. Since then he has been working at the same departmentas director of research at the

National Center for Scientific Research (CNRS), where he teaches and conducts research in the

area of nonlinear control of mechanical systems and networked controlled system. He is leader

of the NeCS joint CNRS-INRIA team-project on networked controlled systems. His research

interests include networked controlled systems, vehicle control, adaptive control, identification,

control of robots, and systems with friction. He is a past associate editor for the IEEE-

Transactions on Automatic Control, and for AUTOMATICA.

41


