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Delta-Modulation Coding Redesign for Feedback
Controlled Systems

Carlos Canudas-de-Wit, Fabio Gómez-Estern, and Francisco R. Rubio

Abstract—This paper investigates the closed–loop properties of
the differential coding scheme known as Delta–Modulation (∆-
M ) when used in feedback loops within the context of feedback
controlled systems. We propose a new modified scheme of the
original form of the ∆-M algorithm which is better suited for
applications where the sensed information is used in feedback.
A state feedback controller is implemented with the state es-
timated by a predictor–based differential decoder. Stability of
the resulting closed–loop systems (controller–coder–decoder) are
studied. These properties (stability and performance) depend on
the quantization parameter ∆, which is assumed constant in the
first part of our work. In a further step, parameter ∆ is made
adaptive, by defining an adaptation law exclusively in termsof
information available at both the transmitter and receiver side.
With this approach both stability and performance is improved.

Index Terms—Differential coding, Delta modulation, Net-
worked controlled systems, NCS, Wireless Sensor Networks.

I. I NTRODUCTION

DELTA modulation (∆-M ) is a well-known differential
coding technique used for reducing the data rate required

for voice communication, see [20]. The standard technique
is based on synchronizing a state predictor on emitter and
receiver and just sending a one–bit error signal corresponding
to the innovation of the sampled data with respect to the
predictor. The prediction is then updated by adding a positive
or negative quantity (determined by the bit that has been
transmitted) of absolute value∆, a known parameter shared
between emitter and receiver.

This paper studies different aspects of the use of differ-
ential coding as a means for transmitting sensing signals in
feedback controlled linear systems. In particular we focus
on the stability issues that appear when the∆-modulation
scheme is embedded in a control system between the device
measuring the state and the control signal. The problem is of
interest in the area of Networked Controlled Systems (NCS)
calling for data-compression algorithms, but also in digital
control applications where sensed information is converted
using analog-to-digital converters (ADC) with few bits (i.e.
1-bit ADC).

A. Delta-modulation as a coding mechanism in NCS

Networked Control Systems is a multidisciplinary field
where Control and Communications technologies and Infor-
mation theory meet. Whereas the advantages of using networks
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as a means of connecting plants and actuators is easily
understood, the set of problems arisen by the technological
convergence is complex. In one sense, stability of controllers
may be compromised by the inclusion of a network, and new
closed–loop analysis must be done, with specific quantization–
modulation considerations, (see, for instance, [7] and the
references therein). Another approach is to monitor the net-
work quality of service (QoS) parameters, to consequentially
tune the controller gains for maximum stable performance,
as is presented in [22]–[23]. Finally, co–design approach (see
[18]) addresses simultaneously the modification of the control
strategy and the message transmission schedule for best overall
results.

Applications concerned with real-time wireless networked
controlled systems, as shown in Figure 1, seek for data-
compression algorithms aiming at reducing the amount of
information that may be transmitted throughout the communi-
cation channel, and therefore permitting a better resourceallo-
cation and/or an improvement of the permissible closed–loop
system bandwidth (data-rate). Moreover, recent advances in
this field are strongly focused on energy consumption, which
is probably the key to cheap distributed sensing. Vendors of
technologies like ZigBee and Bluetooth now claim that devices
may be powered on the same battery for years, leaving a way
to non replaceable battery devices into the market. Energy
consumption is thus a goal together with bandwidth when deal-
ing with modern sensor networks, and new communications
technologies. The search for minimal data transfer devicesin
control has also been motivated by underwater applications,
where data rates are normally bounded below 100 b.p.s. due
to the strongly dissipative medium.
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Fig. 1. Block diagram of the problem set up studied in this paper.

The Delta modulation (∆-M ) algorithm can also be under-
stood as the coarsest two-level (1-bit) quantizer. Optimization
of the quantization levels is mandatory in large-scale systems,
and may be of great interest while designing low cost trans-
mitter/receiver components. Differential coding in feedback
system is thus a simple alternative to reported control schemes
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concerning the use of quantizers in the context of NCS, i.e.
[12], [7], [17], [14], [27], [16]. More precisely, the use of
delta–modulators for networked control has been reported in
[15], as a practical implementation without theoretical stability
analysis.

The modified formof the (∆-M ) algorithm proposed here,
has the ability of enforce theseparation principlebetween the
control law and the estimation process (coding strategy). As a
result, the (linear) feedback law is first designed disregarding
the coding algorithm (x ≡ x̂). Then, the coding scheme
is designed in order to preserve stability when embedded
in the feedback loop. It is also worth to mention that this
modified formof the∆-M coding structure explicitly contains
information about the model plant and the controller feedback
gain.

Others works leading with some variants of the Delta
modulation coding in feedback systems can be found in [4]
for energy-aware coding, [3] for the combination of Delta
modulation with entropy variable length coding, [11] for the
use of more than one bit, and [5] for multivariable coding in
the fixed quantization case.

B. Delta-modulation as 1-bit converter

The other possible scenario where our results will be of
interest, concerns embedded control systems where the sensors
and digital controller are embedded in the same electronics
(system on chip, SoC). With the aim of saving energy,
cost, and space in the silicon layers, low-resolution analog-
to-digital converters are preferable to high-resolution ones.
Numerous examples of the use of Delta–modulators embedded
in general microelectronic devices have been reported in the
literature. For instance, [1] and [24] use FPGAs and ASICs
for implementing Delta and Sigma–Delta–modulation A/D
converters for current and voltage measurement. The need
for oversampling the analog signals, is compensated by the
technological advantage of reducing the number of ADC
channels and comparators.

Interesting applications using Delta-modulation inside con-
trol loops are also found in gyroscopic and acceleration sensors
in MEMS, which are configured as shown in Fig. 2. The
principle, as described in [13]–[19], is based on feedback–
sensing the capacitive mass displacement produced by an
acceleration on the device. In [13] and [9], this analogous
mass displacement is converted to a digital signal by using 1-
bit Sigma–Delta modulation encoders. Then, the1-bit signal
is decoded and used in feedback to “cancel” the external
acceleration that disturbs the small mass motion. If the control
is successfully designed, then the control signal equals the
external acceleration providing the desired measure. Notethat
this example is similar to the framework displayed in Figure1
with the difference that the encoder signals are transmitted by
wire.

C. Main paper contribution

The paper contributions are presented in the following order.
First we study the case of the Delta-modulation algorithm

underfixed-gain∆. To begin with, we address the continuous-
time formulation case, which is relevant because it captures

the limiting case of the discrete-time formulation (finite data
rate transmission), and provides a better understanding of
the maximal stability properties that can be attained. It also
shows the substantial simplification that can be reached in
the stability analysis, as well as the separation properties
between states and estimation obtained by using the proposed
∆-M modified form. In this part, we study the closed–loop
stability properties of the original form of the∆-M algorithm.
Then, we propose a new coding law that improves over the
original form of the ∆-M algorithm, and it allows for the
separation principlementioned previously.

Based in this modified form, we then study the discrete-
time case, which permits a more clear assessment of the data
rate constraints. It is shown that the system states converge to
a ball enclosing the origin, and that the result is semi–global.
The size of the attraction region and the system precision,
depends on the coding gain∆ linearly, and is also a function
of the location of the unstable discrete–time open–loop poles.
These results show that the stability properties improve asthe
sampling time is reduced, or equivalently as the transmission
data rate is increased.

Finally, the last part of the paper illustrates an adaptation
mechanism, consisting of making time variant the quantization
interval ∆. In our adaptive approach, closed–loop global
asymptotic stability is proved for the noiseless case. The effect
of random noise in the performance of the adaptive quantiza-
tion scheme is also analyzed via numerical simulations.

D. Comparison with other approaches

The problem of quantization with time–varying resolution
in feedback loops has been addressed in [10] and [2]. The
first of these works presents, in the case of fixed resolution,
a scheme similar to [6], in the sense that the state estimation
is computed trough a filter built upon the closed–loop system
matrix. However, the extension to variable–scale quantization
is only defined in thezooming–indirection, and hence the
initial states are upper bounded by the initial choice of the
zoom factor. As a consequence, only semi–global stabilization
is achieved. Here we propose a∆–update law that works
well for both in–and–out zooming directions, thus providing a
means to capture unbounded initial states in thezooming–out
stage and guaranteeing global asymptotic stability. Moreover,
by defining an explicit∆–update law in both directions, if
the state is driven temporarily out of the domain of attraction
at any time due to unattended disturbances, the system will
recover stability, unlike the case of [10].

On the other hand, the work of [2] also guarantees global
asymptotic stability with time–varying full–state quantization
in two subsequent stages. Although our approach can be
roughly understood as a particular case of the Theorems
provided there, an important new feature introduced here is
a state predictor that reduces the amount of data transmitted
per sample by only sending the quantized prediction error.
This reduces the data–rate to a minimum of 1 bit per sample,
while the data–rate in Theorem 3 of [2] islog2(2M), a value
that cannot be taken arbitrarily low.M is actually defined as
a function of the matricesA,B,K of the control system, and
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Fig. 2. Block diagram of MEMS accelerometer using∆-M both in the inner analog capacitance–to–digital conversion and in the outer force–feedback loop.

it must be large enough to make the (thereby defined) scale
factor small. In Theorem 4 of [2] a 1-bit per sample data–rate
transmission scheme is also discussed, but here the separation
principle is not present, as the feedbacku = H(q(x)) is no
longer a linear feedback of the state estimated on the receiver
side. But probably the most significant difference between that
approach and the one presented here is the zooming factor. In
[2], it is calculated in terms of the convergence of the stateto
an attractive ellipsoid, whose geometry depends in a complex
way on the system matrices. In our approach the zoom factor is
updated at all times with a simple law that only depends on the
last two state estimations, irrespective of the system matrices
(and hence not subject to the side effects of bad identification).

E. Definitions and notation

Let x ∈ R
n, A ∈ R

n×n. The following definitions and
notation are in order:

• ||x||2 =
∑n

i=1 x2
i

• |x| =
∑n

i=1 |xi|, where|x| ≥ ||x||
• sgn(x) = [sgn(x1), sgn(x2), · · · , sgn(xn)]T ,

with sgn(0) = ±1 arbitrarily1, and
• ||A|| is the induced Euclidean norm ofA.

F. Control setup

The control setup under study is shown in Figure 3, which
describes a closed–loop system under one-way communication
channel. The control computations are assumed to be done at
the plant side, whereas the sensor is remotely located. Infor-
mation from sensor to controller is then transmitted through
a data communication network, and coded by the differential
encoder/decoder mapsΦE : x 7→ δ, andΦD : δ 7→ x̂, where
δ(t) is the encoded signal vector of dimensionn, with only
two-valued elementsδi(t) ∈ {−1, 1}, ∀n = 1, 2 . . . , n, and
x̂(t) ∈ R

n is the estimated value ofx as obtained from the
decoding mapΦE .

This architecture is commonly found in the NCS literature
where a common actuator is used for controlling a system
with distributed sensors (probably a large number of low cost
wireless devices). Some practical applications where its use is
clearly justified are:

• Energy–efficiency control in buildings. In such applica-
tions, it is quite frequent to distribute a set of low–power
temperature and humidity sensors all over the premises, in
order to gather distributed information and use it together

1When our encoding algorithm requires that value, we will allow it to issue
a +1 or -1 arbitrarily.
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Fig. 3. Block diagram of the continuous-time version of the problem.

with heat flow or energy consumption models to design
optimal control strategies. In those cases, the actuators
are normally few and large in size (air conditioning units,
window openers...) and they are wired to the controller
(when not directly built–in).

• Another application where a great research effort is being
done is in underwater vehicle control. In a scenario where
a set of underwater explorer robots are remotely con-
trolled and coordinated by a surface vessel, the limitations
on data rate appear exclusively on the upward link, as the
surface ship enjoys a significantly larger source of energy
for transmitting.

G. Assumptions

The hypotheses used all along the paper, are the following:

• The coding strategy is assumed to be scalar, i.e. each
componentxi

k of the vector signalxk is coded inde-
pendently of each other. Therefore, the encoding (re-
spectively decodingΦD) process is defined as an-
dimensional map,ΦE = [Φ1

E , Φ2
E , . . . Φn

E ]T , with ele-
mentsΦi

E : xi 7→ δi,
• The encoded system outputs are binary, i.e.δi

k ∈ {−1, 1}
• The maximum bit rate per unit of time isR [b.p.s.],
• Transmission and ADC delays are neglected. Aspects re-

lated to transmission delays have been studied elsewhere,
see for instance [26], and [25].

II. CONTINUOUS-TIME FORMULATION

To simplify matters, we first consider in this section a
fully continuous-time formulation. The more realistic discrete-
time case, including data-rate constraints, will be studied in
subsequent sections.
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Fig. 4. Block diagram of standard continuous-time version of the ∆-
M coding scheme. The encoderΦE is depicted at the left, where the decoder
ΦD is shown at the right. Forn > 1, δ is defined asδ = [δ1, δ2, . . . , δn]T ,
with δi ∈ −1, 1.

We consider linear systems, with a linear feedback of the
following form:

ẋ(t) = Ax(t) + Bu(t) (1a)

u(t) = −Kx̂(t) (1b)

wherex(t) ∈ R
n, A ∈ R

n×n, B ∈ R
n×m are controllable

matrices,u(t) is the input vector.

A. Differential coding

There exists a large class of source coding algorithms
aiming at compressing information for a more efficient data
transmission.

Differential coding schemes belong to the temporal wave-
form coding class of algorithms. In differential coding, differ-
ences between successive samples are encoded rather than the
samples themselves. Since the difference between samples is
expected to be smaller than the actual sample amplitude, fewer
bits are required to represent the differences. Delta modulation
(∆-M ), shown in Figure 4, is the simplest form of differential
coding (see [20]), in which a two-level (1-bit) quantizer isused
in conjunction with a first-order predictor.

The continuous-time version of the∆-M coding algorithm
is:

• Encoder mapΦE : x 7→ δ

˙̂x(t) = ∆(t) · δ(t), x̂(0) = 0 (2a)

δ(t) = sgn(x(t) − x̂(t)) . (2b)

where sgn(ζ) = [sgn(ζ1), sgn(ζ2), · · · , sgn(ζn)]T ,
• Transmitted information:δi(t) ∈ {−1, 1},
• Decoder mapΦD : δ 7→ x̂

x̂(t) =

∫ t

0

∆(τ) · δ(τ)dτ, x̂(0) = 0. (3)

∆(t) ∈ Rn×n is the step size matrix, which in general
is chosen to be constant (time-varying, or adaptive gains
can also be considered, as shown later in this paper). For
designing simplicity,∆(t) is frequently chosen to be diagonal.
A mandatory choice is that the gain∆(t) must be strictly the
same on both sides of the coding process, in order for the
decoder to work properly.

To simplify notation, time-arguments will be dropped in
this section in all variables when its explicit mention is not
necessary.

B. Coding separation principle

The complete coding process can be seen as an estimation
process defined by the coding mapΦC : x 7→ x̂, for the
problem of state feedback stabilization In the case of reliable
noiseless channel transmissionΦC is simply defined asΦC =
ΦE ◦ ΦD.

Behind the separation principlethat will be advocated
here, lies the idea of first designing the feedback gainK
disregarding the coding algorithm; assuming thatx ≡ x̂, and
then designing the coding mapΦC in such a way to preserve
stability whenΦC is embedded in the feedback loop. In fact,
the feedback law design is separated from the design of the
coding algorithm, while the converse is not true, as it will be
demonstrated later.

With this in mind, we first consider here that the linear
feedback gainK is designed so that the matrix

Ac = A − BK

is strictly stable under the controllability assumption ofthe
pair (A, B). Then, we will see that some modifications on
the standard∆-M algorithm are in order, for this separation
principle to be possible. Before introducing the modified form
of the∆-M algorithm, we first discuss the stability properties
achievable with the standard form.

C. Standard∆-M coding algorithm in feedback

Consider the problem of finding a suitable value for∆ so
as to stabilize system (1), under the coding law (2)-(3). It is
easy to see that the error equations read as:

ẋ = Acx + BKx̃ (4a)
˙̃x = Acx + BKx̃

︸ ︷︷ ︸

ẋ

−∆sgn(x̃) (4b)

with x̃ = x − x̂, and sgn(x̃) as defined in Section I-E. A
first observation is that this system is fully coupled, and that
the control and coding law can not be designed independently
of each other. In particular we note that the gain∆ should,
somehow, be chosen large enough to locally dominate the rate
of change of the system state,ẋ. Clearly, this can be done
only under relatively “high-values” for∆.

Putting aside technicalities in the sense of existence of
solutions (i.e. Filippov’s type, etc.) due to the discontinuous
right-hand side of Equation (4), which are not central for
the discussion here, the computation details given in Ap-
pendix VIII-A, show that if∆ is constant, and of the form

∆ = ∆0 · In×n, ∆0 > 0

with ∆0 being a scalar, one can select a sufficiently large
∆0, such as to ensure that the state and error trajectoriesζ =
(xT , x̃T )T tend to zero. That is,∆0 must satisfy a condition
of the type:

∆0 ≥ c · ||ζ(0)||

where c > 0 is a constant depending on the system and
controller parameters.



5

+
-

+
+

+
+

∫

∫
∆

∆

δ = ±1 δ x̂

x̂

x̃x

×

×

Ac

Ac

Encoder Decoder

Fig. 5. Block diagram of standard continuous–time version of the∆-M coder
with the proposed modification.

D. A new structure for the∆-M coding

The previous discussion (summarized in Proposition 5)
shows that relatively large gains for∆0 will be required to
stabilize the system, as the estimation of the bound on∆0

would tend to be conservative, and the size of the region of
attraction is suited to be large. Besides, in this continuous–time
framework, high gains will result in an important “chattering”
effect, thus increasing the estimation error variance whenthe
algorithm is discretized, or adding noise to the measured
signal. Although the analysis is conservative, and probably
lower values∆0 may still be possible, it is interesting to
study new structures of the∆-M coding such as to reduce the
necessary gain for stabilization. The algorithm presentednext
is a modification of the original form of the∆-M algorithm,
ad most importantly, it yields an estimation error equation
decoupled from the system statex.

Consider now the following modified∆-M algorithm

˙̂x(t) = Acx̂ + ∆(t) · δ(t) (5)

together with system (1), andδ(t) as defined before. Note
that a new termAcx̂ has been included in this case. As a
consequence, the coding algorithm depends explicitly on the
system model and the feedback gain used.

This equation describes both: the encoder and the decoder,
as shown in the block diagram of Figure 5.

It can be shown that the new error equation resulting from
this new structure is described as two systems in cascade
interconnection, i.e.

ẋ = Acx + BKx̃ (6a)
˙̃x = Ax̃ − ∆ · sgn(x̃) (6b)

note that equation (6b) describes an autonomous system whose
solution is the input of the stable linear system (6a).

The stability properties of this algorithm are simpler to
analyze than the one presented previously. They are also
more tractable, and certainly less conservative. They are given
next, and also result in a system (6) which is semi-globally
asymptotically stable.

Proposition 1: MODIFIED ∆-M CODING. Consider system
(1) together with the modified∆-M coding scheme (5). As
before, assume that∆ ∈ R

n×n is constant and has the
following form:

∆ = ∆0 · In×n,

and that∆0 fulfills the following inequality,

∆0 > a · ||x̃(0)||, a =
1

2
λsup

{
A + AT

}
,

then,ζ(t) =
(
xT (t), x̃T (t)

)T
is bounded and tends to zero as

t → ∞.

Proof: The proof is straightforward. LetV = x̃T x̃/2, and
from equation (6b), we have that

V̇ =
1

2
x̃T (Ax̃ − ∆sgn(x̃)) +

1

2
(Ax̃ − ∆sgn(x̃))T x̃

≤ −∆0|x̃| +
1

2
x̃T

(
A + AT

)
x̃

≤ −∆0||x̃|| +
1

2
x̃T

(
A + AT

)
x̃

≤ −∆0||x̃|| + a||x̃||2 = −||x̃|| (∆0 − a||x̃||)

where we have used the relation−|x| ≤ −||x||. From here
it can be seen that the condition∆0 > a · ||x̃(0)||, with a
given as in the last Proposition, makesV decrease, and hence
ensures that||x̃(t)|| < ||x̃(0)||, and that̃x(t) remains bounded
and tends to zero in finite time. Finite-time convergence is
typical in switching systems of the form (6b), and will not be
demonstrated here. From this analysis we can also conclude
that x̃(t) ∈ L2 ∩ L∞.

To complete the proof note that equation (6a) describes an
strictly stable linear system with input2 x̃(t) ∈ L2∩L∞, hence
we can conclude thatx(t) is also bounded and tends to zero,
as the Proposition states.

Remark 1:Note that the proposed new coding form, in
addition to simplify the stability conditions by making them
only depend on the estimation initial error, the new structure
introduces a side effect of a low pass filtering action that
will improve the filtering properties of the decoding dynamic
equations.

III. D ISCRETE-TIME ALGORITHM

In this section we present the extension of the continuous–
time differential coding to the more realistic case of a discrete–
time framework. We first introduce a simple case of a one–
dimensional unstable system for which the optimal gain∆ and
the attraction domain are easily found. Then, we extend this
result to systems of higher dimension.

A. One-dimensional system example

Consider the following one–dimensional discrete–time sys-
tem, together with the control law, and the differential coding
modified law:

• Open–loop system, and encoder:

xk+1 = axk + buk (7)

x̂k+1 = [a − bK]x̂k + ∆ · δk (8)

δk = sgn(x̃k) (9)

• Transmitted information:δk ∈ {−1, 1},

2Becausẽx(t) is bounded and tends to zero with Lyapunov functionV̇ <
β‖x‖2 for someβ, locally.
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• Decoder and control law:

x̂k+1 = [a − bK]x̂k + ∆ · δk (10)

uk = −Kx̂k (11)

with, K ∈ R, a ≥ 1, ac = (a − bK); |ac| < 1, and x̃k =
xk − x̂k.

The modified differential coder (8)-(10) differs from its
standard form in that the term within the square brackets
depends on the system model parametersa, and b, and on
the control gainK. In thestandardform this term is equal to
one, i.e. the encoder is described by a delayed integral term.
As mentioned before, the advantages of this modification is
that the coding error equations become decoupled from the
system state equations, making the design of the feedback gain
K independent of the coding structure.

This algorithm gives the following error equations, in cas-
cade form:

xk+1 = acxk + bKx̃k (12)

x̃k+1 = ax̃k − ∆sgn(x̃k) (13)

stability of the whole system can thus be tackled by only
studying the stability of the coding error equation (13).

Let Vk = x̃2
k, and∇Vk = Vk+1 − Vk, then

∇Vk = x̃2
k+1 − x̃2

k = (a2 − 1)x̃2
k − 2a∆|x̃k| + ∆2(14)

The right hand side of the equality defines a second order
polynomial of the formαr2 + βr + ∆2 = 0, with r = |x̃k|
and rootsr1, r2 given by:

r1 =
a − 1

a2 − 1
∆, r2 =

a + 1

a2 − 1
∆

Note that, for unstable systems3, these roots are always real
and positive sincea > 1, and that these values define three
zones, where∇Vk changes sign, i.e.

∇Vk =







≥ 0 if |x̃k| ≤ r1

< 0 if r1 < |x̃k| < r2

≥ 0 if r2 ≤ |x̃k|

For some constant∆, this means that if the initial condition
|x̃0| is taken within the region where∇Vk is negative, then
the functionVk will decrease until|x̃k| enters in the region
|x̃k| < r1, where∇Vk changes sign. At the next sampling
time, the system is pushed away from the regionr1 ≤ |x̃k|.
Due to the discrete nature of the problem, special care must
be taken in order to check that this repulsive jump (atk + 1)
does not lead the system state out of|x̃k+1| < r2, and hence
guarantee that the region|x̃| < r2 is indeed an invariant set.
The condition ensuring such a property depends ona and∆
as follows.

From (14) we have that the maximum possible jump ofxk+1

obtained from any value in|x̃k| < r1 happens at̃xk∗ = 0, and
has a magnitude equal to∆. Therefore, it is straightforward
to see that the state remains within the region|x̃k| < r2 for
all k > k∗ + 1, as long as the following relation holds:

∆ < r2 =
a + 1

a2 − 1
∆

3The case of stable systems is simpler. We will only discuss here the more
involved case of unstable ones.

This inequality is satisfied if and only ifa < 2, which is the
well known necessary and sufficient condition for stabilization
(see [21]).

Summarizing, we have that if the initial error coding vari-
able verifies|x̃0| < r2, then the error coding state|x̃k| is
locally attracted to a threshold delimited by the value ofr1.
After that, the state|x̃k| is ultimately bounded by∆, which
is belowr2 as long asa < 2.

It is important to remark that the value of∆ plays an
important role in both; the system stability and the system
precision:

• |x̃k| < a+1
a2−1∆ defined the domain of attraction (DOA)

of the trajectories delimiting the system stability domain.
It is enlarged by increasing∆.

• |x̃k| < ∆ is an invariant set (included in the previous
DOA) defining the system precision. Better precision is
reach with small values for.

Therefore, larger values for∆ will make the system more
stable but less precise; conversely, the reduction of the gain
∆ will lead to small estimation errors, but at the same time it
will reduce the domain where the system remains stable. This
analysis is summarized below.

Proposition 2: DISCRETE ONE-DIMENSIONAL SYSTEM.
Consider system (7)-(11), with constant∆ anda < 2. Then if
the initial conditions of the coding error are such that|x̃0| < r2

then, the following holds:
• |x̃k| < r2, ∀k ≥ 0,
• ∃k0 : |x̃k| ≤ ∆, ∀k ≥ k0, and
• limk→∞ d(xk,Bγ) = 0.

wherer2 = ∆(a+1)/(a2−1) andd(xk,Bγ) is the minimum
distance fromxk to any point within the interval

Bγ := {x ∈ R : |x| < γ}, γ =
Kb

1 − ac
∆

Proof: See Appendix VIII-B
Remark 2:This result displays an inherent trade–off be-

tween stability and precision for discrete–time differential
coding when the gain∆ is fixed. This suggests the search
of other coding strategies with varying gains. Note also that,
as the sampling time4 is chosen small,a approaches1 and
the precision is increased. Indeed,lima→1 r1(a) = 0, thus by
makingTs infinitely small, the limit case of the continuous–
time precision is approached.

B. Noisy one-dimensional system

The above analysis will be extended to the case where the
open–loop model is affected by bounded noise. In this case,
the state equations turn into

xk+1 = axk + buk + wk

uk = −Kx̂k

x̂k+1 = acx̂k + ∆sgn(x̃k)

where wk is a bounded noise (|wk| < W ). With the
proposed feedback, the dynamics of the error variablex̃k turns
into

x̃k+1 = ax̃k − ∆sgn(x̃k) + wk

4The pole of the discrete-time systema is related the open–loop continuous
one asa = eωolTs .
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Using again the Lyapunov functionVk = x̃2
k, and ∇Vk =

Vk+1 − Vk, then

∇Vk =

(a2 − 1)x̃2
k − 2(ax̃k + wk)∆sgn(x̃k) + 2ax̃kwk + ∆2 + w2

k

≤ (a2 − 1)x̃2
k − 2a|x̃k|(∆ − W ) + (∆ + W )2 (15)

There is an interval of|x̃k| such that∇Vk is negative as long
as the last second order polynomial on|x̃k| has real roots
(otherwise it would be an everywhere positive parabola). This
condition is implied by

4a2(∆ − W )2 − 4(a2 − 1)(∆ + W )2 > 0

for which it is necessary that

(∆ − W )2

(∆ + W )2
>

a2 − 1

a2
= 1 −

1

a2
. (16)

It is clear that the right hand side of the inequality is less than
one for alla ∈ IR. Now we will consider that∆ is a tuning
parameter andlim∆→∞

(∆−W )2

(∆+W )2 = 1
Hence, the left hand side of (16) can be made arbitrarily

close to 1, and greater than any value of the RHS. Rearranging
terms, we have that the set of values of∆ such that the
polynomial (15) has real roots is

∆ > W
1 +

√

1 + 1
a2

1 +
√

1 − 1
a2

(17)

This inequality makes sense for unstable open–loop plants
(a > 1). Otherwise, (16) is trivially satisfied for all∆.

The roots of polynomial (15) determine the region of
attraction in x̃ of the proposed scheme, and its steady state
error. These roots arer1,2 =

a(∆ − W ) ±
√

a2((∆ − W )2 − (∆ + W )2) + (∆ + W )2

2(a2 − 1)

From the analysis of this expression, the following obser-
vations are in order:

i) considering that the variable of polynomial (15) is the
absolute valueof |x̃|, the existence of positive real roots
guarantees the existence of an interval onx̃ such that
∆V < 0;

ii ) a necessary condition for the polynomial to have positive
real roots is (17);

iii ) if the latter holds, there are real valuesr1, r2 such that
r1 < |x̃| < r2 implies ∆V < 0, i.e. the domain of
attraction is defined by|x̃| < r2, and the estimation error
is ultimately bounded by|x̃| < r1.

Regarding the variablexk, an analysis analogous to the
previous subsection can be made by observing the following
expression,xk = 1

z−ac
(Kbx̃k + wk) = 1

z−ac
w̃k. Now

considering that the new input̃wk is ultimately bounded as
|w̃k| < r1 + W (from the upper bounds on|wk| and |x̃k|),
the same arguments of the previous subsection lead to the
conclusion that the statex asymptotically approaches the
interval |xk| ≤ γ̃ with γ̃ = Kbr1+W

1−ac
.

C. n-dimensional systems

The previous study can be generalized to systems with
higher dimension of the form

xk+1 = Axk + Buk (18)

uk = −Kxk (19)

where xk ∈ R
n, A ∈ R

n×n, B ∈ R
n×1. (A, B) are

stabilizable pair.
For the sake of space, the noise considerations will be

spared for simplicity. We consider systems whose matrixA
has distinct and real eigenvalues, i.e. there exists a transform
matrixT such thatΛ = TAT−1 = diag{λi}, with λi 6= 0, ∀ i.

The differential encoding modified law is:

x̂k+1 = Acx̂k + ∆ sgn(T x̃k) (20)

with, Ac = (A − BK); |λi{Ac}| < 1, and x̃k = xk − x̂k,∈
R

n, ∆ ∈ R
n×n. Note that the sign function depends on the

transform coordinates̃zk = T x̃k, and

sgn(z̃k) = sgn(T x̃k) = [sgn(z̃1,k), sgn(z̃2,k), · · · sgn(z̃n,k)]
T

The error equations in thexk, and z̃k coordinates are:

xk+1 = Acxk + BKT−1z̃k (21)

z̃k+1 = Λz̃k − T∆ sgn(z̃k) (22)

Proposition 3: DISCRETE N-DIMENSIONAL SYSTEM. Let
λm and λM be the smaller and the larger eigenvalues ofΛ,
respectively. Consider the differential encoding law (20), in
feedback with system (18)-(19), with the gain∆ given as

∆ = ∆0 · T
−1 · ∆̃

∆̃ = diag {sgn(λ1), sgn(λ2), · · · , sgn(λn)}

where∆0 is a positive scalar constant. Then, ifλ2
m > (λ2

M −
1), and the initial condition of the coded state is such that
||z̃0|| < r2 the following holds:

• ||z̃k|| ≤ r2, ∀k ≥ 0,
• ∃k0 : |z̃k| ≤ r1, ∀k ≥ k0, and
• limk→∞ d(xk,Bβ) = 0.

where0 < r1 < r2 are given as:

r1,2 =
∆0

λ2
M − 1

[

λm ±
√

λ2
m − λ2

M + 1

]

andd(xk,Bβ) is the minimum Euclidean distance fromxk to
any point within the ball

Bβ := {x ∈ R
n : ‖x‖ < β},

and β is a constant that can be computed as in the proof of
Proposition 2.

Proof: The proof follows along similar steps to the
previous proof. IntroduceVk = z̃T

k z̃k, and∇Vk = Vk+1 −Vk,
then

∇Vk = z̃T
k+1z̃k+1 − z̃T

k z̃k = z̃T
k

(
Λ2 − I

)
z̃k

− 2sgn(z̃k)∆̃Λz̃k + ∆2
0sgn(z̃k)T ∆̃2sgn(z̃k)

= z̃T
k

(
Λ2 − I

)
z̃k − 2sgn(z̃k)∆̃Λz̃k + ∆2

0
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Note that

−sgn(z̃k)∆̃Λz̃k = −
∑

i

∆0|z̃i,k| · |λi|

≤ −∆0λm

∑

i

|z̃i,k| = −∆0λm|z̃k| ≤ −∆0λm||z̃k||

Then,

∇Vk ≤ (λ2
M − 1)||z̃k||

2 − ∆0λm||z̃k|| + ∆2
0 ≡ ϕ(||z̃k||)

ϕ(||z̃k||) = 0 defines a second order polynomial with roots,r1,
and r2, as defined previously. A necessary condition for this
polynomial to have real roots, or equivalently, for the minimum
of ϕ(||z̃k||) to be negative is thatλ2

m > (λ2
M − 1). However,

this condition is only sufficient for making∇Vk negative in the
domainr1 ≤ ||z̃k|| ≤ r2. Other less conservative conditions
may be found.

We have, as before, three regions:

∇Vk =







≥ 0 if ||z̃k|| ≤ r1

< 0 if r1 < ||z̃k|| < r2

≥ 0 if r2 ≤ ||z̃k||

and hence, the first two properties invoked in Proposition
3 follow exactly the same arguments than the ones used in
previous sections. They are in consequence omitted here. The
last statement follows from the relationxk = G(z)z̃k, and
assuming that thex-subsystem (21) may also be diagonalized,
the diagonalization leads to a set ofn perturbed systems of
the form (12) in new coordinates, from which we conclude
boundedness of the state||xk|| based on the same arguments
as in Proposition 2.

D. Data-Rates

It is assumed here that samples ofx(t), are digitalized with
large enough resolution such thatxk digitalization errors are
neglected. As the transmission is done by only one bit, the data
transmission rate (number of bits transmitted per unit of time)
associated to this scheme, isRδ = one bit

Ts
= fs, in [Bits/sec]

wherefs = 1/Ts is the sampling frequency, and the system
precision is determined by the size of∆, the minimum
quantization step in the decoding process.

Let R, in [Bits/sec], be the network data-rate. Then if the
maximum network capabilities are used, i.e.Rδ = R = fs, the
system precision and the domain of stability can be rewritten
as a function ofR. For instance, in the one-dimensional case,
the expression forr1 andr2 is rewritten as:

r1 =
eα/R − 1

e2α/R − 1
∆, r2 =

eα/R + 1

e2α/R − 1
∆

where α is the unstable pole of the continuous-time orig-
inal system. As expected, increasing the transmission rate
R improves precision (limR→∞ r1(R) = 0), and stability
(limR→∞ r2(R) = ∞).

IV. A DAPTIVE CODING

The proposed scheme can be improved by making the
quantization factor∆ variable. We will show that proper
choice of a∆–adaptation mechanism relating the quantization

+
-

Gain selection

1

-1

1

z−ac

∆k

∆0

δk = ±1

∆k+1 = φk∆k

x̂k

x̃kxk

×

φk

Fig. 6. Adaptive coding scheme (only the encoder structure is depicted). The
figure shows the case of one–dimensional systems. The selection gain block
toggles the value ofφk according to Equation (24).

step to the amplitude of the state results in global asymptotic
convergence of the estimation error and the system states to
zero. This is a significant achievement with respect to the
fixed-gain scheme presented before, which was limited to finite
domains of attraction and convergence to finite balls5. The
main ideas of the adaptive scheme will be introduced here,
while the details and the stability proof has been reported in
[8].

One possibility is to make the adaptation law for∆ be
explicitly state depended. However, the statex is not available
at the receiver side. Therefore, the adaptation law must defined
exclusively in terms of the information availableboth at the
receiver and transmitter; which is not the state itself, but the
coding signalδk, and also theestimationof the statêxk. This
is an additional difficulty resulting for the hypotheses made in
this work.

A reasonable approach is to enlarge∆k for large values
of the estimated error prediction, and decrease it for smaller
values, in the same way as used in the standard adaptive delta
modulation for open-loop scenarios [20], i.e.

∆k+1 = K(δkδk−1)∆k, K > 1.

With this adaptation law, the value of∆k increases when
two consecutive signalsδk, δk−1 have the same sign.K is
then selected to minimize the total distortion. There existalso
other variations to this law, like the continuously variable slope
delta modulation (CVSD). However, it is important to stress
out that in the context of feedback systems, instabilities may
occur if rate of variation of∆k does not accommodate to
the maximum (or minimum) rate of variation of the dynamics
of the system to be controlled. This is the main difficulty in
designing adaptive Delta-modulation laws for control.

Under these considerations, a∆–adaptive mechanism, with
minimal storage and computation power requirements, can be
designed under the following assumptions:

1) If δk = δk−1, the error prediction is assumed to be
growing, thus∆k must be increased.

2) If δk 6= δk−1, the error prediction is assumed to converge
(oscillating close to zero) and∆k must be decreased.

5The attraction domain can be enlarged arbitrarily (by increasing ∆),
at the price of increasing also the amplitude of the remaining oscillation
(granularity).
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which leads to the following update law:

∆k+1 = φk+1∆k, ∆0 > 0, (23)

φk+1 =

{
λ+ if δk = δk−1

λ− if δk 6= δk−1
(24)

where0 < λ− < 1 is the exponential decay rate of∆k, and
λ+ > 1 is the exponential growth rate. The block scheme is
shown in Figure 6.

Heuristic and simple as it may seem, this adaptation law
guarantees global asymptotic stability of the close–loop sys-
tem, under the conditions stated in the following proposition.

Proposition 4: For any initial condition, the statexk of sys-
tem (7)-(11) with the adaptive∆-modulation coding scheme
24, asymptotically converges to zero ask → ∞ if there exist
parametersλ+ > 1, λ− ∈ (0, 1) satisfying the following
inequalities:

λ+ > a (25)

λ− < (λ+)−
β
2 , (26)

where

β(a, λ−, λ+)
△
= 1 + logρ

(

1 +
a (a − λ−) (ρ − 1)

(λ−)2

)

ρ
△
=

λ+

a

Moreover,∆k also converges to zero regardless its initial value
∆0.

Remark 3:A practical implementation of the algorithm
should avoid too low values of∆k. If the zoom–in stage
is allowed to run for a long time,∆k would become very
small. In that situation, a disturbance driving the state far from
the origin would originate a zoom–out stage equally long,
as ∆k would have to undo all the previous reduction steps,
for catching up the state. This is properly addressed in the
Simulations Section.

The details of the proof of this proposition can be found
in [8], and are omitted here for the sake of clarity. However,
a key consideration is that a choice of parametersλ+ and
λ− fulfilling the stability conditions (25)-(26) is not always
feasible. Indeed, (26) is an implicit equation and its solvability
depends on the particular value ofa.

In Fig. 7 we have depicted the expressionλ− − (λ+)−
β
2

from (26). The left part of the figure shows that fora = 1.2,
the surface is below zero over a small area, and hence there
are solutions fulfilling Proposition 4. However, the right part
of the figure indicates that fora = 1.4 no valid pairλ+, λ−

can be found, and hence the system cannot be properly tuned.
Moreover, as the right hand side of (26) decreases witha,
there will be no more solutions for largera.

A. n–dimensional adaptive coding.

The results of section III-C can be easily extrapolated to
the adaptive coding results. Indeed, under the condition of
diagonalizing the system matrixA, it is easy to check that
22 become a set of independent scalar equations, that can be
rewritten as

{z̃i}k+1 = λi{z̃i}k − {∆i}ksgn({z̃i}k) , i = 1 . . . n

Now by substituting each∆i by an adaptive parameter in the
form (23),

{∆i}k+1 = {φi}k+1{∆i}k, ∆0 > 0, (27)

{φi}k+1 =

{
λ+ if sgn({z̃i}k) = sgn({z̃i}k−1)
λ− if sgn({z̃i}k) 6= sgn({z̃i}k−1)

(28)

we then conclude that each{z̃i} will converge to zero by the
same arguments presented in the previous scalar analysis; and
from such convergence, the stability of the system is directly
implied.

B. Relation with the N & S condition for stabilization under
channel limitations.

A further issue that must be addressed with respect to the
adaptive∆-M scheme is the question wether the limitation on
the open–loop poles (parametera) to be below a certain value
is a structural property or a limitation due to the sufficient
nature of the result.

In any case, our limitation should be consistent with the
necessary and sufficient condition for stabilization presented
in [21]. This condition indicates that the minimal data rate
required for stabilizing a discrete-time system via a communi-
cation channel of maximum rate capacityR [b.p.u.]6 is related
to the unstable open–loop poles (λun

i ) as:R >
∑

log2(λ
un
i ),

which in our case simplifies to:

R > log2 a (29)

The implicit assumption made within the framework of our
discrete-time formulation is that the channel can reliablytrans-
mit one bit-per-unit of time, that is thatR = 1. This means that
with regard to condition (29), the maximum admissible value
for a is a < 2, which is consistent with our sufficient condition
a < 1.313, probably due to the technicalities used for the
stability analysis, or either due to the particular structure of
the proposed adaptation law. This also indicates that there
is some conservatism in the computation of the admissible
set of the parameterλ+ andλ−. Some alternative adaptation
strategies could be devised in order to improve this bound.
For example, a more sophisticated adaptive algorithm based
on older samples ofδk could possibly be designed, at the cost
of higher complexity.

V. SIMULATIONS

System (7)-(11) has been simulated for the set of values
R = 1[b.p.s.], a = 1.1, b = 1, K = 0.2. Initial conditions for
the states are:x0 = 100, x̂0 = 0, and∆0 = 5 for the adaptive
algorithm. Its adaptation gains areλ− = 0.4, λ+ = 1.21,
satisfying conditions (25) and (26).

For the sake of comparison with the non–adaptive scheme,
a first simulation has been made with constant∆. Fig. 8 shows
the behavior of the closed–loop system when∆ is given fixed
values, (it only switches at specific times, between values 20,
10, 5, and then 20). We have chosen large values of∆ in
order to highlight its connection with the chattering amplitude.
The plot indicates clearly that both magnitudes have the same

6R is given in dimensionless units, i.e. bits per unit of time [b.p.u.]
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Fig. 7. (Left) Expressionλ− − (λ+)−
β
2 for a = 1.2; (Right) The same expression fora = 1.4.

order. An important issue here is that∆ cannot be fixed too
low (thus reducing the granularity) without compromising the
domain of attraction.
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Fig. 8. Simulation results for non–adaptive∆-M scheme, with∆ fixed along
specific intervals.

Fortunately, this limitation has been successfully tackled
with the new adaptive approach, as is illustrated in Fig. 9.
In this plot, the statexk, x̂, and the adaptive quantization
parameter∆k for the noiseless system are depicted. On the
upper plot, the statexk, x̂ are plotted together along the whole
simulation. As expected, convergence of both the estimation
and the state to zero is obtained regardless the initial values. In
the lower plot of that figure,∆k can be compared to the state
xk at the initial stages of the simulation, where the zoom–out
and zoom–in periods can be distinguished.

Although we do not have a conclusive theoretical analysis
on the performance of the adaptive scheme in the presence of
noise, we have observed via simulations, that the inclusionof
white noise in the system dynamics, no matter the amplitude,
does not cause instability of the system. Yet, naturally, the
steady state presents variations around the origin whose am-
plitude is directly related to the amplitude of the added noise
(Fig. 10).

In all simulations, some granularity has been allowed by
constraining∆k to remain always above∆min = 2. This is a
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Fig. 9. Simulation results for adaptive∆-M scheme, noiseless system.
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Fig. 10. Simulation results for adaptive∆-M scheme, noisy system.

practical adjustment done for improving the transient behavior
(see Remark 3). Without this saturation,∆k would keep
tending to zero in steady state, and whenever a disturbance
drives the state away from the origin, a large number of
samples would be required for (23) to make∆k large enough
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to capture again such state (i.e. the zoom–out transient time
would undesirably depend on the length of the previous zoom–
in stage). In the noisy scenario, it is very important to properly
tune the minimum allowable value of∆k to minimize the
steady–state chattering.

VI. CONCLUSIONS

In this paper we have investigated the stability properties
of the Delta-modulation coding rule, when used as an Analog
to Digital Converter or a transmission means in networked
controlled linear systems.

It was first shown that the standard form of the∆-
M algorithm can be modified, including information about the
system and the controller, to enlarge the attraction domainof
the closed–loop system equilibrium. Then, we have shown that
in the discrete-time case, a trade–off between system precision
and size of the stability domain can be assessed.

These results were extended to the case of adaptive∆-
M . An explicit adaptation rule has been discussed, with still
significantly easy implementation. This scheme guarantees
global asymptotic stability under the constrain imposed by
a limit on the maximum unstable eigenvalues of the system
that are compatible with the ones given in [21]. The effect of
random noise has been analyzed for all schemes.

The practical application of the proposed technique is the
growing field of low–cost wireless sensor networks, where
minimum data transmission per sample results in a significant
improvement of battery life and optimal bandwidth manage-
ment.
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VIII. A PPENDIX

A. Stability of the continuous–time standard∆-M algorithm.

Proposition 5: STANDARD ∆-M CODING. Consider sys-
tem (1) where x̂ ∈ R

n is the state estimate computed
according to the∆-M standard scheme (2)-(3). Letx̃ = x− x̂,
and assume that∆ ∈ R

n×n is constant, and has the form
∆ = ∆0 · In×n,

Let ζ = (xT , x̃T )T , then there exists a constantc > 0 such
that for any possible value of initial conditionsζ(0), there
exists a corresponding scalar constant value∆0 ≥ c · ||ζ(0)||
such thatζ(t) → 0, ast → ∞.

The constantc > max(c5, c5c6) > 0, and theci given by the
following relations:c1 = ||2PBK||, c2 = ||Ac||, c3 = ||BK||,

c4 = max{c1, c2}, c5 = c3 +
c2
4

4q , c6 =
√

λM

λm
. Where

λM = λsup {P}, λm = λmin {P}, with P = diag{P, I},
and q = λminQ. P = PT > 0, andQ > 0, are solutions of

PAc + AT
c P = −Q.

Proof: Consider the quadratic Lyapunov functionV =
xT Px + x̃T x̃. EvaluatingV̇ along solutions of system (4),
and using−|x| ≤ −||x||, gives V̇ ≤

≤ −q||x||2 + c1||x|| ||x̃|| + c2||x|| ||x̃|| + c3||x̃||
2 − ∆0|x̃|

≤ −q||x||2 + c1||x|| ||x̃|| + c2||x|| ||x̃|| + c3||x̃||
2 − ∆0||x̃||

≤ −q||x||2 + c4||x|| ||x̃|| + c3||x̃||
2 − ∆0||x̃||

≤ − (||x||, ||x̃||)

(
q − c4

2

− c4

2
∆0

||x̃|| − c3

) (
||x||
||x̃||

)

From here we can see thatV̇ is negative as long as the
matrix in the equality above is positive definite, i.e. for values
of ∆0, such thatq

(
∆0

||x̃|| − c3

)

>
c2
4

4 , or equivalently if∆0 >

c5||ζ|| ≥ c5||x̃||. Nevertheless, this condition by itself does not
define the domain of attraction. For this we proceed further as
follows.

Define λM = λsup {P}, and λm = λmin {P}, with P =
diag{P, I}. With this definition we have the following bounds
on V (ζ),

λM ||ζ||2 ≥ V (ζ) ≥ λm||ζ||2 and

−λM ||ζ||2 ≤ −V (ζ) ≤ −λm||ζ||2

using these bounds, and assuming that∆0 > c5||ζ||, then there
exists a scalar functionǫ(||ζ||) > 0, such that

V̇ ≤ −ǫ(||ζ||) · ||ζ||2 ≤ −ǫ(||ζ||)
V

λM
(30)

Integration on both sides of this equation along the time-
interval [0, t], gives,

V (t) ≤ V (0) exp(−ϕ(ǫ(||ζ||)),

whereϕ(t) =
∫ t

0
ǫ(||ζ(τ)||)

λM
dτ. Note thatϕ(t) > 0, as long as

∆0 > c5||ζ||. Using again the bound onV in the expression
above, we obtain

||ζ(t)||2 ≤
λm

λM
||ζ(0)||2 exp(−ϕ(t))

||ζ(t)|| ≤

√

λm

λM
||ζ(0)|| exp(−ϕ(t))

= c6 ||ζ(0)|| exp(−ϕ(t)/2),

and using the relation given in Proposition 5, i.e.∆0 ≥
c · ||ζ(0)|| > c5c6||ζ(0)|| in the above inequality, we get
||ζ(t)|| < ∆0

c5
exp(−ϕ(t)/2). Therefore, under the relation

∆0 > c5||ζ(0)||, as proposed in Proposition 5, and using
exp(−ϕ(t)/2) < 1 ∀t, we conclude that|ζ(t)‖ < ∆0/c5

as required for Eq. (30) to hold. As a final consequence, the
time derivative of the Lyapunov function is negative definite
and the convergence||ζ(t)|| → 0 is guaranteed.

B. Proof of Proposition 3

Proof: The first two items result from the previous
development. The last item of the claim derives from the
following arguments. First note thatxk = Kb

z−ac
x̃k. Then,

defining the discrete–time transfer functionH(z) = Kbz
z−ac

,
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with impulse responseh(n) = Kban
c , n ≥ 0, yields the

input–output relationxk = H(z)z−1x̃k which in time domain
corresponds to the convolution

xk =

∞∑

m=0

x̃m−1h(k − m) =

∞∑

m=0

x̃mh(k − m − 1)

becausẽxm = 0 ∀m < 0 is assumed. Now using the fact
that xk is absolutelybounded (|x̃k| < r2, ∀k ≥ 0) and also
ultimatelybounded by∆ (second item of the Proposition), we
can split the convolution as follows

xk =

k0∑

m=0

x̃mh(k − m − 1) +
∞∑

m=k0+1

x̃mh(k − m − 1)

hence

|xk| ≤ r2

k0∑

m=0

|h(k − m − 1)| + ∆

n−1∑

m=k0+1

|h(k − m − 1)|

where the causality ofh(n) has been used. Substituting the
impulse response into this expression yields

|xk| < Kbr2

(
ak

c (1 − a−k0−1
c )

ac − 1

)

+ Kb∆

(
ak−k0−1

c − 1

ac − 1

)

=
Kb∆

1 − ac
+ v(k)

wherev(k) stands for

v(k) =
Kb

(
r2(1 − a−k0−1

c ) + ∆a−k0−1
c

)

ac − 1
ak

c ,

and asac < 1, we conclude thatlimk→∞ v(k) = 0 and the
statex asymptotically approaches the interval|xk| ≤

Kb
1−ac

∆.
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