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Abstract—TFRC protocol has not been designed to enable
reliability. Indeed, the birth of TFRC results from the need
of a congestion controlled and realtime transport protocol in
order to carry multimedia traffic. Historically, and following
the anarchical deployment of congestion control mechanisms
implemented on top of UDP protocol, the IETF decided to
standardize such protocol in order to provide to multimedia
applications developers a framework for their applications. In
this paper, we propose to design a reliable rate-based transport
protocol based on TFRC. This design is motivated by finding
an alternative to TCP where its oscillating behaviour is known
to be counterproductive over certain networks such as VANET.
However, we found interesting results partly inherited from the
smooth behaviour of TFRC in the context of wired networks. In
particular, we show that TFRC can realize shorter data transfer
compare to TCP over a complex and realistic topology. We firstly
detail and fully benchmark our protocol in order to verify that
our resulting prototype inherits from the good properties of
TFRC in terms of TCP-friendliness. As a second contribution,
we also propose a ns-2 implementation for testing purpose to
the networking community. Following these preliminary tests,
we drive a set of non-exhaustive experiments to illustrate some
interesting behaviour of this protocol in the context of wired
networks.

I. INTRODUCTION

Transport protocols suffer of an evolutionary pressure due

to the large diversity of recently identified networks properties.

For instance, High Speed networks raise several performance

problems while Delay Tolerant Networks are at the source of

multiple new routing and end-to-end communications issues.

As a result, the networking community shows a deep interest

in rethinking the way to carry data over Internet. In particular,

the IETF Transport Area Working Group (TSWG) is looking

at specifying new congestion control and the recent Transport

Architecture Evolution mailing list, discuss of ideas and issues

surrounding the medium to long-term architectural evolution

of the transport layer. Even the OSI model is now under

question. Indeed, in a recent paper [1], the authors argue that

the transport layer should be now sliced in three sub-layers to

cope with new network characteristics.

Although Internet transport protocols must be redesigned

due to congestion control lack of fairness and the difficulty

of TCP to achieve high throughput, some issues must also be

tackled in the context of satellite links, DTN and Intermit-

tently connected Mobile Ad-hoc Networks (ICMAN). Those

networks are notably characterised by long delay, lossy links

and asymmetric path for which the classical transports protocol

are known to poorly perform. New proposals such as Saratoga

[2] and LTP-T [3] with pure ARQ scheme (indeed SACK

or SNACK based), allowing a faster and efficient use of the

available bandwidth in the case of one-hop transfer, have been

proposed for interplanetary and satellites communications.

However, we must remark that these protocols are deeply

linked to the intrinsic store and forward nature of the DTN

architecture and the characteristics of the link layer.

Furthermore, we can note that at least for the ICMAN

scenario, a huge attention from the community have been

given to the routing problem while giving a little interest to

end to end transfer and transport. In dense PSN the radio

channel might be lossy with variable bandwidth due concurrent

communications and the fluctuating distance between nodes. A

transfer protocol deployed in such an environment might take

in account these parameters that lead to a problem sensibly

different than the one solved by deep-space transfer protocol

like Saratoga and LTP.

Recent work on transport protocols [4], [5] have proposed

alternatives to the generally used window based congestion

control. These protocols compute a sending rate which re-

produces the TCP behaviour and have been defined as an

alternative to UDP to carry multimedia traffic while respecting

the fair-share principle introduced in [6]. In a wireless or lossy

channels context, previous studies [7], [8] have demonstrated

the poor TCP performances over wireless and multi-hop

networks while others emphasise the good behaviour of rate

controlled congestion control over these networks [9], [10].

Therefore, the design of a reliable rate-based transport protocol

is perceived as a alternative data-delivery reliable service,

that might be suitable for wireless multi-hop network such

as vehicular networks (VANET) [11].

All these facts motivate the present study which detail a

complete rate-based reliable transport protocol implementation

as an alternative to the current domination of TCP in terms of

reliable service.



There exist a range of reliability mechanisms from basic

stop and wait to the more advanced Selective Acknowledgment

mechanism [12], [13]. In a previous contribution [14], we

outlined the design of a SACK-like mechanism, suited for

rate-based congestion control such as TFRC [4]. While TFRC

offers a smooth traffic dynamic property to the network, on

the application side, this congestion control allows a direct

exchange between the transport and application layers. Indeed,

the metric used by both layer is identical (i.e. a sending rate

in bit per second) and is not related anymore to the discrete

and unusable value of window of packets per RTT. This

previous study, mainly focused on the benefit of using such

rate-based protocol to efficiently reach a negotiated throughput

over a QoS-enable DiffServ network, did not specify the whole

mechanism that could be used over a best-effort network.

Thus, in this paper, we also consider the problem of flow

control implementation, i.e. how to prevent packet loss at

the receiver due to the receiving application not reading

packet fast enough from the socket buffer. Such flow control

mechanism is obviously mandatory to implement an efficient

reliable transport protocol and require specific adaptations

compare to the well-known TCP flow control version in order

to be used conjointly with a rate-based congestion control

mechanism. At last, the design of this implementation is not

static and allows enabling or disabling the reliable mechanism

plugged into TFRC. On the contrary, except in a recent study

proposing a unreliable TCP mechanism (TCP-UREL [15]) to

offer an alternative to DCCP/CCID#2 mechanism [16], none

TCP versions allow to switch between a reliable and unreliable

congestion control service.

The capability to directly interacts with the transport layer

in order to either adapt the QoS required by applications and

to enable or disable cross-layer mechanisms [17] and relia-

bility have motivated the name of this protocol: Chameleon.

Following the presentation of the whole structure of this new

protocol in the following Section II we demonstrate that the

present composition of SACK and TFRC does not impact on

the TFRC TCP-friendliness property and validate the add-

on of SACK and flow control mechanisms to TFRC by

showing that there is no packet loss at the receiver, in case

of a slow receiving application (Section IV). Before this, we

discuss other possible designs in Section III. We investigate

the behaviour of Chameleon protocol over a realistic topology

which aims to represent an Internet provider backbone inspired

from Free operator1 in Section V. Finally, Section VI gives the

conclusion and future work.

II. SPECIFICATIONS OF THE CHAMELEON PROTOCOL

We present in this section the protocol used for the integra-

tion of a flow control and, in particular, the composition of

the TFRC congestion control and SACK reliable mechanisms.

The concept of Selective ACKnowledgments (SACK) was

originally introduced in [12] as a TCP option that aims to

optimize its reliable service by allowing a faster recovery in

1http://www.free.fr/

the case of a burst of lost packets [13]. By sending selective

acknowledgements, the receiver of data can inform the sender

which segments or packets have been successfully received

and which ones have to be selectively retransmitted.

In [14], we have defined and validated the composition of

SACK and TFRC mechanisms in order to provide a transport

protocol compliant with the QoS negotiated with the network

layer. This composition implied modification of the SACK

mechanism to make it compatible to a datagram-oriented

mechanism such as TFRC.

The modifications of the TFRC messages headers to in-

tegrate SACK are shown in Figure 1. The two first protocol

data units represent respectively the TFRC header and the new

header including SACK. The two last Protocol Data Units

(PDUs) represent respectively the feedback for the classical

TFRC protocol and for the TFRC-SACK composition. As

TFRC mandates a new sequence number for each packet sent,

we have to introduce a new identifier, linked to Application

Data Units (ADUs), to perform the reliability. In the following

and in the remaining of this paper, we refer to this identifier

as sequence number. In all these headers, each field is either

encoded over 4 or 8 bytes except for the proto ID (two bits),

the type (two bits), processing time (one byte), and the

SACK payload (variable length). We defined the datagram

oriented SACK mechanism similarly to the stream oriented

mechanism: the SACK payload, constituted by a sequence

pair numbers. These pairs represent the edge of a continuous

sequence of corrected received packets. The length repre-

sents the number of pairs in the SACK payload. Finally the

Offset represents the sequence number of the first packet

of the first pair.

In the following of the paper, we refer to TFRC with

the SACK mechanism and the complete protocol with flow

control as TFRC-FC-SACK, and TFRC with only the SACK

mechanism as TFRC-SACK.

Based on this composition, the design of a flow control

mechanism compatible with TFRC is presented and validated

in the following.

Since the SACK mechanism requires receivers to maintain a

buffer for the in-order delivery of packet to the application, we

base our design on the introduction of a new window variable,

avail_win, representing the space available in this buffer. This

window should not be confused with the congestion-control

window of TCP. The only purpose of this variable is to

maintain, at the sender, the amount of buffer space available

at the receiver and prevent the sender from transmitting more

packets than there is available buffer space. Other candidate

solutions for the design, including modification of the TFRC

equation, are discussed in section III.

Figure 2 shows the sender and the receiver window. In this

figure, the dark boxes represent data packets already sent or

received.

At the sender, the flow control mechanism should stop

transmitting data packets if the receiver’s buffer is full. To

achieve this, we use the avail_win variable, which, at the

receiver, represents the available space in the receiver buffer,
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Figure 2. The sender’s and receiver’s window

in number of packets. This variable is integrated in the

TFRC-SACK feedback messages as a one-byte field after

the Receiving Rate field of the last header in Figure 1.

The avail_win variable therefore indicates, at the sender, the

supposed number of packets which can be sent. Avail_win is

never negative and upper bounded by the total window size.

When this variable is non nil, the sender sends data packets

at the rate computed by TFRC algorithm. Each time a packet

is sent, avail_win is decreased by one at the sender. When

avail_win is nil, the sender has already sent the maximum

number of data packets which could have been accepted by

the receiver. Note that the TFRC rate still condition the speed

at which packets are sent, the avail_win variable condition

the maximum number of packets which can be sent between

receiving two feedback messages.

Indeed, as mentioned previously, each feedback message

sent by the receiver contains the available buffer space.

At the sender, upon reception of a feedback message, the

avail_win variable is computed by withdrawing the number

of packets sent since the header’s Offset from the header’s

avail_win. A feedback message can therefore unfreeze

the sender if the newly computed avail_win is non-nil or

the SACK vector indicates that some packets need to be

retransmitted.

At the receiver side, when a data packet is received, if its

sequence number (Snew) is higher than the highest previously

received sequence number (Sold), avail_win is reduced by

Snew − Sold. Otherwise, this packet is out-of-order and is

therefore placed in the reception buffer. When the application

reads packets from the buffer, the avail_win is increased by

the corresponding number of read packets.

III. DISCUSSIONS

In this section, we discuss the design of our flow control

for TFRC and explore alternative solutions.

The main feature of a rate-based congestion control mech-

anism is the use of an equation to determine the sending

rate. This equation typically uses network measurements (or

estimations) to calculate the theoretical rate at which TCP

would send in similar conditions. Following this observation,

we first investigated two other possible solutions to the flow

control problem.

The first solution is to obtain the reading rate of the receiv-

ing application and send it back to the sender. This can be done

either by estimating the reading behaviour of the application or

by assuming that the application can communicate this reading

rate to the transport protocol. The sender would then adjust its

sending rate to the minimum between its computed congestion



control sending rate, twice the receiver’s receiving rate, and

the application’s reading rate. However, this solution has two

major drawbacks. Firstly, the reading rate depends on different

parameters such as application type, CPU usage, etc. and may

therefore follow complex patterns, which can be difficult to

estimate. This may result in erroneous values leading in buffer

overflow. Secondly, in order to provide packet ordering, the

receiver temporarily buffers out of order packets. This can

lead to a situation where the application’s reading rate is nil,

therefore the sender would stop even if there were space in

the buffer.

The second possible solution would have been to modify the

equation used to compute the sending rate. TFRC computes

its rate (X) with an equation, defined in [4]. This equation

takes into account the RTT and loss event rate (p). We note

this equation:

X = F (p, RTT ) (1)

We propose to model the flow control impact on the transmit-

ting rate as follows:

X = F (p, RTT ) + G(avail_win, p,RTT ) (2)

where G(avail_win, p,RTT ) is a model of the flow control

impact on the transmitting rate which takes into account the

avail_win variable and F (p, RTT ) is the TFRC equation as

defined in [4]. We chose not to pursue this solution, as it seems

to introduce too much complexity to the rate computation.

Moreover, if we want to avoid losing even one packet at the

receiver due to a slow reading application, we would need to

underestimate the sending rate, which would negatively impact

on the protocol performance.

From this, it follows that there is no improvement or benefit

in including the flow control in the TFRC’s sending rate

algorithm.

IV. MECHANISM VALIDATION

In this section, we validate our Flow Control mechanism

using simulation in ns-2.30. We first implemented the SACK-

like mechanism within ns-2.30’s TFRC. We also extended the

ns-2 simulator to include the application layer to simulate an

application reading from the socket buffer at different rate.

Using this implementation, we conduct a set of simulations to

demonstrate the effectiveness of our flow control mechanism,

and quantify the potential impact of the SACK and flow

control modifications over the TFRC flow dynamics.

A. TCP-friendliness conservation and Reliability

The first experiment aims at verifying the TCP-friendliness

of TFRC-FC-SACK when sharing a bottleneck with other TCP

flows. These days, the definition of the TCP-friendliness is

still being debated [18]. In this study, we will first follow

the definition in RFC3448: “[...] a flow is “reasonably fair”

if its sending rate is generally within a factor of two of the

sending rate of a TCP flow under the same conditions.”. This

definition concerns instantaneous values. Another common

view is that, on average, a flow is TCP friendly if the non-

TCP source obtains a long-run term average sending rate not

larger than the one TCP would have obtained under the same

circumstances [19].

To quantify the TCP-friendliness we therefore use an ex-

pression of the means ratio as shown on equation (3):

T (X) =
1

n

∑n

i=1
xi

1

m

∑m

i=1
yi

(3)

where X is the protocol being studied, xi the average through-

put of the ith X flow, n the number of X flows, yi the average

throughput of the ith TCP flow and m the number of TCP

flows. In this formula if T is inferior to 1 then the non-TCP

flow is TCP-friendly, if T is equal to 1 then we have an ideal

friendliness and finally if T if greater than 1 then the non-TCP

flow overruns TCP.

In this simulation scenario, we use the butterfly topology

shown on Figure 3. There are two sources transmitting to

two destinations over a shared link between two intermediate

nodes. These two flows are competing for the bottleneck link

bandwidth. We perform two experiments where TFRC-FC-

SACK is first competing with TCP-SACK, then with TCP

New Reno. All three protocols are set to the same packet size

of 1KByte and a maximum window size 64KBytes. In both

experiments, the application reading rate is infinite.

1 Mbits/s

RTT = 30 ms between end−hosts

Others protocols

TFRC−FC−SACK flow

10 Mbits/s

10 Mbits/s

10 Mbits/s

10 Mbits/

SRC 1

SRC 2 DST 2

DST 1

Figure 3. Topology of the scenario

Results are presented in Figure 4. Each graph shows the

flow instantaneous throughput at the receiver computed with

an average sliding window throughput estimation with a 1ms
window.

From Figure 4, we can see that the TFRC-FC-SACK flow

instantaneous throughput is slightly inferior to both TCP

SACK and TCP New Reno flows. In addition, the TFRC-FC-

SACK instantaneous throughput is well within the 2x factor

imposed by our TCP friendly definition previously mentioned.

We can therefore conclude that this TFRC-FC-SACK imple-

mentation remains friendly with both TCP SACK and TCP

New Reno2. In Figure 4 (a), TFRC-FC-SACK equally shares

the bottleneck with TCP during almost 130s. At t = 130s,

TFRC suffers from consecutive losses and therefore sharply

decreases its throughput. TFRC-FC-SACK then attempts to

re-adjust its throughput to the equilibrium with TCP, but this

process converges slowly, which is a well-known shortcoming

of TFRC [20]. When competing against TCP New Reno, as

shown in Figure 4 (b), TFRC-FC-SACK behaves similarly to

2Several experiments with different RTT and bottleneck capacity have
confirmed these results. Due to space reason, we give in this section a general
sample of these experiments.
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Figure 4. Validation of TFRC-FC-SACK composition in ns-2.30

its behaviour with TCP SACK except that it stays longer at the

first equilibrium (200s instead of 130s). Furthermore after the

consecutive losses TFRC-FC-SACK reaches the equilibrium

with TCP New Reno faster than with TCP SACK. These

differences can be explained as the TFRC equation models

TCP Reno.

Table I presents the TCP-friendliness index of TFRC-FC-

SACK calculated using equation (3). As all figures are below

one. This confirms that TFRC-SACK is friendly with both

version of TCP.

Table I
TCP-FRIENDLINESS INDEX RESULTS

TCP version T(TFRC-SACK)

TCP/Newreno 0.82

TCP/SACK 0.72

For these experiments, we also validate the SACK mech-

anism, i.e. verify that all lost packets are retransmitted. In

Table II, we summarize the number of sent and lost packets

for each flow in the previous experiments. We can see from

this table that TFRC-FC-SACK flows send less packets than

both TCP versions. This is explained as the TCP flows overall

throughputs are higher than the TFRC-SACK and the packet

statistics are collected during a fixed time period of 400s.

Furthermore, we can see that the TFRC-FC-SACK flows

experience less packets loss than both TCP flows (in absolute

value and in percentage). This is explained by the fact that the

rate-based congestion control mechanism produces a smoother

sending rate compared to a window-based mechanism which is

more aggressive. Finally, by using packet marking (not shown

in the table), we verify that TFRC-FC-SACK retransmit all

dropped packets until correctly received.

Table II
PACKETS STATISTICS

number of sent number of lost

packets packet (percentage)

TCP/Newreno 26702 166 (0.62%)

TFRC-FC-SACK 21962 45 (0.2%)

TCP/SACK 28740 162 (0.55%)

TFRC-FC-SACK 20368 42 (0.2%)

B. Impact of the Application Read Rate

The objective of this experiment is to validate the flow

control mechanism, by measuring the sender throughput when

varying the application read rate, i.e. simulating a slower

application. We also want to confirm that there is no packet

lost due to a slow receiver unable to accept incoming packets.

In addition, in this section, we quantify the impact of our

SACK and Flow Control mechanisms over TFRC smoothness,

by measuring the throughput stability during the data transfer.

In order to quantify this stability, we consider the average

throughput for each time unit interval. For each time interval

we compute each flow’s throughput standard deviation [21]

and obtain the following metric equation (4):

S =
1

n

n
∑

i=1

(

1

xi

√

√

√

√

1

m − 1

m
∑

j=1

(xi(k) − xi)2

)

(4)

where xi is the average throughput of the ith TFRC-FC-SACK

(resp. TFRC) flow, n is the number of flows, xi(k) is the

throughput of the ith TFRC-FC-SACK (resp. TFRC) flow for

the kth time interval and m is the number of time intervals.

For these experiments, we use a simple topology where two

nodes communicate through a third one. Packets are crossing

two consecutive links of respectively 10 Mbps and 1Mbps

bandwidth, for an overall 20 ms RTT (5ms delay on each

link).

Figure 5 (a) shows the throughput of a TFRC-FC-SACK

flow as the application read rate is set to 600kbit/s at the

receiver.

Each packet loss event is illustrated on Figure 5 (a) by a

cross on the x-axis. At the beginning of the transmission, the

sender sends packets according to the slow start algorithm.

This phase stops when the first packet loss event occurs. TFRC

then enters the congestion avoidance phase. As soon as the

receiver’s buffer is full due to the application limited read
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rate, the sender can no longer send further packets. As the

application reads from the buffer non nil avail_win values are

sent to the sender.

Hence, the sender is only allowed to send new packets when

the receiver has delivered some packets to the application.

Consequently, Figure 5 (a) confirms that the flow control

mechanism operates correctly as the throughput is adapted to

the receiver application read rate. Furthermore, Figure 5 (a)

shows that the receiver does not drop any packets.

In Figure 5 (b), we mix one TFRC-FC-SACK and one

TFRC flow in the same network conditions as previously.

However, contrary to the previous experiment, the application

read rate varies in time and follows a specific pattern as shown

in Figure 5 (b). We have chosen this specific pattern as it

represents a mix of above, below and equal to the fair share

throughput.

From Figure 5 (b), we can first see that a read rate above

to the theoretical fair share value (500kbit/s) does not impact

on the behaviour of TFRC-FC-SACK: TFRC and TFRC-FC-

SACK equally share the link bandwidth. Furthermore, the tran-

sition from this read rate to another one inferior to 500kbit/s
does not induce any packet loss at the receiver buffer. Between

t = 100s and t = 150s, the application read rate is set to

100kbit/s, i.e. under the theoretical fair share value. During

this phase, we can see from Figure 5 (b) that TFRC-FC-

SACK sending rate is following the application reading rate

while TFRC flow can uses the rest of the bottleneck. At

t = 150s, the application reading rate is set again to values

above to the fair share for 100s. We can see from the graph

that during this period TFRC-FC-SACK and TFRC equally

share the bottleneck bandwidth as expected. Finally, for the

remaining variations of application reading rate, TFRC-FC-

SACK continues to behave in a fair manner.

To quantify the impact flow control when the receiver appli-

cation drives the transmission over the throughput smoothness,

we use the stability metric, as defined in equation 4. We

applied this criterion on a set of experiments that aims at

checking that the flow control does not introduce any degra-

dation in the smoothness characteristic of TFRC.

In Table III, we present the results of experiment when two

identical flows share a bottleneck of 1Mbit/s during 400s.

We show in this table that TFRC-FC-Sack remains as smooth

as TFRC when it is not limited by the application read rate.

Furthermore when we introduce for both flows a read rate of

300Kbit/s, the resulting stability of the system is increased.

This result can be explained by the fact that the oscillations

in the throughput are usually due to the congestion control

mechanisms that tries to increase until the detection of a loss.

In the case of a system limited by the application read rate

the two flows do not try to increase nor decrease and therefore

are more stable.

Table III
STABILITY INDEX FOR DIFFERENT PROTOCOLS

TFRC TFRC-FC-SACK TFRC-FC-SACK read rate

S 0.094 0.097 0.051

V. EXPERIMENTATIONS OVER A REALISTIC TOPOLOGY

In order to evaluate our proposal over a more realistic case,

a more complex topology is used in the next simulations. This

topology is similar from this presented in [22]. According to

a small study of the xDSL backbone of a Internet provider3,

most of these networks are built around a central core where

several loops are connected. These loops are composed of a

small number of routers. The aim of the closed loop is to have

a fault tolerance.

For the simulation, a flower with five loops is considered

as backbone, each loop has 8 routers, shown in figure 6. Each

router (except the 5 core routers) has 2 DSLAMs connected to

it, and each DSLAM has 3 hosts connected to it. Each link has

the following characteristics: 10Mb/s bandwidth, 10ms delay,

DropTail.

We emit 250 FTP over TCP/Newreno/Sack connections

(flows) with random and non-identical hosts as source and

destination. Then, we realise exactly the same experiments

3http://www.journaldufreenaute.fr/ftp/reseau_free_juin_2005.pdf
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Figure 6. Backbone of the flower network.

TCP-Newreno-Sack TFRC-FC-Sack

Sum of transmission
times (in seconds) 960.44 842.43
Time of the last

last packet received 25.25 23.99
(in seconds)

Table IV
GLOBAL METRICS

with TFRC/FC/Sack proposal. Each connection starts at a

random time between 0 and 20 seconds and sends a random

number between 10 and 600 packets.

Table IV provides the global result obtained for the

whole simulation. We observe on average the trans-

fer time of TFRC/FC/Sack flows is globally lower than

TCP/Newreno/Sack.

In Figure 7, we classify each flow in ascending order of their

size (i.e. the number of packets of each flow is ranging from

10 to 600 and is reported on the x-axis) and we report their

respective time values on the y-axis. If several flows gets the

same number of packets (as this number is randomly choosen),

we report the highest value obtained by one of these flows. As

we used the same seed for each simulation, the distribution of

the flows’ size was the same for both TCP/Newreno/Sack and

TFRC/FC/Sack experiments. This figure tends to show that

the transfer times of long TFRC/FC/Sack flows are smaller

than TCP/Newreno/Sack flows. In order to better see this

trend, in Figure 8, we classify in ascending order each transfer

time value of each flow. Following these two figures, we

clearly see that long TFRC/FC/Sack flows obtain a lower

transfer time than TCP/Newreno/Sack. However, the shorter

the TFRC/FC/Sack flows are, the higher their transit time.

This means that TFRC/FC/Sack is not a good trade-off in

the context of short data transfers such as HTTP requests

but outperforms TFRC/FC/Sack in the context of long data

transfers.

We explain this effect by the slow dynamic convergence of

TFRC [20]. Indeed, TFRC is known to converge slowly to the
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nominal capacity of the link over high delay and congested

links just after the SlowStart phase. However, when TFRC

enters the steady state, its long run behaviour is more stable

than TCP which operates in a more oscillatory behaviour and

then, might reduce several time its congestion window due to

the highly dynamic character of the network.

In complement to the arguments presented in the intro-

duction (Section I), these results show another interesting

property of this protocol that might be helpful in high dynamic

environment where RTT is constantly oscillating. As an ex-

ample, due to the tremendous progress in physical and data

layers reliability, in clear weather condition4, a satellite link

is considered as mostly error free (following DVB-S standard,

4In [23] the authors show that, for some rain events, the DVBS2 ACM
modes can not cope with the deepest attenuations where the Eb/N0 of the
tropical rain is below the intervention threshold of the minimum ACM mode,
which is -1.5 dB for a 10

−7 QEF FEC (Quasi Error Free Packet Error Rate).



BER ≈ 10−7) while RTT might constantly moving due to

mobility. Thus, we claim it would make sense, in certain

condition, to prefer the use of rate-based mechanism rather

than window-based mechanism as presented in Section I.

We reserve for a future work measurements dealing with

vehicular networks. Indeed, current ns-2 simulator is not

well designed either to implement correct MAC and physical

layers models or to produce realistic VANET scenario. We

are currently analysing various possibilities to realize this task

and in particular investigating ns-2 extension software such as

[24].

VI. CONCLUSION AND FUTURE WORK

In this paper we have investigated and proposed a complete

reliable rate-based protocol based on TFRC and SACK mech-

anisms. Our design also introduces a flow control variable,

which regulates the sender to avoid packet loss at the receiver

due to a slow receiver. We show that the modifications result-

ing from this composition does not affect the TCP-friendliness

property of TFRC. We validate our proposal through ns-2.30

simulation and verify TCP-friendliness metrics. We further

show that there is no packet loss due to flow control, at the

receiver, and apply a stability criterion to demonstrate that the

introduction of the flow control inside TFRC does not alter

the smoothness property of this mechanism. We finally show

the benefit of using this protocol in the context of long data

transfer over a complex and realistic topology.

There is room for potential improvements. Following a

recent study in [25], in a future work, we will investigate

the benefit of tuning the number of feedback messages in

order to adapt the frequency of feedback messages depending

of the RTT, to guarantee optimal operation under various

network conditions. Others experiments must be propose in

order to verify hypothesis concerning the adequacy of such

proposal over VANET and multihop scenario. We are currently

specifying such scenarios based on real VANET traces in ns-2

and hope to obtain interesting results to discuss.
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