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Subwavelength imaging of light confinement in high-Q/small-V photonic

crystal nanocavity

Loic Lalouat,' Benoit Cluzel,"® Frédérique de Fornel,' Philippe Velha,? Philippe Lalanne,?
David Peyrade,3 Emmanuel Picard,* Thomas Charvolin,* and Emmanuel Hadji4
lGroupe d’Optique de Champ Proche, Institut Carnot de Bourgogne UMR 5209 CNRS—9 av. A. Savary,

21078 DIJON, France

*Laboratoire Charles Fabry de I’Institut d’Optique, CNRS, Université Paris-Sud, Campus Polytechnique,

RD128, 91127 Palaiseau, France

3Laboratoire des Technologies de la Microélectronique, CNRS, 38054 GRENOBLE, France
*Laboratoire Silicium Nanoélectronique Photonique et Structures, DRFMC/SP2M,CEA Grenoble, 17 rue des

Martyrs, 38054 GRENOBLE, France

(Received 11 December 2007; accepted 8 February 2008; published online 20 March 2008)

The optical near field of a high-Q and ultrasmall volume photonic crystal nanocavity is visualized
with a subwavelength resolution by using a scanning near-field optical microscope (SNOM)
operating at the same time in collection-scanning mode and in interaction-scanning mode.
It is shown that the nanocavity resonant mode is selectively visualized by using the SNOM
interaction-scanning mode while the whole electromagnetic field surrounding the nanocavity
is probed using the SNOM collection-scanning mode. The different optical near-field images

are compared in light of a three-dimensional numerical analysis

and we demonstrate

an unexpected mode coupling at the cavity resonance. © 2008 American Institute of Physics.

[DOLI: 10.1063/1.2890051]

Semiconductor photonic crystal resonators have at-
tracted much attention over the recent years. Their potential
for high quality (high-Q) factor in small volume (V) cavities
opens innovative ways to control light, including the
stopping and the trapping light,1 quantum information
processing,”” and the enhancement of light-matter
interactions.” This potential is expected to lead to a wide
range of applications for integrated on-chip photonics.s_7

The methods most commonly used for examining the
properties of such nanocavities are optical far-field tech-
niques, which typically consist in analyzing (spectrally or
temporally) the photons radiated into the far field. However,
these methods provide only indirect insight in the light-
matter interactions occurring in the cavity optical near-field,
which are at the origin of the remarkable properties of these
cavities. As a result, scanning near-field optical microscopy
techniques (SNOM) are highly relevant to directly probe
such nanostructures.® As reported in Refs. 9—-11, the SNOM
technique is a powerful method for localizing, both spatially
and spectrally, the electromagnetic field confinement inside
photonic crystal cavities. However, only low-Q cavities have
been studied so far and the very first attempts at probing
small volume cavities have shown that the near-field probes
[SNOM probes in Ref. 12 and atomic force microscopy
(AFM) probes in Refs. 13 and 14] strongly alter—or even
completely disrupt in the case of AFM probes—the light
confinement mechanism inside the cavity. For these reasons,
probing with a high resolution the optical near-field of the
light confined inside a high-Q/small-V nanocavity is a chal-
lenging task.

In this study, we face this challenge and achieve experi-
mentally high resolution SNOM pictures of the light con-
fined inside a nanocavity exhibiting a Q-factor of 41 000 (40
times higher than our previous works in Ref. 12 and 80 times
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higher than in Refs. 13 and 14) and a modal volume of
5.5.107"* cm? (almost 15 times lower than in Ref. 13). The
near-field images reported here are simultaneously recorded
using the recently proposed SNOM interaction-scanning
mode,lz’n’15 and the classical SNOM collection-scanning
mode.* ™" The differences between these two imaging meth-
ods are discussed in light of the recorded images by compar-
ing them with three-dimensional (3D) calculations of the
cavity mode.

The nanocavity considered in this work is a Fabry—
Perot-like resonator integrated on a ridge waveguide, de-
signed in such a Wagl to suppress the radiation losses at the
mirror termination.'® Similar structures have been recently
investigated by other group.17 The cavity is fabricated by
electron beam lithography and reactive ion etching on a
silicon-on-insulator substrate. As shown in Fig. 1, for a trans-
verse electrical (TE with the H-field is normal to the sub-
strate plane) polarization of the light, the nanocavity18 exhib-
its a single resonance at telecommunication wavelength (\
~ 1558 nm) with a Q-factor of 41 000.

The sample is then mounted on a SNOM coupled to a
spectrally resolved optical bench. A TE polarized tunable
laser source is coupled to the access waveguide by using a
lensed fiber (Lovalite® Photonics Tip). The light transmitted
through the cavity is collected using an achromatic metallic
mirror objective and detected using an InGaAs photodiode.
By accurately maintaining the optical alignments, an ultras-
mall homemade near-field probe consisting in a chemically
etched silica fiber with a 20 nm width apex is scanned at a
4 nm height above the cavity surface, while the probe-
surface distance is controlled thanks to a shear-force
feedback. "

As expected for a nanometric-sized dielectric probe,
the cavity resonance wavelength is slightly redshifted when
the probe is introduced inside the cavity optical near-field.
Remarkably, due to the extremely small size of the probe and

12,20
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FIG. 1. (Color online) (a) Schematic of the experiment. A TE polarized
tunable laser is coupled to the nanocavity. As the near-field probe is scanned
over the cavity surface, the light collected by the probe (Igyon) and the light
transmitted through the cavity (I;) are collected at the same time. The first
operating method, Igyom(x,y,z), corresponds the classical SNOM
collection-scanning mode, while the second one, I/{x,y,z), is the
interaction-scanning mode. (b) Typical nanocavity transmittance spectra.
The experimental spectrum exhibits a Lorentzian-shaped peak at resonance.

to its relative small refractive index, the resonance wave-
length is redshifted (6A=0.2 nm), while the cavity Q-factor
is only lowered by a factor 2. Consequently, the near-field
probe used here operates in a perturbation regime weak
enough to avoid a drastic alteration of the light confinement
inside the cavity.'mo

For SNOM measurements, we then develop an experi-
mental setup allowing the simultaneous recording of the
near-field maps of the nanocavity in collection-scanning
mode®™"" and interaction-scanning mode.'>"*?! The first
method is similar to the one used in classical aperture-
SNOM measurements, and the probe is used to locally col-
lect the electromagnetic field above the cavity [Isnom(x,Y,2)
in Fig. 1]. The second operating mode is based on the cavity
transmittance-variations [I;(x,y,z) in Fig. 1], which depend
on the probe position above the nanocavity. Figure 2 shows
typical near-field images recorded using the two operating
modes at the cavity resonance wavelength modified by the
presence of the probe (Ay+S\). In addition, for the purpose
of providing an insight in the spatial localization of the nano-
cavity on the optical near-field images, we present the shear-
force feed-back signal recorded during the optical scans in
Fig. 2(b). Figure 2(a) additionally shows the scanning elec-
tron microscopy (SEM) image of the cavity.

Let us first analyze the image recorded in interaction-
scanning mode. As explained in Refs. 12 and 21, the near-
field map is proportional to the resonant electric field distri-
bution inside the cavity. Thus, the positions of hot (or dark)
spots are entirely determined by the position of the nodes (or
antinodes) of the total electric field intensity. To allow for a
direct comparison, we plotted in Fig. 3(a) the total electric
field intensity, i.e., |EJ*+||E,|*+||E*, computed at a 4 nm
height above the cavity surface by using a 3D fully vectorial
frequency-domain modal method relying on Fourier expan-
sion techniques.22 A rapid glance at the two images reveals
strong similarities between the numerical one in Fig. 3(a)
and the experimental one in Fig. 2(c).

In contrast to the interaction-scanning mode which de-
tects photons outcoupled from the cavity, the collection-
scanning mode is directly related to the photons surrounding
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FIG. 2. (Color online) (a) SEM picture of cavity. (b) Shear-force feedback
signal recorded during the probe scan above the structure. (c) Interaction-
scanning mode map and (d) Collection-scanning mode map of the light
confined at the cavity resonance.

the cavity optical near-field. As will be shown hereafter, the
two imaging modes are complementary, and both of them
must be taken into account in order to achieve a stringent
analysis of the whole electromagnetic field surrounding the
nanocavity at resonance.

A comparison between the maps recorded using the two
operating modes [Figs. 2(c) and 2(d)] unambiguously shows
their similarities and differences. The cavity resonant mode
signature is clearly present in each of the two mapping
modes, with hot and dark spots appearing at the position of
the nodes and antinodes of the electric field. However, by
contrast with the interaction-mode image, the collection
mode image additionally exhibits a phase-shifted beating of

o
Field Intons:y {arb. units)

FIG. 3. (Color online) (a) 3D calculations of the resonant mode intensity at
4 nm above the nanocavity: \|é||2:||éx\|2+HE‘VH2+HE‘~H2 (b) Computed electric
field intensity distribution above a SOI waveguide resulting from the propa-
gation of the fundamental mode and the first order mode. The figure illus-
trates the phase-shifted beating pattern on the edge of the wavegnide that
can be observed in the SNOM collection mode measurements.
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alternate hot and dark spots on the edge of the waveguide.
We note that the contrast is maximal in the central part of the
cavity and that it rapidly vanishes as one enters the mirrors.
Additionally, we also note that the characteristic beating
length is ~600 nm, which surprisingly corresponds to twice
the separation distance between the standing wave antinodes
(or nodes) in the middle of the waveguide.

As the alternation of the hot and dark spots along the
two edges of the waveguide does not respect its transversal
symmetry, this implies that at least two modes with an op-
posite parity are coexisting inside the structure, leading to a
phase-shifted beating pattern on the SNOM collection mode
picture.23 Such a phenomenon is generally attributed to the
summation of the field amplitudes of the modes inside the
SNOM probe. Moreover, as the silicon waveguide is bimo-
dal, we believe that the observed beating results from the
co-existence of the fundamental mode (with an even parity)
bouncing between the two mirrors and the first order mode
(with an odd parity) propagating along the waveguide. We
computed the beating pattern expected for these two modes
in the case of the silicon waveguide. The result is plotted in
Fig. 3(b). It clearly exhibits a beating pattern similar to that
one observed experimentally with a characteristic beating
length close to the measured value.

Consequently, we believe that the SNOM collection
mode picture results from the competition of the cavity reso-
nant mode electric field distribution and of the beating pat-
tern. At last, we underline that the beating is not observed
elsewhere along the ridge waveguide except in the vicinity of
the cavity resonant mode. Thus, we believe that the first or-
der mode is not propagating along the whole waveguide but
is rather excited inside the cavity by the resonant fundamen-
tal mode itself. The origin of this coupling, which is obvi-
ously indirect since the two modes are orthogonal, is cur-
rently under investigation.

In conclusion, we have presented optical near-field maps
of the light confined within a high-Q/small-V photonic crys-
tal nanocavity recorded in interaction-scanning mode and in
collection-scanning mode. The differences between these
two imaging methods have been analyzed and the compari-
son between the different pictures has been found to be sup-
ported by three dimensional field distribution calculations.
The interaction-scanning mode is found to be selectively
sensitive to the cavity resonant mode field distribution while
the collection-scanning mode detects the whole electromag-
netic field surrounding the nanocavity. In addition, the com-
parison between the two imaging methods has revealed un-
expected mode coupling at the cavity resonance. Finally,
since we were able to overcome the challenge of directly
probing the optical near-field of the nanocavity without dras-
tically altering its light confinement, we believe this study to
a step towards the in situ mechanical nanomanipulation of
confined electromagnetic fields* for the control of the quan-
tum nature of strongly coupled cavity-atom systems of solid-
state physics.
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