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) below) and are therefore natural models in dimension 3 for the dissipation measure in a turbulent flow.

Introduction

The purpose of this paper is to introduce a natural multidimensional generalization (MMRM) of the one dimensional multifractal random measures (MRM) introduced by Bacry and Muzy in [START_REF] Bacry | Log-infinitely divisible multifractal processes[END_REF]. The measures M we introduce are different from zero, homogeneous in space, isotropic and satisfy the following exact scale invariance relation: if T denotes some given cutoff parameter then the following equality in distribution holds for all λ ∈]0, 1]: [START_REF] Bacry | Log-infinitely divisible multifractal processes[END_REF] (M(λA)) A⊂B(0,T )

= λ d e Ω λ (M(A)) A⊂B(0,T ) ,

where B(0, T ) is the euclidian ball of radius T in R d and Ω λ is an infinitely divisible random variable independent of (M(A)) A⊂B(0,T ) . Let us note that a multi-dimensional generalization of MRM has already been proposed in the litterature ( [START_REF] Chainais | Multidimensional infinitely divisible cascades. Application to the modelling of intermittency in turbulence[END_REF]). However, this generalization is not exactly scale invariant. Let us stress that to our knowledge equation (1) has never been studied mathematically.

In dimension 1, MRM are non trivial stationary solutions to (1) for all λ ∈]0, 1]. In dimension d ≥ 2, MMRM are isotropic and homogeneous solutions to [START_REF] Bacry | Log-infinitely divisible multifractal processes[END_REF] for all λ ∈]0, 1]. If we consider a non negative random variable Y independent from M then the random measure (Y M(A)) A⊂R d is also solution to [START_REF] Bacry | Log-infinitely divisible multifractal processes[END_REF] for all λ ∈]0, 1]. This leads to the following open problem (unicity):

Open problem 1. Consider two homogeneous and isotropic random Radon measures M and M ′ on the Borel σ-algebra B(R d ). We suppose that there exists some cutoff parameter T such that M and M ′ satisfy [START_REF] Bacry | Log-infinitely divisible multifractal processes[END_REF] for all λ ∈]0, 1]. Can one find (in a possibly extended probability space) a non negative random variable Y (Y ′ ) independent of M (M ′ ) such that the following equality in law holds:

(Y M(A)) A⊂B(0,T ) (law) = (Y ′ M ′ (A)) A⊂B(0,T )
The study of equation ( 1) is justified on mathematical and physical grounds. Before reviewing in some detail the physical motivation for constructing the MRMM measures and studying equation [START_REF] Bacry | Log-infinitely divisible multifractal processes[END_REF], let us just mention that equation [START_REF] Bacry | Log-infinitely divisible multifractal processes[END_REF] has recently been used in the probabilistic derivation of the KPZ (Knizhnik-Polyakov-Zamolodchikov) equation introduced initially in [START_REF] Knizhnik | Fractal structure of 2Dquantum gravity[END_REF] (see [START_REF] Duplantier | Liouville Quantum Gravity and KPZ[END_REF], [START_REF] Rhodes | KPZ formula for log-infinitely divisible multifractal random measures[END_REF]).

MMRM in dimension 3: a model for the energy dissipation in a turbulent flow

Equations similar to [START_REF] Bacry | Log-infinitely divisible multifractal processes[END_REF] were first proposed in [START_REF] Castaing | Velocity probability density-functions of high Reynolds-number turbulence[END_REF] in the context of fully developed turbulence.

In [START_REF] Castaing | Velocity probability density-functions of high Reynolds-number turbulence[END_REF], the authors conjectured that the following relation should hold between the increments of the longitudinal velocity δv at two scales l, l ′ < T , where T is an integral scale characteristic of the turbulent flow: if P l (δv), P l ′ (δv) denote the probability density functions (p.d.f.) of the longitudinal velocity difference between two points separated by a distance l, l ′ , one has:

(2)

P l (δv) = R G l,l ′ (x)P l ′ (e -x δv)e -x dx,
where G l,l ′ is a p.d.f. If one makes the assumption that the G l,l ′ depend only on the factor λ = l/l ′ (scale invariance), then it is easy to show that the G l,l ′ are the p.d.f.'s of infinitely divisible laws. Under the assumption of scale invariance, if we take d = 1, A = [0, l ′ ], λ = l/l ′ and Ω λd ln(λ) of p.d.f. G l,l ′ in relation (1) (valid in fact simultaneously for all A) then equation ( 2) is the p.d.f. equivalent to [START_REF] Bacry | Log-infinitely divisible multifractal processes[END_REF]. Following the standard conventions in turbulence, we note ǫ the (random) energy dissipation measure per unit mass and ǫ l the mean energy dissipation per unit mass in a ball B(0, l):

ǫ l = 3 4πl 3 ǫ(B(0, l))
We believe the measures we consider in this paper can be used in dimension 3 to model the energy dissipation ǫ in a turbulent flow. Indeed, it is believed that the velocity field of a stationary (in time) turbulent flow at scales smaller than some integral scale T (characteristic of the turbulent flow) is homogeneous in space and isotropic (see [START_REF] Frisch | Turbulence[END_REF]). Therefore, the measure ǫ is homogeneous and isotropic (as a function of the velocity field) and according to Kolmogorov's refined similarity hypothesis (see for instance [START_REF] Castaing | Conditional velocity pdf in 3-D turbulence[END_REF], [START_REF] Stolovitzky | Kolmogorov's Refined Similarity Hypotheses[END_REF] for studies of this hypothesis), one has the following relation in law between the longitudinal velocity increment δv l of two points separated by a distance l and ǫ l :

δv l (law) = U(lǫ l ) 1/3 ,
where U is a universal negatively skewed random variable independent of ǫ l and of law independent of l. Therefore, equations similar to (2) should also hold for the p.d.f. of ǫ l . Finally, let us note that the statistics of the velocity field and thus also those of ǫ are believed to be universal at scales smaller than T in the sense that they only depend on the average mean energy dissipation per unit mass < ǫ > defined by (note that the quantity below does not depend on l by homogeneity):

< ǫ >=< ǫ l >
where <> denotes an average with respect to the randomness. In particular, the law of ǫ <ǫ> and the p.d.f.'s G l,l ′ are completely universal, i.e. are the same for all flows; nevertheless, there is still a big debate in the phyics community on the exact form of the p.d.f.'s G l,l ′ . In dimension 3, the measures M we consider are precisely models for ǫ <ǫ> . The rest of this paper is organized as follows: in section 2, we set the notations and give the main results. In section 3, we give a few remarks concerning the important lognormal case. In section 4, we gather the proofs of the main theorems of section 2.

Notations and main Results

Independently scattered infinitely divisible random measures.

The characteristic function of an infinitely divisible random variable X can be written as E[e iqX ] = e ϕ(q) , where ϕ is characterized by the Lévy-Khintchine formula

ϕ(q) = imq - 1 2 σ 2 q 2 + R * (e iqx -1 -iq sin(x)) ν(dx)
and ν(dx) is the so-called Lévy measure. It satisfies

R * min(1, x 2 ) ν(dx) < +∞.
Let G be the unitary group of R d , that is

G = {M ∈ M d (R); MM t = I}.
Since G is a compact separable topological group, we can consider the unique right translation invariant Haar measure H with mass 1 defined on the Borel σ-algebra B(G). Let S be the half-space S = {(t, y); t ∈ R, y ∈ R * + } with which we associate the measure (on the Borel σ-algebra B(S)) θ(dt, dy) = y -2 dt dy.

We consider an independently scattered infinitely divisible random measure µ associated to (ϕ, H ⊗ θ) and distributed on G × S (see [START_REF] Rajput | Spectral representations of infinitely divisible processes[END_REF]). More precisely, µ satisfies:

1) For every sequence of disjoint sets (A n ) n in B(G + ×S), the random variables (µ(A n )) n are independent and

µ n A n = n µ(A n ) a.s.,
2) for any measurable set A in B(G × S), µ(A) is an infinitely divisible random variable whose characteristic function is E(e iqµ(A) ) = e ϕ(q)H⊗θ(A) .

We stress the fact that µ is not necessarily a random signed measure. Let us additionnally mention that there exists a convex function ψ defined on R such that for all non empty subsets A of G × S:

1. ψ(q) = +∞, if E(e qµ(A) ) = +∞,
2. E(e qµ(A) ) = e ψ(q)H⊗θ(A) otherwise.

Let q c be defined as q c = sup{q ≥ 0; ψ(q) < +∞}. For any q ∈ [0, q c [, ψ(q) < +∞ and ψ(q) = ϕ(-iq).

Multidimensional Multifractal Random Measures (MMRM).

We further assume that the independently scattered infinitely divisible random measure µ associated to (ϕ, H ⊗ θ) satisfies: ψ(2) < +∞, and ψ(1) = 0. The condition ψ( 1) is just a normalization condition. The condtion ψ(2) < +∞ is technical and can probably be relaxed to the condition used in [START_REF] Bacry | Log-infinitely divisible multifractal processes[END_REF]: there exists ǫ > 0 such that ψ(1 + ǫ) < +∞. However, in the multidimensional setting, the situation is more complicated because there is no strict decorrelation property similar to the one dimensional setting: in dimension d ≥ 2, there does not exist some distance R such that M(A) and M(B) are independent for two Lebesgue measurable sets A, B ⊂ R d separated by a distance of at least R. Nevertheless, the condition ψ(2) < +∞ is general enough to cover the cases considered in turbulence: see [START_REF] Castaing | Velocity probability density-functions of high Reynolds-number turbulence[END_REF], [START_REF] Schmitt | Empirical determination of universal multifractal exponents in turbulent velocity fields[END_REF], [START_REF] She | Universal scaling laws in fully developed turbulence[END_REF].

Definition 2.3. Filtration F l .
Let Ω be the probability space on which µ is defined. F l is defined as the σ-algebra generated by {µ

(A × B); A ⊂ G, B ⊂ S, dist(B, R 2 \ S) ≥ l}.
Let us now define the function f : R + → R by:

f (l) = l, if l ≤ T T if l ≥ T
The cone-like subset A l (t) of S is defined by:

A l (t) = {(s, y) ∈ S; y ≥ l, -f (y)/2 ≤ s -t ≤ f (y)/2}.
For forthcoming computations, we stress that for s, t real we have:

θ(A l (s) ∩ A l (t)) = g l (|t -s|)
where g l : R + → R is given by (with the notation x + = max(x, 0)):

g l (x) = ln(T /l) + 1 -x l , if x ≤ l ln + (T /x) if x ≥ l
For any x ∈ R d and m ∈ G, we denote by x m 1 the first coordinate of the vector mx. The cone product C l (x) is then defined as:

C l (x) = {(m, t, y) ∈ G × S; (t, y) ∈ A l (x m 1 )}. Definition 2.4. ω l (x) process. The process ω l (x) is defined as ω l (x) = µ(C l (x)).
Remark 2.5. For computational purposes, it is important that x → ω l (x) possesses a version with a minimum of regularity. In the 1d-case, ω l is cadlag as a sum of Lévy processes (see [START_REF] Bacry | Log-infinitely divisible multifractal processes[END_REF]). In higher dimensions, we will prove in section 4.4 that ω l admits a version with at most a countable sets of discontinuities.

Definition 2.6. M l (dx) measure. For any l > 0, we define the measure M l (dx) = e ω l (x) dx, that is:

M l (A) = A e ω l (x) dx for any Borel measurable subset A ⊂ R d .

Theorem 2.7. Multidimensional Multifractal Random Measure (MMRM).

With probability one, there exists a limit measure (in the sense of weak convergence of measures): 1. For any fixed λ ∈]0, 1] and l ≤ T , the two processes (ω λl (λx)) x⊂B(0,T /2) and (Ω λ + ω l (x)) x⊂B(0,T /2) have the same law, where Ω λ is an infinitely divisible random variable independent from the process (ω l (x)) x⊂B(0,T /2) and its law is characterized by

M(dx) = lim l→0 + M l (dx). This limit is called the Multidimensional Multifractal Random Measure. The scaling exponent of M is defined by ∀q ≥ 0, ζ(q) = dq -ψ(q). Moreover: i) a.s., ∀x ∈ R d , M({x}) = 0, i.e. M
E[e iqΩ λ ] = λ -ϕ(q) .
2. For any λ ∈]0, 1], the law of (M(λA)) A⊂B(0,T /2) is equal to the law of (W λ M(A)) A⊂B(0,T /2) , where W λ = λ d e Ω λ and Ω λ is an infinitely divisible random variable (independent of (M(A)) A⊂B(0,T /2) ) and its characteristic function is:

E[e iqΩ λ ] = λ -ϕ(q) . 3. If ζ(q) = -∞ and 0 < t < T then: E M(B(0, t)) q = (2t/T ) ζ(q) E M(B(0, T /2)) q .
Proposition 2.10. Non-triviality of the MMRM.

1. The measure M is different from 0 if and only if there exists ǫ > 0 such that ζ(1+ǫ) > d; in that case, E(M(A)) = |A|.

2. Let q > 1 and consider the unique

n ∈ N such that n < q ≤ n + 1. If ζ(q) > d and ψ(n + 1) < ∞, then E[M(A) q ] < +∞.

The limit lognormal case

In the gaussian case, we have ψ(q) = γ 2 q 2 /2 and the condition ζ(1 + ǫ) > d corresponds to γ 2 < 2d. The approximating measures M l are thus defined as:

M l (A) = A e γX l (x)-γ 2 E[X l (x) 2 ] 2 dx
where X l is a centered gaussian field (equal to (ω l -E[ω l ])/γ) with correlations given by:

E[X l (x)X l (y)] = H ⊗ θ(C l (x) ∩ C l (y)) = G g l (|x m 1 -y m 1 |)H(dm).
The limit mesures M = lim l→0 M l (dx) we define are in the scope of the theory of gaussian multiplicative chaos developed by Kahane in [START_REF] Kahane | Sur le chaos multiplicatif[END_REF] (see [START_REF] Robert | Gaussian Multiplicative Chaos revisited, to appear in the Annals of Probability[END_REF] for an introduction to this theory). Formally, the measure M is defined by:

M(A) = A e γX(x)-γ 2 E[X(x) 2 ] 2 dx
where X is a centered "gaussian field" (in fact a random tempered distribution ) with correlations given by:

E[X(x)X(y)] = G ln + (T /|x m 1 -y m 1 |)H(dm).
Let us suppose that T = 1 for simplicity. Using invariance of the Haar measure H by multiplication, it is plain to see that E[X(x)X(y)] is of the form F (|y -x|) where F : R + → R + ∪ {∞}. We have the scaling relation F (ab) = ln(1/a) + F (b) if a ≤ 1 and b ≤ 1 (see also lemma 4.7 below) which entails that for |x| ≤ T :

F (|x|) = ln(1/|x|) - G ln(|e m 1 |)H(dm)
.

where e = (1, 0, . . . , 0) is the first vector of the canonical basis. As a corollary, we get the existence of some constant C (take C = -G ln(|e m 1 |)H(dm)) such that ln(1/|x|) + C is positive definite (as a tempered distribution) in a neighborhood of 0. This easily implies that ln(1/|x|) is positive definite in a neighborhood of 0: to our knowledge, this result is new. This contrasts with the fact that ln + (1/|x|) is positive definite in dimension d ≤ 3 but is not positive definite for d ≥ 4 (see [START_REF] Robert | Gaussian Multiplicative Chaos revisited, to appear in the Annals of Probability[END_REF]). Remark 3.1. It is plain to see that 1 -|x| α is positive definite in a neighborhhod of 0 as a function defined in R if α ≤ 1. Therefore, one can consider the isotropic and positive definite function in a neighborhhood of 0 in R d defined by:

F (|x|) = G (1 -|x m 1 | α )H(dm).
By scaling, one can see that F (|x|) = 1 -C|x| α for some C > 0. It is easy to see that this entails that 1 -|x| α is positive definite in a neighborhood V of 0. Using the main theorem in [START_REF] Rudin | An extension theorem for positive-definite functions[END_REF], one can extend 1 -|x| α (defined in V ) in an isotropic and positive definite function defined in R d . This is in contrast with the so called Kuttner-Golubov problem which is to determine the α, κ > 0 such that (1 -|x| α ) κ + is positive definite in R d . It is known (see [START_REF] Gneiting | Criteria of Polya type for radial positive definite functions[END_REF] for instance) that for α > 0 the function

(1 -|x| α ) + is not positive definite in R d if d ≥ 3.

Proofs

Proof of Theorem 2.7

The relation E[e ω l (x) ] = e ψ(1)H⊗θ(C l (x)) = 1 ensures that for each Borelian subset A ⊂ R d , the process M l (A) is a martingale with respect to F l . Existence of the MMRM then results from [START_REF] Kahane | Positive martingales and random measures[END_REF]. Properties i) and ii) result from Fatou's lemma.

Characteristic function of ω l (x)

The crucial point is to compute the characteristic function of ω l (x). We consider (x 1 , . . . , x q ) ∈ (R d ) q and (λ 1 , . . . , λ q ) ∈ R q and we have to compute

φ(λ) = E e iλ 1 ω l (x 1 )+•••+iλqω l (x q ) .
Let us denote by S q the permutation group of the set {1, . . . , q}. For a generic element σ ∈ S q , we define

B σ = {m ∈ G; x σ(1),m 1 < • • • < x σ(q),m 1 
}.

Finally, given x, z ∈ R d , we define the cone like subset product:

C σ l (x) = C l (x) ∩ B σ = {(m, t, y) ∈ B σ × S; (t, y) ∈ A l (x m 1 )} and C σ l (x, z) = {(m, t, y) ∈ B σ × S; (t, y) ∈ A l (x m 1 ) ∩ A l (z m 1 )}. Lemma 4.3.
The characteristic function of the vector (ω l (x i )) 1≤i≤q exactly matches:

E exp iλ 1 ω l (x 1 ) + • • • + iλ q ω l (x q ) = exp σ∈Sq q j=1 j k=1 α σ (j, k)ρ σ l (x σ(k) -x σ(j) )
where ρ σ l (x) = H ⊗ θ(C σ l (0, x)), and: α σ (j, k) = ϕ(r σ k,j ) + ϕ(r σ k+1,j-1 )ϕ(r σ k,j-1 )ϕ(r σ k+1,j )

r σ k,j = j i=k λ σ(i) (or 0 if k > j).
Moreover,

q j=1 j k=1 α σ (j, k) = ϕ q k=1 λ k .
Proof. Without loss of generality, we assume x i = x j for i = j. We point out that the family (B σ ) σ∈S d is a partition of G up to a set of null H-measure. The function φ breaks down as:

φ(λ) =E e iλ 1 µ(C l (x 1 ))+•••+iλqµ(C l (x q )) =E e P σ∈S d iλ 1 µ(C σ l (x 1 ))+•••+iλqµ(C σ l (x q )) = σ∈S d E e iλ 1 µ(C σ l (x 1 ))+•••+iλqµ(C σ l (x q ))
Let us fix σ ∈ S q . We focus on the term:

φ σ (λ) = E e iλ 1 µ(C σ l (x 1 ))+•••+iλqµ(C σ l (x q ))) = E e iλ σ(1) µ(C σ l (x σ(1) ))+•••+iλ σ(q) µ(C σ l (x σ(q) ))) .
Given σ ∈ S d and p ≤ q, we further define:

φ σ (λ, p) = E e iλ σ(1) µ(C σ l (x σ(1) ))+•••+iλ σ(p) µ(C σ l (x σ(p) )))
.

From now on, we adapt the proof of [1, Lemma 1] and proceed recursively. We define:

Y σ q = q k=1 λ σ(k) µ(C σ l (x σ(k) ) \ C l (x σ(q) )),
which stands for the contribution of the points of the above sum that do not belong to C l (x σ(q) ).

Moreover, the points in the set C l (x σ(q) ) can be grouped into the disjoint sets:

C l (x σ(k) , x σ(q) ) \ C l (x σ(k-1) , x σ(q) ).
We stress that the latter assertion is valid since, for m ∈ B σ , the coordinates are suitably sorted, that is:

x σ(1),m 1 < x σ(2),m 2 < • • • < x σ(q),m 1 
. We define:

X σ k,q = µ C l (x σ(k) , x σ(q) ) \ C l (x σ(k-1) , x σ(q) )
with the convention C l (x σ(k) , x σ(0) ) = C l (x σ(0) , x σ(k) ) = ∅, in such a way that one has:

λ σ(1) µ(C σ l (x σ(1) )) + • • • + λ σ(q) µ(C σ l (x σ(q) )) = Y σ q + q k=1 r σ k,q X σ k,q .
Furthermore, since the variable Y q and (X σ k,q ) k are mutually independent, we get the following decomposition:

(3)

φ σ (λ) = E e iY σ q q k=1 E e ir σ k,q X σ k,q .
Similarly, one can prove:

(4) φ σ (λ, q -1) = E e iY σ q q k=1 E e ir σ k,q-1 X σ k,q .
Gathering ( 3) and ( 4) yields:

φ σ (λ, q) = φ σ (λ, q -1) q k=1 E e ir σ k,q X σ k,q E e ir σ k,q-1 X σ k,q
.

For any m ∈ B σ , one has x

σ(k-1),m 1 < x σ(k),m 1 < x σ(q),m 1 
and therefore;

E e iαX σ k,q =e ϕ(α)H⊗θ C l (x σ(k) ,x σ(q) )\C l (x σ(k-1) ,x σ(q) )
=e ϕ(α) H⊗θ(C l (x σ(k) ,x σ(q) ))-H⊗θ(C l (x σ(k-1) ,x σ(q) ))

Note that:

H ⊗ θ(C l (x σ(i) , x σ(j) )) = B σ θ A l (x σ(i),m 1 
) ∩ A l (x σ(j),m 1 
)

H(dm) = B σ θ A l (0) ∩ A l (x σ(i),m 1 -x σ(j),m 1 
) H(dm)

=ρ σ l (x σ(i) -x σ(j) )
The proof can now be completed recursively.

Regularity of ω l

In the previous subsection, we have computed the finite dimensional distributions of the process ω l . To prove that the limiting measure M inherit the properties of the finite dimensional distributions of ω l , we need to establish some regularity properties of ω l , namely that ω l admits a version with at most a countable set of discontinuities.

Remind that the function ϕ can be written as

imq - 1 2 σ 2 q 2 + R * (e iqx -1 -iq sin(x)) ν(dx).
Even if it means considering another measure µ, we may (and will) assume that µ is the sum of three independent independently scattered infinitely divisible random measures µ 1 , µ 2 , µ 3 respectively associated with:

ϕ 1 (q) = imq, ϕ 2 (q) = - 1 2 σ 2 q 2 , ϕ 3 (q) = R * (e iqx -1 -iq sin(x)) ν(dx).
Then ω l (x) is the sum of three independent random variable µ 1 (C l (x))+µ 2 (C l (x))+µ 3 (C l (x)).

It is plain to see that for p > 1:

E |µ 1 (C l (x))-µ 1 (C l (y))| p ≤ C(l, T )|x-y| p , E |µ 2 (C l (x))-µ 2 (C l (y))| p ≤ C(l, T )|x-y| p/2
in such a way that the Kolmogorov criterion (see [START_REF] Stroock | Multidimensionnal Diffusion Processes[END_REF]) ensures that µ 1 (C l (x)) and µ 2 (C l (x)) admit a continuous version. Furthermore, the restriction of µ 3 to F l is a Poisson random measure. Hence, for each realization, µ 3 is of the form

Z(ω) k=0 δ X k ,
where Z is a random variable taking values in N and (X k ) k is a countable collection of iid random variables taking values in {(m, t, y) ∈ G × S; y ≥ l}. It is therefore plain to see that µ 3 (C l (x)) admits at most a countable set of discontinuities.

Homogeneity and isotropy

Lemma 4.3 is useful to prove the main properties of the MMRM. For instance, to prove the invariance of the law of the MMRM under translations, it suffices to prove that the law of ω l is itself invariant. This results from Lemma 4.3 since each term ρ σ l (x σ(k)x σ(i) ) is invariant under translations, that is ρ σ l remains unchanged when you replace x 1 , . . . , x q by x 1 + z, . . . , x q + z for a given z ∈ R d . Lemma 4.3 is nevertheless not very convenient to prove the isotropy of the MMRM so that we give a proof by a direct approach. Once again, it is sufficient to prove that the characteristic function of ω l is invariant under G. This time, we compute that characteristic function in a more direct way. We consider x 1 , . . . , x q ∈ R d , λ 1 , . . . , λ q ∈ R and m 0 ∈ G, and define the function

f (m, t, y) = q k=1 λ k 1I C l (x k ) (m, t, y).
We have, using the right translation invariance of the Haar measure:

E exp iλ 1 ω l (m 0 x 1 ) + • • • + iλ q ω l (m 0 x q ) =E exp i f (mm 0 , t, y) µ(dm, dt, dy) = exp ϕ • f (mm 0 , t, y)H(dm)θ(dt, dy) = exp ϕ • f (m, t, y)H(dm)θ(dt, dy) =E exp iλ 1 ω l (x 1 ) + • • • + iλ q ω l (x q ) .
The isotropy follows.

Exact scaling and stochastic scale invariance

Lemma 4.7. Exact scaling of M l (dx). For all λ ∈ (0, 1] and x 1 , . . . , x q ∈ B(0, T /2), the functions ρ σ l satisfy the exact scaling relation (5

) σ∈Sq q j=1 j k=1 α σ (j, k)ρ σ λl (λx σ(k) -λx σ(j) ) = -ln(λ) + σ∈Sq q j=1 j k=1 α σ (j, k)ρ σ l (x σ(k) -x σ(j) ).
Proof. We remind that for x real we have A l (0)∩A l (x) θ(dt, dy) = g l (|x|). Given B ⊂ G and x ∈ R d , we define:

ρ B l (x) = 1I B (m)1I {(t,y)∈A l (0)∩A l (x m 1 )} θ(dt, dy)H(dm).
Then we can compute the function ρ B l :

ρ B l (x) = 1I B (m)1I {(t,y)∈A l (0)∩A l (x m 1 )} H(dm)θ(dt, dy) = B A l (0)∩A l (x m 1 )
θ(dt, dy) H(dm)

= B ln(T /l) + 1 -|x m 1 |/l 1I |x m 1 |≤l + ln(T /|x m 1 |)1I l≤|x m 1 |≤T H(dm)
Given λ ∈]0, 1] and x ∈ B(0, T ):

ρ B λl (λx) = B ln( T λl ) + 1 - |λx m 1 | λl 1I |λx m 1 |≤λl + ln( T λ|x m 1 | )1I λl≤|λx m 1 |≤T H(dm) = B ln( T l ) + 1 - |x m 1 | l 1I |x m 1 |≤l + ln( T |x m 1 | )1I λl≤|λx m 1 |≤T H(dm) -ln(λ) B 1I |x m 1 |≤l + 1I l≤|x m 1 |≤T H(dm) =ρ B l (x) -ln(λ)H(B)
We therefore obtain:

σ∈Sq q j=1 j k=1 α σ (j, k)ρ σ λl (λx σ(k) -λx σ(j) ) = σ∈Sq q j=1 j k=1 α σ (j, k)ρ σ l (x σ(k) -x σ(j) ) -ln(λ) σ∈Sq q j=1 j k=1 α σ (j, k)H(B σ ) = σ∈Sq q j=1 j k=1 α σ (j, k)ρ σ l (x σ(k) -x σ(j) ) -ln(λ) σ∈Sq ϕ( q k=1 λ k )H(B σ ) = σ∈Sq q j=1 j k=1 α σ (j, k)ρ σ l (x σ(k) -x σ(j) ) -ln(λ)ϕ( q k=1 λ k )
From Lemma 4.3, we deduce that, for any λ ∈ (0, 1], there exists a random variable C λ such that (ω λl (λx)) x∈B(0,T /2) law = (C λ + ω λl (λx)) x∈B(0,T /2) and such that C λ is independent of (ω λl (λx)) x∈B(0,T /2) and its characteristic function is given by E[e iqC λ ] = λ -ϕ(q) . By integrating the previous relation, we obtain the relation:

(M λl (λA)) A⊂B(0,T /2) law = W λ (M l (A)) A⊂B(0,T /2)
where W λ = λ d e C λ is a random variable independent of (M l (A)) A⊂B(0,T /2) .

Non-triviality of the MMRM

Suppose we can find a "cube" C R = [0, R] d and q > 1 such that:

E M(C R ) q < +∞.
Then we can find n ∈ N such that [0, 2 -n R] d ⊂ B(0, T /2). We split the cube C R into 2 nd smaller cubes

C k,n = d i=1 [k i 2 -n R, (k i + 1)2 -n R), where k = (k 1 , . . . , k d ) ∈ N n d def = N d ∩ [0, 2 n -1] d .
For each fixed value of n, the cubes (C k,n ) k , where the index k varies in N n d form a partition of C T . Thus, by using the super-additivity of the function x → x q , we have:

E M(C T ) q = E k∈N n d M(C k,n ) q ≥ k∈N n d E M(C k,n ) q
By using the translation invariance and the scale invariance property of the MMRM, we deduce:

E M(C k,n ) q = E M(C 0,n ) q = E M(2 -n C R ) q = 2 -nζ(q) E C R ) q .
Finally, gathering the previous inequalities yields:

E C R ) q ≥ 2 nd-nζ(q) E C R )
q in such a way that, necessarily, ζ(q) ≥ d.

The proof of 1. and 2. is then a consequence of the following lemma: Lemma 4.9. Let q > 1 and consider the unique n ∈ N such that n < q ≤ n + 1. If ζ(q) > d and ψ(n + 1) < ∞, then we can find a constant C such that:

sup l E M l ([0, T ) d ) q ≤ C.
Proof. The proof is an adaptation of the one in [START_REF] Bacry | Log-infinitely divisible multifractal processes[END_REF] (which is itself an adaptation of the corresponding result in [START_REF] Barral | Multifractal products of cylindrical pulses[END_REF]). Unfortunately, the multi-dimensional setting is a bit more complicated because there is no strict decorrelation property similar to the one dimensional setting. With no restriction, we can suppose that T = 1 and d = 2. We consider the following dyadic partition of the cube [0, 1)

2 : [0, 1) 2 = ∪ 0≤i,j≤2 m -1 I (m) i,j , where 
I (m) i,j = [ i 2 m , i+1 2 
m ) × [ j 2 m , j+1 2 
m ). Let us write the above decompostion in the following form:

[0, 1)

2 = C 1 ∪ C 2 ∪ C 3 ∪ C 4 .
where C 1 = ∪ Since the measure M l is homogeneous, we get:

E M l ([0, 1) 2 ) q ≤ 4 q-1 4 i=1 E M l (C i ) q ≤ 4 q E M l (C 1 ) q .
Now we get the following by subadditivity of x → x q/(n+1) :

E M l (C 1 ) q = E ( 0≤i,j≤2 m-1 -1 M l (I (m) 2i,2j )) q = E (( i,j M l (I (m) 2i,2j )) n+1 ) q/(n+1) = E ( i 1 ,j 1 ,...,i n+1 ,j n+1 n k=1 M l (I (m) 2i k ,2j k )) q/(n+1) ≤ E i 1 ,j 1 ,...,i n+1 ,j n+1 ( n k=1 M l (I (m) 2i k ,2j k )) q/(n+1) = 2 2(m-1) E M l (I (m) 0,0 ) q + * i 1 ,j 1 ,...,i n+1 ,j n+1 E n k=1 M l (I (m) 2i k ,2j k ) q/(n+1) ≤ 2 2(m-1) E M l (I (m) 0,0 ) q + * i 1 ,j 1 ,...,i n+1 ,j n+1 E n k=1 M l (I (m) 2i k ,2j k ) q/(n+1)
where * i 1 ,j 1 ,...i n+1 ,j n+1 is a sum over indices i 1 , j 1 , . . . i n+1 , j n+1 which are not all equal and the last inequality is a consequence of Jensen's inequality. Therefore each term in the above sum is of the form:

(6) E k r=1 M l (I (m) 2ir,2jr ) nr q/(n+1)
where the sequence of positive integers (n r ) 1≤r≤k satisfies k r=1 n r + 1 and the I 2ir,2jr are disjoint intervals wich lie at a distance of at least 1 2 m . We want to show that each term of the form ( 6) is bounded by some quantity C m independent of l. We get the following computation using Fubini: We define N r = n 1 + • • • + n r for r in [1, k] and we introduce the following set A l = A l (x 1 , . . . , x n+1 ):

A l = ∪ r<r ′ (∪ Nr≤i≤N r+1 -1 C l (x i )) ∩ (∪ N r ′ ≤j≤N r ′ +1 -1 C l (x j )).
By construction of A l , if x i and x j are in two different I 2ir,2jr then µ(C l (x i ) \ A l ) and µ(C l (x j ) \ A l ) are independent. Therefore we get the following factorization: E e ω l (x 1 )+•••+ω l (x n+1 ) = E e ψ(n+1)H⊗θ(A l ) E e µ(C l (x 1 )\A l )+•••+µ(C l (x n+1 )\A l )

= E e ψ(n+1)H⊗θ(A l ) We have the following inequality:

H ⊗ θ(A l ) ≤ r<r ′ Nr≤i≤N r+1 -1 N r ′ ≤j≤N r ′ +1 -1
H ⊗ θ(C l (x i ) ∩ C l (x j )).

Note that for each x i , x j in the above sum we have |x i -x j | ≥ 1 2 m and therefore H ⊗θ(C l (x i )∩ C l (x j )) is bounded by some constant depending on m but independent of l. Indeed, using the notation of section 3 for F , we get:

H ⊗ θ(C l (x i ) ∩ C l (x j )) = G g l (|(x i ) m 1 -(x j ) m 1 |)H(dm) ≤ F (|x i -x j |) ≤ F ( 1 2 m ).
In conclusion, we get the existence of some constant C m such that: Since each n r is less or equal to n, we get by induction that E M l (I (m) 2ir,2jr ) nr is bounded independently of l and so is the above product. In conclusion, we get the existence of C m such that we have:

E M l ([0, 1] 2 ) q ≤ 4 q-1 2 2m E M l (I (m) 0,0 ) q + C m .
Using stochastic scale invariance, we get that:

E M l ([0, 1] 2 ) q ≤ 4 q-1 2 2m
2 mζ(q) E M l2 m ([0, 1] 2 ) q + C m ≤ 4 q-1 2 2m 2 mζ(q) E M l ([0, 1] 2 ) q + C m .

Since ζ(q) > 2, we can choose m such that 4 q-1 2 2m 2 mζ(q) < 1 and therefore we get:

E M l ([0, 1] 2 ) q ≤ C m 1 -4 q-1 2 2m
2 mζ(q)

, which entails the result.

E

  e ω l (x 1 )+•••+ω l (x n+1 ) dx 1 . . . dx n+1 .

PP

  Nr ≤i≤N r+1 -1 µ(C l (x i )\A l ) = E e ψ(n+1)H⊗θ(A l ) k r=1 E e ψ(nr)H⊗θ(A l )Nr ≤i≤N r+1 -1 ω l (x i ) .

E e ω l (x 1 )P

 1 +•••+ω l (x n+1 ) Nr ≤i≤N r+1 -1 ω l (x i ) .Thus, we get by integrating the above relation: ) nr .

Proposition 2.9. Stochastic scale invariance.

  

has no atoms, ii) for any bounded subset K of R d , M(K) < +∞ a.s. and E[M(K)] ≤ |K|. Proposition 2.8. Homogeneity and isotropy 1. The measure M is homogeneous in space, i.e. the law of (M(A)) A⊂R d coincides with the law of (M(x + A)) A⊂R d for each x ∈ R d . 2. The measure M is isotropic, i.e. the law of (M(A)) A⊂R d coincides with the law of (M(mA)) A⊂R d for each m ∈ G.