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Locomotion of articulated bodies in an ideal fluid:

2d model with buoyancy, circulation and collisions

Bruno Pinçon∗ Alexandre Munnier†

June 12, 2009

Abstract

Articulated solid bodies are shape-changing bodies made of rigid solids
linked together by means of holonomic constraints prescribed as functions
of time. In this paper we study the locomotion of such swimming devices
in an ideal fluid. Our study ranges over a wide class of problems: any
number of immersed bodies are involved (without being hydrodynamically

decoupled), the system fluid-bodies can be partially of totally confined
and circulation, buoyancy and collisions between bodies are taken into
account. We determine the Euler-Lagrange equation governing the dy-
namic of the system, study its well-posedness and describe a numerical
scheme used in a Matlab toolbox (Biohydrodynamics Toolbox) that has
been designed to realize easily related numerical simulations.

1 Introduction

In the last decade, serious efforts have been done by mathematicians to better
understand the dynamics of swimming in a fluid. This interest has grown from
the observation that fishes and aquatic mammals evolved swimming capabili-
ties far superior to what has been achieved by naval technology and thereby
that they provide an attractive model for designing biomimetic robots. Such
swimming devices propelling and steering by shape-changes would be more effi-
cient, stealthier and more maneuverable than if endowed with propellers. This
explains why, for instance, autonomous underwater vehicles are catching the
attention of petroleum industry for their possible use in the maintenance of off-
shore installations. In the area of nano-technologies, the design of nano-robots
able to perform basic tasks is a challenge for the forthcoming years.
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Significant contributions to the understanding of the biomechanics of swim-
ming are du to Lighthill [18], Taylor [30, 31] Childress [6] and Wu [33]. We
mention also an interesting survey on the general theme of fish locomotion writ-
ten by Sparenberg [29].

Experiments have shown that the vortices generated by the tail of fishes
play a crucial role to understand their locomotion and some models incorporate
artificially vortices [21, 34, 32]. If we do not neglect the viscosity effects, the rel-
evant model consists in the non stationary Navier-Stokes equations for the fluid
coupled with Newton’s laws for the fish-like swimming object. This perspective
is the one adopted by Carling, Williams and Bowtell in [5], Liu and Kawachi in
[20], Galdi in [8] or San Mart́ın, Scheid, Takahashi and Tucsnak in [27].

Nevertheless, among numerous mathematical articles studying fish locomo-
tion, most of them address the case of a potential flow which is by definition
vortex-free like in the works of Kelly and Murray [14], Kozlov and Onishchenko
[15], Kanso, Marsden, Rowley and Melli-Huber [13], Melli, Rowley and Rufat
[22] and Munnier [26]. It is also the point of view we have chosen in what follows
and on which we focus from now on.

Thus, in this paper we are interested in studying the dynamics of articulated
solid bodies submerged in an ideal fluid. Articulated bodies are composed of
rigid solids linked together by means of holonomic constraints and can be seen as
a particular case of the more general concept of shape-changing bodies as it has
been described in [26]. The holonomic constraints govern the relative position
of the rigid parts composing the articulated bodies. They are prescribed as
functions of time and stand in our model for the controls by which the swimming
bodies propel and steer themselves.

It has been a standard method since the work of Thomson, Tait and Kirch-
hoff (summarized in the book of Lamb [17]) to invoke the least action principle
of Lagrangian Mechanics for determining the Euler-Lagrange equations of mo-
tion when dealing with a problem of interactions between a perfect fluid and
rigid immersed structures. Although we have proved in [25] that Newton’s laws
actually lead to the same result, we adopt also this approach in this work.

A central concept in such problems is the notion of mass matrix. Using clas-
sical notation we denote by q and q̇ the generalized coordinates and velocities;
they parameterize all of the degrees of freedom of the system and they allow to
write the Lagrangian of the system fluid-submerged bodies in the short form:

L :=
1

2
q̇⊤

M(q)q̇ − P (q),

where the elements of the matrix M(q) (precisely the mass matrix) are homo-
geneous to masses and where P (q) stands for the overall potential energy.

The Euler-Lagrange equations driving the free evolution of q with respect to
time are ODEs (ordinary differential equations) resulting from the application
to L of the least action principle:

d

dt

∂L

∂q̇
− ∂L

∂q
= 0, (t ≥ 0). (1.1)
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Some of the degrees of freedom can be prescribed as functions of the others and
of time. This idea writes:

q = F (t,p), (1.2)

where p stands for the remaining degrees of freedom of our system and F is
a given function. Such constraints are termed holonomic and well suited to
describe the kinematic of swimming robots made of rigid links. Considering
now the Lagrangian as a function of t, p and ṗ, the equations of motion for the
swimming articulated bodies whose shape-changes are driven by relation (1.2)
are:

d

dt

∂L

∂ṗ
− ∂L

∂p
= 0, (t ≥ 0). (1.3)

Next, the game consists in expanding the left hand side of this equality and turn
the equation into a convenient form allowing to study the locomotion induced
by the shape-changes. The tricky point is the computation of the derivative of
the mass matrix with respect to p (or more generally with respect to q) because
this task actually requires to differentiate the potential of the fluid with respect
to the positions of the solids (parameterized by q). Indeed, the potential of
the fluid is defined as being the solution of a boundary value problem set in
the fluid domain which depends on the positions of the solids and therefore this
differentiation process leads to the computation of so-called shape derivatives.

Nevertheless this difficulty can be avoided. It is the case when the mass
matrix does not depend on p what means that all of the positions and directions
in the fluid are equivalent as seen by an observer attached to the bodies. This
isotropy (or symmetry) arises when the following assumptions are fulfilled:

(H1) There is only one body in the fluid.

(H2) The overall system body-fluid fills the whole space (identified with R
2).

(H3) The body is neutrally buoyant.

(H4) The system body-fluid is at rest at the time t = 0.

Hypothesis (H1) can equivalently be replaced by:

(H1′) The dynamics of the immersed bodies are hydrodynamically decoupled,

which means that each body is handled as if being alone in the fluid. This
approximation can be relevant when the immersed bodies are far apart but is
not any longer when they are close. Most of the studies on swimming shape-
changing bodies in an ideal fluid are carried out under hypotheses (H1-4) or
(H1′-4).

One of our aims in this paper is to study the dynamics of articulated bodies
relaxing all of these hypotheses. Thus, in a first section we address the case
of n rigid solids evolving freely in a fluid with potential flow, the system fluid-
solids being either unbounded, either partially or totally confined and taking
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into account their buoyancy. We compute the Lagrangian, expand the Euler-
Lagrange equation (1.1) and end up with a second order ODEs in q that writes:

Mq̈ + 〈Γ(q), q̇, q̇〉 +
∂P

∂q
= 0, (t ≥ 0), (1.4)

where M is the mass matrix and Γ is a rank-3 tensor, usually called Christoffel
symbol in Lagrangian Mechanics. If we denote by Mij the elements of the mass
matrix (depending on q) we have:

Γk
ij :=

1

2

(
Mki

∂qj
+
Mkj

∂qi
− Mij

∂qk

)
.

We next compute explicitly the elements Γk
ij in terms of the potential of the fluid

and the geometry of the solids, this task requiring formula of shape sensitivity
analysis. The expression we obtain, well suited for numerical simulations, is the
first novelty brought in in this paper.

In the next section, we consider a flow with non zero circulation. Circulation
is handled as additional degrees of freedom of our system. We show that the
ODEs governing the circulation can be decoupled from those driving the motion
of the solids and explicitly solved. Thence, generalized coordinates related to
the circulation can be canceled in the Euler-Lagrange equations that finally keep
the same general form as (1.4):

Mq̈ + 〈Γ(q), q̇, q̇〉 +
∂P̃

∂q
= 0, (t ≥ 0), (1.5)

but where the potential energy contains an extra term du to the non zero fluid
circulation. Its computation requires also the use of shape derivative formula.
To our knowledge, such model involving circulation is new as well and is the
second novelty of this paper.

We are next concerned with the well posedness of system of ODEs (1.5). We
prove that indeed it is, assuming that the boundaries of the solids are smooth
enough. Further, we show that the solution is analytic and can be continued
indefinitely unless a collision between two bodies or between a body with a fixed
boundary of the fluid domain occurs. Such result has already be obtained in
a more general case in [26] but the proof we give here has been significantly
simplified.

Unlike to what happens in a viscous fluid, collisions are allowed with our
model as proved in [11]. How to handle collisions is the aim of the following
section. It is done by adding to the Lagrangian an electrostatic-like potential
energy whose electric charges would be located along the boundaries of the
solids and generate a repulsive force. The potential energy must be set for the
repulsive force to be neglectful when the solids are far apart but very strong
when they go close in order to avoid collisions. Such refinement in the model is
another novelty of this work.

Then we address the case of articulated bodies as described above by intro-
ducing holonomic constraints between the solids. We use the work already done
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for a set of solids to derive the expanded form of the Euler-Lagrange equation
(1.3). The equation we eventually obtain is a generalization of the one given
in [13] when hypotheses (H1-4) have been relaxed and buoyancy taken into
account. We study the well posedness of this equation and get results roughly
similar to the previous ones, related to rigid solids: existence of smooth solutions
up to an hypothetic collision.

It is classical in the literature to use as controls directly the shape-changes
of the bodies although a more realistic and interesting control would be the
internal forces and torques causing these deformations. About this question, we
first explain how to compute a posteriori the internal forces, the shape-changes
being given. Then we prove that there is a one-to-one correspondence between
the shape-changes and the internal forces they are du to. This new result entails
the equivalence between choosing as controls the shape-changes or the internal
forces what is of crucial importance for future works about the controllability
of our model.

The two last sections of the article deal with numerical features of our works.
In the first one we detail the numerical scheme a Matlab toolbox (Biohydrody-
namics Toolbox) we have developed is based on. It consists in an ODE solver
coupled with an integral equations solver for the computation of the fluid poten-
tial. Integral equations are numerically solved by applying the Nyström method,
which is fast and accurate. An important point is that the elements of the mass
matrices and the shape derivatives arising in the Euler-Lagrange equations can
all of them be computed by knowing only the values of the fluid potential along
the boundaries of the solids. It entails that there is no need to mesh the 2d fluid
domain but only its 1d boundary.

In the last section we go further in the presentation of the Matlab toolbox.
As an illustrative example we show that a result established by Sparenberg in
[28, page 63] and ensuring that: a body of finite extent, moving periodically
through an inviscid and incompressible fluid without shedding vorticity, cannot
exert a force with non-zero mean value, is no longer true when the fluid contains
fixed obstacles. This result is important because it proves that a fish is not only
able to propel itself without shedding vorticity but can also generate a non-zero
mean thrust what contradicts some common beliefs.

2 Dynamics of a set of submerged rigid solids

2.1 Notation

Let (e1, e2) denote a reference Galilean frame by which we identify the physical
space to R

2. In this frame, the coordinates are denoted x := (x1, x2)
⊤. At

any time t > 0, we denote by Si (i ∈ {1, . . . , n}) the open domain occupied
by the i-th solid. We set S := ∪iSi and F stands for the open region of the
fluid. With this notation M := F ∪ S̄, as being the domain of the overall
system fluid-solids, is independent of time. All of the domains are denoted at
the initial time t = 0 with subscript naught: Si

0, S0 and F0. We assume that
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∂F0 is Lipschitz continuous and since F undergoes only rigid deformations, ∂F
keeps the same regularity for all time. We assume also that the solids do not
touch each other neither the fixed boundaries of the fluid at the initial time
what means that S̄i

0 ∩ S̄j
0 = ∅ if i 6= j and S̄i

0 ⊂ M for all i ∈ {1, . . . , n}. We
denote by n = (n1, n2)

⊤ the unitary normal vector to ∂F directed toward the
exterior of the fluid. The regularity of ∂F ensures that n is well defined almost
everywhere. Likewise, we introduce the unitary tangent vector τ = (τ1, τ2)

⊤

to ∂F and we choose its orientation such that {n, τ} be a direct basis. When
∂F is more regular, namely at least C1,1 (continuously differentiable with first
derivative Lipschitz continuous), we can also consider the curvature κ defined
almost everywhere by: ∂τn = −κτ .

Attached to each body, we define moving frames (Ei
1,E

i
2). For any i, we

choose it such that its origin coincides at any time with the center of mass of
the solid and we denote with capital letters Xi := (Xi

1, X
i
2)

⊤ the related body
coordinates.

2.2 Rigid motion

Rigid displacements are described by elements g of G := SE(2) (the rigid body
or euclidian group) consisting of pairs (R, r) where R ∈ SO(2) is a rotation
matrix and r := (r1, r2)

⊤ ∈ R
2 is a vector. They would sometimes be identified

with the matrix:

g =

(
R r

0 1

)
,

and for any vector x = (x1, x2)
⊤ ∈ R

2, we denote gx the vector such that:

(
gx
1

)
:=

(
R r

0 1

) (
x

1

)
. (2.1)

In the sequel, we will made no difference in the notation between the pair (R, r)
and the associated isometry of R

2 defined by (2.1). For all (R, Ṙ) ∈TSO(2)
(the tangent bundle to SO(2)), the matrix ṘR⊤ is skew-symmetric and hence,
as it is classical in Solid Mechanics, there exists ω ∈ R such that:

ṘR⊤x = ωx⊥, ∀x ∈ R
2, (2.2)

where x⊥ := (−x2, x1)
⊤ stands the vector x := (x1, x2)

⊤ positively quarter
turned. The manifold SO(2) will be parameterized by means of matrices R(θ)
(θ ∈ R/2π) defined by:

R(θ) :=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

Thereby TSO(2) is parameterized by pairs (θ, θ̇) ∈ R/2π×R and ω = θ̇ in (2.2).
Likewise G is parameterized by (θ, r) ∈ R/2π × R

2 and TG by (θ, r, ω, ṙ) ∈
(R/2π × R

2) × (R × R
2).
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Going back to our problem, at any time there exists gi := (Ri, ri) ∈ SE(2)
such that

Ei
j = Ri ej ,

while ri gives the location of the center of mass of the solid (see figure 1). With

0

Si

F

E
j
2

Sj

ṙj

Ei
1

Ei
2

e1

e2

θi

θj

ṙi

E
j
1

rj

∂F \ ∂S

ri

τ

n
τ

n

Figure 1: The fluid domain is denoted F , the i-th solid occupies the domain Si,
S = ∪iSi and M = F ∪ S. The coordinates of the center of mass of the i-th
solid in the reference frame (ek) are ri := (ri

1, r
i
2)

⊤. The frame (Ei
k) is attached

to the solid and θi gives its orientation with respect to (ek). At the time t = 0,
the domains and coordinates are denoted with subscript naught: F0, Si

0, ri
0 and

so on.

our notation we have furthermore:

x = gi Xi, (2.3)

and Si = gi(Si
0). We deduce also the relation between the area elements:

dx = dXi.

Differentiating with respect to time identity (2.3), we deduce that the eulerian
velocity of the i-th body is:

vi(x) : = ġigi−1x

= ωi(x − ri)⊥ + ṙi, (x ∈ Si).

We next use the partition ∪iSi of S to define in S the overall eulerian rigid
velocity v of the solids by setting:

v(x) = vi(x), x ∈ Si.
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2.3 Fluid dynamics

The flow being assumed to be irrotational, the eulerian velocity of the fluid can
be written at any time t as the gradient ∇ψ of a harmonic potential function ψ
defined in F . The classical non-penetrating condition for inviscid fluids yields
Neumann boundary conditions for the function ψ, namely:

∂nψ = v · n on ∂S, (2.4)

∂nψ = 0 on ∂F \ ∂S. (2.5)

For the Neumann boundary value problem to be well-posed, we must add con-
ditions ensuring the uniqueness of the solution. We choose for instance:

∫

∂S

ψ dσ = 0.

Results about the well-posedness of such problem are given in the Appendix,
Section A.

For any solid i, we define three elementary potential functions: ψi
1, ψ

i
2 and

ψi
3, all of them being harmonic in F and satisfying Neumann boundary con-

ditions on ∂F , namely, adopting the convention that ∂nψ
i
j = 0 on all of the

unspecified boundaries:

∂nψ
i
1 = e1 · n on ∂Si, (2.6a)

∂nψ
i
2 = e2 · n on ∂Si, (2.6b)

∂nψ
i
3 = (x − ri)⊥ · n on ∂Si. (2.6c)

We invoke then Kirchhoff’s law to end up with the following decomposition of
the overall potential:

ψ :=
∑

i

ṙi
1ψ

i
1 + ṙi

2ψ
i
2 + ωiψi

3. (2.7)

2.4 Lagrangian function

We denote by ρi > 0 the density of the i-th solid while ρf > 0 stands for the
constant density of the fluid. The mass and the momentum of inertia of the i-th
body are respectively:

mi :=

∫

Si

ρi dx, Ii :=

∫

Si

ρi|x − ri|2dx.

The kinematic energy of the i-th solid is:

Ki :=
1

2
mi|ri|2 +

1

2
Ii|ωi|2,

and its potential energy du to its buoyancy reads:

P i := g(miri −mi
fr

i
f ) · e2, (2.8)
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where g stands here for the standard gravity, mi
f > 0 is the mass of fluid

occupying the same volume as the solid and ri
f is its center of buoyancy defined

by:

mi
f := ρf

∫

Si

dx, ri
f :=

ρf

mi
f

∫

Si

xdx.

When ρi is constant in Si then ri
f = ri. On the other hand, the kinematic

energy of the fluid is:

Kf :=
1

2
ρf

∫

F

|∇ψ|2dx,

and we deduce that the expression of the Lagrangian function of the sytem
fluid-bodies:

L := Kf +
∑

i

(Ki − P i).

2.5 Generalized coordinates and mass matrices

Let us introduce the generalized coordinates:

qi := (ri
1, r

i
2, θ

i)⊤ and q := (q1, . . . ,qn)⊤,

and likewise the generalized velocities q̇i and q̇. At the time t = 0, they becomes:

qi
0 := (ri

0, θ
i
0)

⊤ and q0 := (q1
0, . . . ,q

n
0 )⊤.

The components of q could be subsequently either denoted by qi with i ∈
{1, . . . , 3n} or qi

j with i ∈ {1, . . . , n} and j ∈ {1, 2, 3} to emphasize the number

of the solid we are referring to. We denote by Q the open subset of (R2×R/2π)n

consisting of all the allowable q i.e. all the q for which the solids do not touch or
overlap each other neither the boundary of the fluid domain. The set Q being
an open set of a Banach space can also be seen as an analytic manifold and we
denote TQ its tangent bundle consisting of the pairs (q, q̇).

The generalized coordinates will allow us to rewrite the Lagrangian function
in a convenient short form. Beforehand, we need to introduce the mass matrices
of our system. The mass matrix of the i-th body is defined as being the diagonal
matrix:

M
i
r := diag(mi,mi, Ii),

while the added mass matrix du to the interaction between the i-th and the j-th
solids in the fluid reads:

M
f
ij := ρf




∫
F
∇ψi

1 · ∇ψj
1dx . . .

∫
F
∇ψi

1 · ∇ψj
3dx

...
...∫

F
∇ψi

3 · ∇ψj
1dx . . .

∫
F
∇ψi

3 · ∇ψj
3dx


 . (2.9)
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The overall virtual mass matrix of the system fluid-solids is next defined as being
the bloc matrix:

M :=




M
1
r + M

f
11 M

f
12 . . . M

f
1n

M
f
21 M

2
r + M

f
22 . . . M

f
2n

...
...

. . .
...

M
f
n1 M

f
n2 . . . M

n
r + M

f
nn



.

The overall kinetic energy of the system fluid-solids can now be rewritten in a
very short form as a product matrix-vectors:

K :=
1

2
q̇⊤

Mq̇, (2.10a)

and if we set furthermore:
P :=

∑

i

P i, (2.10b)

the expression of the Lagrangian function turns out to be:

L := K − P. (2.10c)

Observe that in the definition (2.9), the elements of the matrix M
f can be

rewritten upon an integration by parts in the form:
∫

F

∇ψi
k · ∇ψj

l dx =
1

2

∫

∂Sj

ψi
k∂nψ

j
l dσ +

1

2

∫

∂Si

ψj
l ∂nψ

i
k dσ, (2.11)

involving only integrals on the boundaries of the solids.

2.6 Euler-Lagrange equation

The Lagrangian is a function of q and q̇ only. We invoke now Hamilton’s
principle which tells us that the Euler-Lagrange equation driving the dynamics
of our system is:

d

dt

∂L

∂q̇
− ∂L

∂q
= 0, (t ≥ 0).

Expanding this equality, taking into account the expressions (2.10), we get a
second order non-linear ODE:

Mq̈ + 〈Γ(q), q̇, q̇〉 +
∂P

∂q
= 0, (t ≥ 0), (2.12)

in which Γ(q) is a rank-3 tensor usually called Christoffel symbol in Lagrangian
Mechanics. Denoting by Mij the elements of the virtual mass matrix M (i, j ∈
{1, . . . , 3n}) and by qi the elements of q (i ∈ {1, . . . , 3n}), it is defined by:

Γk
ij :=

1

2

(
∂Mki

∂qj
+
∂Mkj

∂qi
− ∂Mij

∂qk

)
, (i, j, k ∈ {1, . . . , 3n}). (2.13)
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Considering the expression of the matrix M, we realize that the main difficulty
lies in computing the derivatives with respect to the generalized coordinates of
the elements Mf

ij of the added mass matrix (i = 3(i′−1)′+i′′, j = 3(j′−1)+j′′,
i′, j′ ∈ {1, . . . , n}, i′′, j′′ ∈ {1, 2, 3}):

Mf
ij := ρf

∫

F

∇ψi′

i′′ · ∇ψj′

j′′dx, (2.14)

since such quantities depend on q not only because the domain of integration
F does but also because the elementary potentials are defined as solutions of
boundary problems in F . Although quite involved, formulae to compute such
derivatives are available and to display them we need to introduce some addi-
tional notations.

We use in the sequel results and notation given in the Appendix, Section B.
We denote by wi

k (i ∈ {1, . . . , n} and k ∈ {1, 2, 3}) the velocity fields defined on
∂Si by:

wi
1 := e1, wi

2 := e2, wi
3 := (x − ri)⊥,

so that boundary conditions (2.6) can be rewritten ∂nψ
i
k = wi

k · n for all i and
k. Let us introduce also for all i ∈ {1, . . . , n} the functions ξi, ζi : ∂Si → R

3,
defined by:

ξi :=




−n2

n1

(x − ri) · n


 , ζi :=




n1

n2

(x − ri)⊥ · n


 ,

and the matrices defined on ∂Si as well by:

S
i := κ(ξi ⊗ ξi − ζi ⊗ ζi) + ξi ⊗ f3 + f3 ⊗ ξi − [(x − ri) · n](f3 ⊗ f3),

where f3 := (0, 0, 1)⊤. At last, we recall the definition of the Kronecker symbol:

δi
j :=

{
1 if i = j,

0 otherwise,

and we claim that:

Proposition 2.1 The quantities (2.14) are analytic with respect to q. If ∂F
is of class C1,1, the Christoffel symbols (2.13) can be computed in terms of the
elementary potentials. Thus, we get for k = 3(k′ − 1) + k′′, i = 3(i′ − 1) + i′′

and j = 3(j′ − 1) + j′′ with k′, i′, j′ ∈ {1, . . . , n} and k′′, i′′, j′′ ∈ {1, 2, 3} (what
means that k′, i′ and j′ are the indices of the solids):

Γk
ij = −ρf

2

∫

∂Si′
∂τψ

k′

k′′∂τψ
j′

j′′(w
i′

i′′ · n)dσ − ρf

2

∫

∂Sj′
∂τψ

k′

k′′∂τψ
i′

i′′(w
j′

j′′ · n)dσ

+
ρf

2

∫

∂Sk′
∂τψ

i′

i′′∂τψ
j′

j′′(w
k′

k′′ · n)dσ + δj′

i′ ρf

∫

∂Si′
ψk′

k′′S
i′

i′′j′′dσ

+ δj′

i′ δ
k′

i′
ρf

2

∫

∂Sk′
(wk′

k′′ · n)(wi′

i′′ · n)(wj′

j′′ · n)dσ. (2.15)
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Notice that, like for the elements of the mass matrix, all of the terms in (2.15)
are integrals on the boundaries of the solids.

Proof: We study the sensitivity of the elements (2.14) of the matrix M
f at the

time t = 0, the process being similar at any time. We wish to apply results of
Section B so we need to define the mapping φs arising therein.

Since the solids do no touch each other at the time t = 0, we can consider
open domains Si

ε and Oi such that S̄i
0 ⊂ Si

ε, S̄i
ε ⊂ Oi, Ōi ⊂ M for all i ∈

{1, . . . , n} and Ōi ∩ Ōj = ∅ for all i 6= j. Invoking Urisohn’s Lemma, there
exists a function χ of class C∞, compactly supported and such that 0 ≤ χ ≤ 1,
χ = 1 in Si

ε and χ = 0 in R
2 \ ∪iŌi. With the notation of Section B, we

specialize s = q and we set:

φs(x) :=

{
(1 − χ(x))x + χ(x)(R(θi)(x − ri

0) + ri) if x ∈ Ōi,

x if x ∈ R
2 \ ∪iŌi.

For all q close enough to q0, the mapping φs is an infinitely differentiable
diffeomorphism from R

2 onto itself and

φs(x) = R(θi)(x − ri
0) + ri in Si

ε.

We next apply Proposition B.1 to get the analyticity of quantities (2.14).
We wish then to apply Proposition B.3. To this purpose, we need to compute

the quantities involved in formula (B.3). Straightforward computations yield,
on ∂Si and for all i ∈ {1, . . . , n}:

wi
1 · τ = −n2, ∂τ (wi

1 · n) · τ = κn2,
wi

2 · τ = n1, ∂τ (wi
2 · n) · τ = −κn1,

wi
3 · τ = (x − ri) · n, ∂τ (wi

3 · n) · τ = (−1 − κ)(x − ri) · n.

At last, we get:

γij(x) =

{
−(x − ri) · n if i = j = 3k, k ∈ {1, . . . , n} and x ∈ Sk,

0 otherwise,

and formula (B.3) matches formula (2.15). �

In (2.12), it remains only to compute the derivatives of the potential energy
(2.8) with respect to the generalized coordinates. Straightforward computations
yield:

∂P i

∂qk
j

=





g(mi −mi
f ) if i = k and j = 2,

g(miri −mi
fr

i
f )⊥ · e2 if i = k and j = 3,

0 otherwise.

(2.16)
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3 Model with circulation

Since there are n submerged bodies, adding circulation to our model means
adding n degrees of freedom for the fluid flow. Let us introduce n elementary
stream functions ϕi, i ∈ {1, . . . , n}, harmonic in F and satisfying Dirichlet
boundary conditions:

ϕi = 1 on ∂Si,

ϕi = 0 on ∂F \ ∂Si.

At any time, the overall stream function related to the circulation can be written
as a linear combination of the functions ϕi:

ϕ =
∑

i

ciϕi,

where the coefficients ci are real for all i ∈ {1, . . . , n} and depend on time. We
call c := (c1, . . . , cn)⊤ the generalized circulation variable, homogeneous to a
generalized velocity. The unknowns of our problem are now q, q̇ and c. The
eulerian velocity of the fluid becomes when circulation is taken into account:

u := ∇ψ + ∇ϕ⊥ in F .

We defined the additional mass matrix:

C := ρf




∫
F
∇ϕ1 · ∇ϕ1dx . . .

∫
F
∇ϕ1 · ∇ϕndx

...
...∫

F
∇ϕn · ∇ϕ1dx . . .

∫
F
∇ϕn · ∇ϕndx


 ,

and we point out that its elements can be rewritten, using Green’s formula, in
the form:

∫

F

∇ϕi · ∇ϕjdx =
1

2

∫

∂Si

∂nϕ
jdσ +

1

2

∫

∂Sj

∂nϕ
idσ. (3.1)

The virtual mass matrix of the system fluid-solids is now the bloc diagonal
matrix: [

M 0
0 C

]
,

because all of the terms involving both an elementary potential and an elemen-
tary stream function are null. Indeed, for any i, k ∈ {1, . . . , n} and j ∈ {1, 2, 3}:

∫

F

∇ψi
j · (∇ϕk)⊥dx = −

∫

F

(∇ψi
j)

⊥ · ∇ϕkdx

= −
∫

∂Sk

(∇ψi
j)

⊥ · ndσ

=

∫

∂Sk

∂τψ
i
jdσ

= 0.
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Observe that the elementary stream functions depend on the position of the
solids and hence on q. We draw the same conclusion for the mass matrix C.
The Lagrangian function given in (2.10) rewrites now:

L :=
1

2
q̇⊤

Mq̇ +
1

2
c⊤Cc − P.

Once more, Hamilton’s principle tells us that (remind that c is homogeneous to
a generalized velocity):

d

dt

∂L

∂c
= 0, (t ≥ 0),

which simplifies into:
d

dt
(Cc) = 0, (t ≥ 0).

It means that the impulse of the fluid (see [17] for a definition) corresponding
to the circulation is constant. We recover a well known result: if there is no
circulation at the time t = 0, the circulation remains null for all time. We
denote Πf

c ∈ R
n the initial impulse related to the circulation and we get:

c = C
−1Πf

c , (t ≥ 0). (3.2)

As being a mass matrix, C is positive definite and hence always invertible. We
introduce the modified potential energy:

P̃ := P + Pc,

with

Pc := −1

2
(Πf

c )⊤C
−1Πf

c .

The Lagrangian function turns out to be:

L :=
1

2
q̇⊤

Mq̇ − P̃ ,

and the Euler-Lagrange equation (2.12) must be modified as follows:

Mq̈ + 〈Γ(q), q̇, q̇〉 +
∂P̃

∂q
= 0, (t ≥ 0). (3.3)

For all k′ ∈ {1, . . . , n} and k′′ ∈ {1, 2, 3}, we have:

∂Pc

∂qk′

k′′

:= −1

2
(Πf

c )⊤(C−1)⊤
∂C

∂qk′

k′′

C
−1Πf

c . (3.4)

The following Lemma allows to go further in the computation of this term:

Lemma 3.1 If ∂F is of class C1,1, the elements of the matrix ∂C/∂qk′

k′′ read:

∂

∂qk′

k′′

(∫

F

∇ϕi · ∇ϕjdx

)
= −

∫

∂Sk′
∂nϕ

i∂nϕ
j(wk′

k′′ · n)dσ, (3.5)

for all i, j ∈ {1, . . . , n}.
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Proof: We just give an outline of the proof, most of the arguments being
similar to those of Section B. Using the same notation as in the proof of Propo-
sition 2.1 we first compute ∂si

ϕj for all i ∈ {1, . . . , 3n} and j ∈ {1, . . . , n}.
Straightforward computations yield:

−∆∂si
ϕj = 0 in F ,

∂si
ϕj = 0 on ∂F \ ∂Si′ ,

where i = 3(i′ − 1) + i′′, i′ ∈ {1, . . . , n}, i′′ ∈ {1, 2, 3}. Differentiating with
respect to si the remaining boundary condition:

ϕj(φs) = δi′

j on ∂Si′

0 ,

we get:
∂siϕ

j + ∇ϕj · wi′

i′′ = 0 on ∂Si′ .

But since ϕj is constant along ∂Si′ , we have ∇ϕj = (∂nϕ
j)n and the identity

above turns into:
∂si
ϕj = −∂nϕj(wi′

i′′ · n) on ∂Si′ .

Then, Reynolds’s formula (see [10, Corollary 5.2.2 page 172]) yields for all i ∈
{1, . . . , 3n} and j, k ∈ {1, . . . , n}:

∂

∂si

(∫

F

∇ϕj · ∇ϕk dx

)
=

∫

∂Si′
(∇ϕj · ∇ϕk)(wi′

i′′ · n) dσ

+

∫

F

∇(∂siϕ
j) · ∇ϕk dx +

∫

F

∇ϕj · ∇(∂siϕ
k) dx. (3.6)

Once more, we observe that ∇ϕj = ∂nϕ
j and we apply Green’s formula in the

two latest terms to obtain formula (3.5). �

From equations (3.2) and (3.3) we deduce that the motion of the solids in
the fluid cannot generate circulation, if circulation is zero at the initial time,
but the converse is false: starting from rest, solids immersed in a fluid with non
zero circulation are certainly set into motion by the fluid.

4 Well-posedness of the Euler-Lagrange equa-

tions

We study now the well-posedness of equations (2.12) and (3.3). We have:

Theorem 4.1 For any initial data (q0, q̇0) ∈ TQ, there exists a unique solution
t ∈ [0, T ) 7→ q ∈ Q to equation (3.3) such that (q(0), dq

dt (0)) = (q0, q̇0). Further,
the solution is analytic and either T = +∞ or T corresponds to the time of a
collision between two solids or between a solid with any boundary of the fluid
domain.
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Proof: Since F is at least Lipschitz-continuous then we claim that for all
i, j ∈ {1, . . . , n} and k, l ∈ {1, 2, 3}, the quantities:

∫

F

∇ψi
k · ∇ψj

l dx and

∫

F

∇ϕi · ∇ϕjdx,

are analytic with respect to q. It is a non-trivial result of shape sensitivity
analysis which has already been proved in [26]. It entails that all of the terms
in (3.3) are analytic with respect to q and also with respect to q̇ for they are
linear or quadratic with respect to this second variable.

The next argument is that the matrix M is definite-positive and hence in-
vertible for all q ∈ Q. The Cauchy-Lipschitz Theorem applies to EDO (3.3) and
ensures that for any initial data, there exists a unique analytic solution local in
time.

It remains to prove that the solution (q, q̇) cannot blow up in finite time
unless a collision occurs. To this purpose, we introduce the overall energy of the
system fluid-solids:

E :=
1

2
q̇⊤

Mq̇ + P̃ .

Differentiating with respect to time the identity:

E =
∂L

∂q̇
· q̇ − L,

and applying the chain rule, we end up with the relation:

d

dt
E =

(
d

dt

∂L

∂q̇
− ∂L

∂q

)
· q̇,

which means that E is conserved. The solution (q, q̇) is therefore bounded in
any compact subset of TQ. Classical results for ODEs tell that the solution can
be continued up to a maximum time T and that either T = +∞ or:

lim
t→T

(q, q̇) ∈ ∂(TQ),

what means, since the tangent spaces are boundary-less vector spaces:

lim
t→T

q ∈ ∂Q.

This last condition characterizes a collision (or a contact) and the proof is com-
pleted. �

5 Handling collisions

Collisions between immersed rigid solids evolving freely in a potential flow may
occur as proved in [11]. In the numerical simulations, collisions and overlap-
ping between solids will cause the computations to fail and hence have to be
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prevented. To this purpose, we add to our model an electrostatic-like potential
energy defined by:

V := ε

n∑

i=0

n∑

j=i+1

∫

∂Sj

∫

∂Si

|x − x′|−αdσxdσx′ ,

where we have denoted ∂S0 := ∂F \ ∂S (i.e. ∂S0 is the boundary of the fluid
not shared with the solids) and ε > 0, α > 0 are two constants. We choose them
such that the repulsive force induced by the potential V be neglectful when the
solids are not very close. The potential V must be subtracted to the right hand
side term in the definition of the Lagrangian function and the Euler-Lagrange
equation (3.3) becomes:

Mq̈ + 〈Γ(q), q̇, q̇〉 +
∂P̃

∂q
+
∂V

∂q
= 0, (t ≥ 0). (5.1)

We easily obtain that, for k = 3(k′ − 1) + k′′, (k′ ∈ {1, . . . , n}, k′′ ∈ {1, 2, 3}):

∂V

∂qk′

k′′

= 2ε
∑

j 6=k′

∫

∂Sj

∫

∂Sk′
|x−x′|−α

[
(x − x′)

|x − x′|2 · n + κ

]
(wk′

k′′ ·n)dσxdσx′ . (5.2)

Once again, observe that this expression involves only integrals on the bound-
aries of the solids.

6 Dynamics of articulated bodies

To simplify, let us assume in this section that there is no circulation. The
dynamics of articulated bodies can easily be deduced from the dynamics of a
set a solids. Indeed, articulated bodies are defined as a collection of rigid solids
linked together through holonomic constraints which are easily handled within
Lagangian formalism. We write that:

q = F (p,u),

where p := (p1, . . . , pm) belongs to P an analytic manifold of dimension m
(1 ≤ m < 3n) and stands for the new degrees of freedom of the system and
u := (u1, . . . , ud) ∈ U (an analytic manifold of dimension d ≥ 1 such that
m + d = 3n) is a given control variable governing the relative position of the
solids composing the articulated bodies. A simple example of such function is
obtained by choosing for p some components of q, the remaining ones being
driven by a relation involving p and the control u. To simplify we assume that
F is also analytic from P × U into Q.

Remind that the Lagrangian L = L(q, q̇) is a function of q and q̇ only. We
define

L(p,u, ṗ, u̇) := L

(
F (p,u),

∂F

∂p
ṗ +

∂F

∂u
u̇

)
, (6.1)
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and the equation governing the motion of the articulated bodies is:

d

dt

∂L
∂ṗ

− ∂L
∂p

= 0, (t ≥ 0). (6.2)

Introducing the matrices:

Np :=
∂F

∂p
, Nu :=

∂F

∂u
,

and the rank-3 tensor (the second derivative of F ):

〈D2F, ṗ, u̇〉 := 〈∂
2F

∂p2
, ṗ, ṗ〉 + 〈∂

2F

∂u2
, u̇, u̇〉 + 2〈 ∂

2F

∂p∂u
, ṗ, u̇〉,

the chain rule allows to expand (6.2) as follows:

N
⊤
p

MNpp̈ + N
⊤
p

M〈D2F, ṗ, u̇〉 + N
⊤
p
〈Γ(F (p,u)),Npṗ + Nuu̇,Npṗ + Nuu̇〉

+ N
⊤
p

MNuü + N
⊤
p

∂P

∂q

⊤

+ N
⊤
p

∂V

∂q

⊤

= 0, (t ≥ 0). (6.3)

The function F being given, the matrices Np and Nu and the tensor D2F
are explicitly known. We know how to evaluate all of the terms in (5.1) and
therefore we draw the same conclusion for (6.3). Some care has to be taken when
choosing the function F for the ODE (6.3) to be well posed. Let us consider a
given control u : R+ → U .

Theorem 6.1 Assume that t ∈ R+ 7→ u ∈ U is of classe C2,1 (respectively
C2+k with k ≥ 1 or analytic) and assume that Np is full rank for all (p,u) ∈
P × U . Then, for any initial data (p0, ṗ0) ∈ TP there exists a unique solution
t ∈ [0, T ) 7→ p ∈ P to ODE (6.3) such that (p(0), dp

dt (0)) = (p0, ṗ0).
Further, the solution if of class C2 (respectively C2+k or analytic) and either

T = +∞ or T corresponds to the time of a collision between two articulated
bodies or between a body with any boundary of the fluid domain.

The hypothesis on the rank of Np is not surprising. It means that for any value
of the control variable u, the function p 7→ F (p,u) is locally an immersion from
P into Q.

Proof: We use the same arguments as in the proof of Theorem 4.1.
The hypothesis on Np ensures that the matrix N

⊤
p

MNp is positive definite
for all (p,u) and hence always invertible.

From the definition (6.1), we deduce that:

L :=
1

2
ṗ⊤

N
⊤
p

MNpṗ + ṗ⊤
N

⊤
p

MNuu̇ +
1

2
u̇⊤

N
⊤
u

MNuu̇ − P (F (p,u)).

We set then:

P ∗ := −1

2
u̇⊤

N
⊤
u

MNuu̇ + P (F (p,u)),
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and we introduce the energy like amount:

E∗ :=
1

2
ṗ⊤

N
⊤
p

MNpṗ + P ∗.

Proceeding like in the proof of Theorem 4.1, we prove that E∗ remains constant
for all time and hence that the solution cannot blow up until a collision occurs.
�

7 Computation of internal forces and torques

Rather than u governing the shape-changes of the bodies, a more realistic control
variable would be the internal forces and torques causing these shape-changes.
Actually, under an additional assumption on F , we will show that both choices
are equivalent by proving that there is a one-to-one relation between u and the
internal forces.

First, the generalized forces causing the shape-changes driven by u are de-
fined in Lagrangian Mechanics as the right hand side ν in the equality:

d

dt

∂L
∂u̇

− ∂L
∂u

= ν, (t ≥ 0). (7.1)

We can easily expand this identity by copying-pasting (6.3) and exchanging u

and p for they play symmetrical roles:

N
⊤
u

MNuü + N
⊤
u

M〈D2F, ṗ, u̇〉 + N
⊤
u
〈Γ(F (p,u)),Npṗ + Nuu̇,Npṗ + Nuu̇〉

+ N
⊤
u

MNpp̈ + N
⊤
u

∂P

∂q

⊤

+ N
⊤
u

∂V

∂q

⊤

= ν, (t ≥ 0). (7.2)

Therefore, for any given smooth control t ∈ R+ 7→ u ∈ U , we can compute first
p by solving (6.3) and next use it to compute ν with (7.2). The converse is
true if the system of equations (6.3)-(7.2), seen as a system of ODEs in (p,u)
can be solved for any given right hand side ν. Indeed, let now the function
t ∈ R+ 7→ ν ∈ R

d be given.

Theorem 7.1 Assume that both Np and Nu are full-rank for all (p,u) ∈ P×U
and that the function ν is Lipschitz continuous (respectively of class Ck with
k ≥ 1 or analytic). Then, for any (p0, ṗ0,u0, u̇0) ∈ TP × TU , there exists a
unique solution t ∈ [0, T ) 7→ (p,u) ∈ P × U to the system of ODEs (6.3)-(7.2)
such that (p(0), dp

dt (0),u(0), du
dt (0)) = (p0, ṗ0,u0, u̇0).

Further, the solution if of class C2 (respectively C2+k or analytic) and either
T = +∞ or T corresponds to the time of a collision between two articulated
bodies or between a body with any boundary of the fluid domain.

The hypotheses on Np and Nu entail that F is a local diffeomorphism from
P × U onto Q.
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Proof: Once more, we proceed like in the proof of Theorem 6.1 and we obtain
the existence of a solution t 7→ (p,u) ∈ P × U local in time. We denote by T
the maximal time of existence of the solution, we assume that T < +∞ and we
define the natural overall energy by:

E :=
1

2
ṗ⊤

N
⊤
p

MNpṗ + ṗ⊤
N

⊤
p

MNuu̇ +
1

2
u̇⊤

N
⊤
u

MNuu̇ + P (F (p,u)).

We next easily check that:

∂L
∂ṗ

· ṗ +
∂L
∂u̇

· u̇ − L = E.

Differentiating this equality with respect to time, we get:

(
d

dt

∂L
∂u̇

− ∂L
∂u

)
· u̇ =

dE

dt
, (7.3)

meaning that the variation of energy is equal to the power-like amount ν · u̇
expended by the internal forces. Assume now that F (p,u) remains in a compact
subset K of Q for all t ∈ [0, T [. Then, there exist α > 0 and Pmin ∈ R (the
minimum of the potential energy P in K) such that, for all (p,u) ∈ F−1(K):

α|u̇|2 ≤ E − Pmin.

According to (7.3), we deduce that for all t ∈ [0, T [:

α|u̇|2 ≤ λ+

∫ t

0

|ν||u̇|ds, (7.4)

where λ := |E(0) − Pmin|. Setting then:

φ(t) :=

∫ t

0

|ν||u̇|ds,

we obtain after some basic algebra, that for all t ∈ [0, T [:

φ′(t)√
φ(t) + λ

≤ |ν|√
α
.

Integrating this inequality with respect to time, we get the estimate:

φ(t) ≤ λ+

[√
λ+

1

2
√
α

∫ t

0

|ν|ds
]2

.

After plugging this result into (7.4), we just have proved the Gronwall-type
inequality:

|u̇|2 ≤ 2

α
λ+

1

α

[√
λ+

1

2
√
α

∫ t

0

|ν|ds
]2

,
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meaning that u̇ is bounded for all t ∈ [0, T [. Seeing (7.3), this entails that E is
also bounded and hence that ṗ is bounded as well. Classical behavior results for
solutions of ODEs tell us that this result contradicts the hypothesis T < +∞.
We deduce that either T = +∞ or

lim
t→T

F (p,u) ∈ ∂Q,

what means a collision in our system at the time T . �

One of the interest in computing the internal forces and torques is that it allows
to quantify the efficiency of a strategy of locomotion. Indeed, a relevant cost
functional associated with a displacement over a time interval [0, T ] could be:

∫ ⊤

0

|ν|2ds. (7.5)

This approach was for instance adopted in [12] to seek optimal strokes.

8 Numerical scheme

8.1 Introduction

The equations governing the motion of a collection of solids or articulated bodies
are ODEs. Therefore our numerical scheme will involve an ODE solver. Con-
sider for instance the ODE (5.1) without the circulation term (circulation has
not been implemented yet) and let us turn it into the normal form:

d

dt

[
q̇

q

]
=


−M

−1
[
〈Γ(q), q̇, q̇〉 +

∂P

∂q

⊤

+
∂V

∂q

⊤]

q̇


 . (8.1)

Any evaluation of the right hand side requires the computation of the elementary
potential functions and hence our numerical scheme will also involve a solver of
boundary value problems.

Related to the potential functions, the amounts we need to compute are
more precisely the elements of the mass matrices:

∫

F

∇ψi
k · ∇ψj

l dx,

for all i, j ∈ {1, . . . , n} and k, l ∈ {1, 2, 3} as well as their derivatives with respect
to q. As already mentioned before, all of these quantities can be expressed as
integrals on the boundaries of the solids (see formulae (2.15) and (2.11)). This
is also true for the repulsive force ∂V /∂q (see (5.2)).

Conversely, all of the elementary potential functions, as being solutions of
Neumann boundary value problems (abbreviated NBVP in the following), are
completely determined by their (Neumann) data on the boundaries of the solids
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(see Appendix, Section A). Based on these considerations, our method will
involve only computations on ∂F by means of an integral formulation. It is a
fundamental point because one of the difficulty in dealing with fluid-structure
problems is that the fluid domain depends on the unknown positions of the
immersed structures. When the method involves computations in this domain,
it needs to be meshed and the mesh has to be updated at each time step.
The integral formulation allows this problem to be avoided. Another advantage
of this approach is that the discretization of an integral equation set on the
fluid boundary leads to a linear system having many less unknowns than the
discretization of the same problem set in the fluid domain. At last, when the
fluid domain is not bounded, dealing with integral equations allows to avoid the
delicate problem of truncating the domain and determining artificial boundary
conditions.

How to turn boundary value problems (2.6) into integral equations is a clas-
sical process (see [24]). For our problem, we have two choices for the integral
formulation: the direct or the indirect type. The direct formulation best fits the
problem requirements because it gives directly the Dirichlet boundary data as
function of the Neumann boundary data, that is, corresponds to the Neumann-
to-Dirichlet operator. It reads (see [3]) for all i ∈ {1, . . . , n}, k ∈ {1, 2, 3} and
x ∈ ∂F :

ψi
k(x)− 1

π

∫

∂F

(x′ − x)

|x′ − x|2 ·n(x′)ψi
k(x′)dσx′ = − 1

π

∫

∂Si

ln |x′−x|bik(x′)dσx′ , (8.2)

where we recall that bik := wi
k · n is the Neumann boundary data of ψi

k and
n, the unitary normal to ∂F , is directed toward the exterior of the fluid. An
additionnal equation is needed when F is bounded:

∫

∂S

ψi
k(x′)dσx′ = 0. (8.3)

The next step consists in choosing a numerical method to solve (8.2) (coupled
with (8.3) in the bounded case). In most of the articles dealing with the loco-
motion of shape-changing bodies in an ideal fluid, the authors use the so-called
panel method [12, 13, 23]. It is a collocation method where the approximation
function space consists in piecewise constant functions built from a discretiza-
tion of the boundary in small curved or straight segments of length O(h). As a
result, such a method is of order 1, that is the error between the exact solution
ψ and the approximate one ψh satisfies ‖ψh − ψ‖∞ = O(h) with possibly su-
perconvergence property at the collocation points ξk: |ψh(ξk)−ψ(ξk)| = O(h2)
(see [9, remark 4.4.8 page 85]).

For integral equations set on boundaries regular enough (described by pa-
rameterization), several authors [3, 7] advocate the Nyström method as the best
possible choice because it is nearly as simple to implement as the panel method
but has far better convergence properties. In the following we describe this
method applied to our NVBP (see [3] for additional details).
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8.2 Carrying out the Nyström method

The accuracy of the Nyström method depends on the quadrature rule choosen
to evaluate the integrals. In our case, all of the functions are defined on the fluid
boundaries and hence, introducing parameterizations, can be seen as 2π-periodic
functions defined on the interval [0, 2π[. For such functions, the rectangle rule
is very well adapted as proved in [16, Corollary 9.27 page 210].

For all i ∈ {1, . . . , n}, we introduce a twice continuously differentiable pa-
rameterization

γi : s ∈ [0, 2π[7→ γi(s) ∈ R
2,

of the boundary of Si. These parameterizations of the moving solids are ob-
tained merely by composing given parameterizations of the fixed domains Si

0

with the rigid displacements gi := (Ri, ri). We denote as well γi (i ∈ {n +
1, . . . , N}) a parameterization of the remaining N−n fixed fluid boundaries not
shared with moving solids.

We define next for all j, l ∈ {1, . . . , N} the kernels Kl
j and Rl

j by:

Kl
j(t, s) :=

(γj(s) − γl(t))

|γj(s) − γl(t)|2
· n(γj(s))|γ′

j(s)|,

Rl
j(t, s) := ln |γj(s) − γl(t)||γ′

j(s)|, (s, t ∈ [0, 2π[),

and we rewrite (8.2) for all i ∈ {1, . . . , n} and k ∈ {1, 2, 3}:

ψi
k(γl(t)) −

1

π

N∑

j=1

∫ 2π

0

Kl
j(t, s)ψ

i
k(γj(s))ds

= − 1

π

∫ 2π

0

Rl
i(t, s)b

i
k(γi(s))ds, (l = 1, . . . , N). (8.4)

For any pair of indices (i, k) ∈ {1, . . . , n} × {1, 2, 3}, it is a linear system of N
integral equations with N unknowns that are the parts of the solution ψi

k living
on each one of the N boundaries. The kernels Kl

l (t, s) have no singularity at
t = s since:

lim
s→t

Kl
l (t, s) =

1

2
κ(γl(t))|γ′

l(t)|,

where we recall that κ is the curvature of the boundary.

Notation: The process we are going to describe being similar for any pair of
indices (i, k), let us assume that their are fixed. It allows us to drop them in
the notation when possible and for instance merely denote ψ for ψi

k.

This first stage done, we can now apply the Nyström method which is de-
composed into two steps:

step 1 The domain [0, 2π[ of each parameterization γj (j ∈ {1, . . . , N}) is

uniformly discretized with mj := 2nj + 1 points (nj ≥ 1) denoted sj
p :=
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2πp/mj (p = 0, . . . ,mj−1). The integrals in the left hand side of (8.4) are
approximated for all j, l ∈ {1, . . . , N} using the left rectangular quadrature
rule:

∫ 2π

0

Kl
j(t, s)ψ(γj(s))ds ≃ 2π

mj

mj−1∑

p=0

Kl
j(t, s

j
p)ψ(γj(s

j
p)), (t ∈ [0, 2π[),

which is quite accurate because, as already mentioned, s 7→ Kl
j(t, s)ψ(γj(s))

is a smooth 2π-periodic function. The same quadrature rule is used for
the right hand side of (8.4) except for l = i because the kernel Ri

i(t, s) has
an (integrable) singularity at t = s. This last problem is overcome using
the decomposition ([3, page 329]) for any (s, t) ∈ [0, 2π[×[0, 2π[:

ln |γi(t) − γi(s)| = ln

∣∣∣∣2e
−1/2 sin

(
t− s

2

)∣∣∣∣ +Bi(t, s),

where:

Bi(t, s) :=





ln
|e1/2(γi(t) − γi(s))|
|2 sin((t− s)/2)| , if s 6= t,

ln |e1/2γ′
i(t)| if s = t.

The function Bi(t, s) is again a smooth periodic kernel with no singularity
at s = t and the corresponding integral is approximated using the rect-
angular rule with mi = 2ni + 1 points. For the singular part, we use the
formula below with with ϕ(s) := |γ′

i(s)|bik(γi(s))|:

− 1

π

∫ 2π

0

ϕ(s) ln

∣∣∣∣2e
−1/2 sin

(
t− s

2

)∣∣∣∣ ds =

1√
2π


ϕ̂0 +

∑

|p|>0

ϕ̂p

|p| e
ipt


 , (8.5a)

available for any 2π-periodic smooth function ϕ defined on [0, 2π[. The
approximation of the right hand side of (8.5a) is next done by

• truncating the series at p = ±ni,

• replacing the Fourier coefficients ϕ̂p (|p| ≤ ni) by their discrete

Fourier transforms Φ̂p (based on the same rectangular quadrature
rule using the mi = 1 + 2ni points si

j of [0, 2π[).

This can be written as the following matrix vector product:

Φ̂ =

√
2π

mi
FmiΦ, (i = 1, . . . , n), (8.5b)

where:

Φ := [ϕ(si
0), ϕ(si

1), . . . , ϕ(si
mi−1)]

⊤, (8.5c)

Φ̂ := [Φ̂0, . . . , Φ̂ni , Φ̂−ni , . . . , Φ̂−1]
⊤, (8.5d)
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and Fm is defined for any m ≥ 1 as the usual discrete Fourier matrix:

Fm =
[
e−

2iπkj
m

]

0≤k,j≤m−1
. (8.5e)

Denoting by ψ̃l(t) and ỹl(t) (l ∈ {1, . . . , N}) the approximations likewise
obtained for respectively ψ(γl(t)) and for the right hand side of (8.4), the
N discretized equations (8.4) read:

ψ̃l(t) −
2

mj

N∑

j=1

mj−1∑

p=0

Kl
j(t, s

j
p)ψ̃j(s

j
p) = ỹl(t), (l = 1, . . . N). (8.6)

Observe that once the quantities ψ̃j(s
j
p) are known, this equation allows to

define the numerical solution ψ̃ = [ψ̃1, . . . , ψ̃N ] everywhere on the bound-
ary. It is the so-called Nyström interpolation formula.

step 2 Finally the N equations (8.6) are turned into an equivalent linear square

system in the unknowns ψ̃j(s
j
p) by requiring identities (8.6) to be exact

for t = sl
p (p = 0, . . . ,ml − 1). We get then:

N∑

j=1

Al,jΨj = Yl, (l = 1, . . . , N), (8.7)

where each block matrix Al,j is of size ml ×mj . More precisely, we have:

[
A l,j

l 6=j

]

q,p
= − 2

mj
Kl

j(s
l
q, s

j
p), 0 ≤ q ≤ ml − 1, 0 ≤ p ≤ mj − 1,

[
Al,l

]

q,p
= δq,p − 2

ml
Kl

j(s
l
q, s

l
p), 0 ≤ q, p ≤ ml − 1,

Ψj = [ψ̃j(s
j
0), . . . , ψ̃j(s

j
mj−1)]

⊤,

Yl = [ỹl(s
l
0), . . . , ỹl(s

l
ml−1)]

⊤, l = 1, . . . , N.

As already mentioned, Yl for l 6= i is built using the rectangular rule:

[Yl]q = − 2

mi

mi−1∑

p=0

Rl
i(s

l
q, s

i
p)b

i
k(γi(s

i
p)), 0 ≤ q ≤ ml − 1.

For l = i, the special treatment consisting of process (8.5) leads to:

Yi = DΦ+ F
−1
mi

diag(h)FmiΦ,

[D]q,p = − 2

mi
Bi(si

q, s
i
p), 0 ≤ q, p ≤ mi − 1,

h = [1, 1, 1/2, . . . , 1/ni, 1/ni, . . . , 1/2, 1]⊤,
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where the term DΦ corresponds to the rectangular rule applied to the
smooth kernel Bi. The other part is computed fastly in O(ln(mi)mi)
operations using the fast Fourier transform algorithm followed by mi di-
visions and finally by the inverse fast Fourier transform (this reads simply
ifft(h.*fft(Phi)) in Matlab language).

The overall matrix A related to the linear system (8.7) is defined by blocks:

A :=




A1,1 . . . A1,n

...
...

An,1 . . . An,n


 .

Unlike the right hand side term in system (8.7) which depends on the
potential ψi

k we wish to compute, the matrix A is the same for all of the
elementary potentials.

The accuracy of this scheme (discussed in [3, page 333]) depends on the
smoothness of both the Neumann boundary data and the boundaries param-
eterization. In our case the parameterization is of class Cℓ (ℓ ≥ 2) while the
Neumann data bki are Cℓ−1. So, according to [3, page 333], the approximate

Nyström solution ψ̃k
i satisfies, at least when F is not bounded:

‖ψ̃k
i − ψk

i ‖∞ = O(ln(h)hℓ−1), h := max
i

2π

mi
.

When F is bounded the matrix A is not invertible any longer (or at least very
badly conditioned). It is not surprising since the solution of the continuous
problem is defined only up to a constant and needs for instance (8.3) to re-
cover uniqueness. A way to solve this problem consists in replacing one of the
equations by the linear equation resulting from the discretization of (8.3):

n∑

l=1

2π

ml

ml−1∑

p=0

ψ̃i
k(sl

p)|γ′
i(s

l
p)| = 0. (8.8)

For symmetry reasons, the removed equation is first substracted to all of the
others before being replaced by (8.8). Although we have not carried out a rigor-
ous analysis, this choice has been preferred after several numerical tests to the
same method but without substraction and to the classical method consisting
in imposing a value at a given point.

8.3 Additional details

The linear system (8.7) must be solved for all of the elementary potentials ψi
k

(i ∈ {1, . . . , n}, k ∈ {1, 2, 3}), that is to say for 3n different right hand side terms
built from the 3n boundary data bik. Since the matrix A remains unchanged,
the more efficient way to carry out this task consists in using a LU factorization
rather than an iterative method especially when n is large.
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Once the elementary potentials have been computed, a lot of contour in-
tegrals have to be approximated in (2.11) and (2.15). We use once again
the rectangular formula with the same boundary discretization (sj

p = 2πp/mj ,
p = 0, . . . ,mj − 1).

Some terms in (2.11) and (2.15) require the knowledge at the integration
points sj

p of the tangential derivatives of the potentials. This is done by trigono-
metric interpolation and so the discrete Fourier transform and its inverse are
again involved.

Eventually, we have experienced several Matlab built-in ODEs solvers and
have selected ode113 which is a variable order Adams-Bashforth-Moulton PECE
solver (we refer to the Matlab documentation for details).

9 Biohydrodynamics Matlab Toolbox

9.1 Introduction

The Biohydrodynamics Toolbox (BhT) is a Matlab Toolbox allowing to realize
numerical simulations of rigid solids immersed in a potential flow. The system
fluid-solids can be either confined, partially bounded or unbounded. The buoy-
ant force and collisions between solids are supported (but circulation is not yet).
The solids can be free of constraints or linked together in order to constitute
articulated bodies. In the latter case, the constraints are prescribed by the user
as functions of time and the induced motion is computed. Post-processing func-
tions are provided to compute the internal torques, the power and the energy
expended by the swimming bodies.

BhT is free (distributed under license GNU GPL) and comes with complete
html documentation including plenty examples and tutorials. It is available at:

• http://bht.gforge.inria.fr/ (hosted by INRIA Gforge).

• http://www.mathworks.com/matlabcentral/fileexchange/21872

(hosted by Matlab Central).

Going through all of the features of BhT would be too long and is out of the
scope of this article. We will rather use BhT to discuss and illustrate Sparen-
berg’s affirmation in [28, page 63] saying that: a body of finite extent, moving
periodically through an inviscid and incompressible fluid without shedding vor-
ticity, cannot exert a force with non-zero mean value. In particular, we will
show that this sentence seems no longer true when the fluid domain contains
fixed obtacles.

9.2 Settings of the simulation

We consider a fish-like swimming body made of four ellipse-shaped rigid solids
as pictured in figure 2. The three angles of the joints are driven by the functions
drawn in fig 3 over the time interval [0, 6π]. Notice that all of the functions are
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Figure 2: Screenshots of the swimming fish

compactly supported. The fish starts from rest, undergoes shape-changes yield-
ing a net forward motion and stop back in its initial shape. We are interesting
in studying its final velocity. Indeed, denoting by m > 0 the total mass of the
fish and by ṙ the velocity of its center of mass, Newton’s laws tell us that:

1

6π
mṙ(6π) =

1

6π

∫ 6π

0

F dt, (9.1)

where F stands for the hydrodynamical forces generated by the fish to propel
itself. Thereby, the right hand side in (9.1) is precisely the mean value of this
force over the time interval [0, 6π].
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Figure 3: Angles of the joints with respect to time (given functions). Joint 1
corresponds to the fish’s head and joint 3 to the tail.

We are going to perform twice the same simulation. In a first time, the fish
will be alone in the fluid and the system fluid-fish will fill the whole space. In a
second time, the fluid will contain also two fixed rectangular obstacles and the
fish will pass through them in its course (see figure 4).

Figure 4: Fish swimming between two obstacles

The movies are available at:

http://bht.gforge.inria.fr/Examples/demos.html.
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9.3 Results

With BhT we can compute the velocity of the center of mass of the fish at any
time. It is pictured in figures 5 and 6.
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Figure 5: Velocity of the center of mass of the fish with respect to time (fluid
without obstacle).
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Figure 6: Velocity of the center of mass of the fish with respect to time (fluid
with obstacles).

We clearly observe in figure 5 that the final velocity of the fish is zero, which
confirms Sparenberg’s statement in this case. On the other hand, with the same
sequence of strokes, figure 6 tells us that the fish generates non zero mean thrust
when the fluid contains obstacles.

An other interesting point that can be observed using BhT is that the torques
applied at the joints to produce the shape-changes are not equal in both cases
although the deformations are. In figure 7 we have drawn the values of the
torques for the first case (fluid without obtacles) and in figure 8 the difference
between the values of the torques in the first and second cases.

Computing next the cost of each displacement as quantified by the cost
functional (7.5), we obtain that the second strategy is 3.22% cheaper than the
first one. These surprising results can be summarized by saying that not only
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generates the fish non-zero mean thrust by swimming through obstacles but also
it swims more effortlessly.
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Figure 7: Values of the torques at the joints with respect to time in the first
case.
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Figure 8: Difference between the values of the torques at the joints in the first
and second case.

A Neumann boundary value problem

This section is dedicated to recalling some results stated in [4, 1, 2], about the
well-posedness of Neumann boundary value problems. We write the problem in
the generic form:

−∆ψ = 0 in F , (A.1a)

∂nψ = g on ∂F , (A.1b)

and we assume that g ∈ H−1/2(∂F) is given (H−1/2(∂F) is the dual space of
the Sobolev space H1/2(∂F); see [19, §7.3 pages 38-42]). For problem (A.1) to
admit solutions, g has to satisfy the compatibility condition:

〈g, 1〉H−1/2(∂F)×H1/2(∂F) = 0. (A.2)
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A.1 Bounded domain

In this case, we introduce the function space:

X1(F) := {ψ ∈ H1(F) : ∆ψ ∈ L2(F)}.
For any ψ ∈ X1(F), its normal trace ∂nψ exists in H−1/2(∂F). Lax-Milgram
Theorem ensures that there exists a unique weak solution ψ ∈ X1(F) satisfying
both identities: ∫

F

∇ψ · ∇ϕ dx =

∫

∂F

gϕdσ, ∀ϕ ∈ H1(F), (A.3a)

∫

∂S

ψ dσ = 0. (A.3b)

Moreover, we have an estimate:

‖ψ‖X1(F) ≤ C‖g‖H−1/2(∂F), (A.4)

for some constant C > 0 independent of ψ and g.
Assume now that ∂F is C1,1 (continuously differentiable with first derivative

Lipschitz continuous) and g ∈ H1/2(∂F), then the solution ψ of (A.3) belongs
to:

X2(F) := {ψ ∈ H2(F) : ∆(∂xiψ) ∈ L2(F), ∀ i = 1, 2}.
For such function, both quantities ∂2

n
ψ := n · D2ψ n and ∆σψ (the Laplace-

Beltrami operator) are well defined on ∂F as elements of H−1/2(∂F). We have
again an estimate:

‖ψ‖X2(F) ≤ C‖g‖H1/2(∂F),

for some constant C > 0 independent of ψ and g.

A.2 Unbounded domain

When F is not bounded, we define the weight function:

ρ(x) :=
√

1 + |x|2 log(2 + |x|2),
and the Lebesgue space:

L2
N (F) := {ψ ∈ D′(F) : ρ−1ψ ∈ L2(F)},

where D′(F) is the space of distributions. Classical Sobolev spaces must be
replaced by weighted Sobolev spaces:

H1
N (F) : = {ψ ∈ L2

N (F) : ∂xiψ ∈ L2(F), ∀ i = 1, 2},
X1

N (F) : = {ψ ∈ H1
N (F) : ρ∆ψ ∈ L2(F)},

H2
N (F) : = {ψ ∈ H1

N (F) : ρ∂2
xixj

ψ ∈ L2(F), ∀ i, j = 1, 2},
X2

N (F) : = {ψ ∈ H2
N (F) : ρ2∆ψ ∈ L2(F)}.

When g ∈ H−1/2(∂F), the solution of (A.3a-A.3b) exists in H1
N (F) and is

unique. Further, it can be proved that the solution belongs to X1
N (F).

As in the case F bounded, if ∂F is C1,1 and g ∈ H1/2(∂F), then the solutions
are in X2

N (F).
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B Shape sensitivity analysis

This section is self-contained and independent, including for the notation. We
recall results of shape optimization theory, most of them being proved in [26].

Let F0 ⊂ R
2 and define for all s = (s1, . . . , sn) ∈ R

n (n ≥ 1) diffeomor-
phisms φs of class Cm (m ≥ 1) from R

2 onto itself equal to the identity outside
a large fixed compact ball B. We denote by Dm the Banach space of such diffeo-
morphisms, endowed with the norm of the Sobolev space Wm,∞(B,B) (uniform
convergence in B of the function and the derivatives up to order m).

Denote F := φs(F0), wi := ∂siφs ◦φ−1
s , γij := ∂2

sisj
φs ◦φ−1

s and wn

i and wτ

i

the normal and tangential components of wi on ∂F such that:

wi = wn

i n + wτ

i τ .

Define likewise γn

ij , the normal component of γij .
For any i ∈ {1, . . . , n}, let then ψi be the solution of the Neumann boundary

value problem:

−∆ψi = 0 in F ,
∂nψi = wn

i on ∂F ,

and define for any i, j ∈ {1, . . . , n} the functional:

Jij(s) :=

∫

F

∇ψi · ∇ψj dx.

Under the general assumption that F0 is Lipschitz continuous, we have:

Proposition B.1 Assume that the mapping s 7→ φs ∈ Dm is of class Ck with
k ≥ 2 (respectively analytic) and m ≥ 1, then s 7→ Jij is of class Ck−1 (respec-
tively analytic).

The proof is given in [26] in a more general framework. Assuming additional
regularity on ∂F0, we can compute the partial derivatives of Jij :

Proposition B.2 Assume that F0 is of class C1,1 and that the mapping s 7→
φs ∈ Dm is of class C2 with m ≥ 2. Then, for all i, j, k ∈ {1, . . . , n}, we have:

∂

∂si

(∫

F

∇ψj · ∇ψk dx

)
= −

∫

∂F

(∂τψj∂τψk)wn

i dσ

−
∫

∂F

(
κwi · wj − γn

ij + (∂τw
n

j · τ )wτ

i + (∂τw
n

i · τ )wτ

j

)
ψk dσ

−
∫

∂F

(
κwi · wk − γn

ik + (∂τw
n

k · τ )wτ

i + (∂τw
n

i · τ )wτ

k

)
ψj dσ

+

∫

∂F

∂nψi∂nψj∂nψk dσ.

Straightforward but tedious computations yield:
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Proposition B.3 Under the assumptions of Proposition B.2 and for all i, j, k ∈
{1, . . . , n}, the following identity holds:

∂

∂sj

(∫

∂F

ψi∂nψk dσ

)
+

∂

∂si

(∫

∂F

ψj∂nψk dσ

)
− ∂

∂sk

(∫

∂F

ψi∂nψj dσ

)
=

−
∫

∂F

(∂τψk · ∂τψi)w
n

j dσ −
∫

∂F

(∂τψk · ∂τψj)w
n

i dσ +

∫

∂F

(∂τψi · ∂τψj)w
n

k dσ

− 2

∫

∂F

(
κwi · wj − γn

ij + (∂τw
n

j · τ )wτ

i + (∂τw
n

i · τ )wτ

j

)
ψk dσ

+

∫

∂F

∂nψk∂nψi∂nψj dσ. (B.1)
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