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2d model with buoyancy, circulation and collisions

Alexandre Munnier∗ Bruno Pinçon†

January 11, 2010

Abstract

Articulated solid bodies (ASB) is a basic model for the study of shape-
changing underwater vehicles made of rigid parts linked together by piv-
oting joints. In this paper we study the locomotion of such swimming
mechanisms in an ideal fluid. Our study ranges over a wide class of prob-
lems: several ASBs can be involved (without being hydrodynamically de-
coupled), the fluid-bodies system can be partially or totally confined and
fluid circulation, buoyancy force and possible collisions between bodies are
taken into account. We derive the Euler-Lagrange equation governing the
dynamics of the system, study its well-posedness and describe a numerical
scheme implemented in a Matlab toolbox (Biohydrodynamics Toolbox).

1 Introduction

In the last decade, much work has been done by mathematicians to better
understand the dynamics of swimming in a fluid. This interest has grown from
the observation that fish and aquatic mammals evolved swimming capabilities
far superior to what has been achieved by human technology and consequently
provide an attractive model for the design of biomimetic robots. Such swimming
mechanisms propelled and steered by shape-changes would be more efficient,
stealthier and more maneuverable than if propeller-driven.

So-called autonomous underwater vehicles (AUV) or unmanned undersea
vehicles (UUV) have been used extensively to carry out varied missions: for
instance, by the oil industry for the maintenance of off-shore installations, by
researchers for oceanographic data collection or by the military for mine hunt-
ing. The need to improve AUV performance to meet the demand of increasingly
more challenging missions has led to intensive research effort in the exploration
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of biological principles that can be adapted for underwater vehicle engineer-
ing applications. The biologically-inspired methods have been envisioned to
improve AUVs’ low speed maneuvering capabilities including hovering, small-
radius turning, sinking and precision station keeping all of which are natural
capabilities of aquatic animals. In the area of nano-technologies, the design of
nano-robots able to perform basic tasks is a challenge for the forthcoming years.

Significant contributions to the understanding of the biomechanics of swim-
ming have been made by Lighthill [20], Taylor [32, 33] Childress [7] and Wu
[35]. An interesting survey on the general theme of fish locomotion written by
Sparenberg [31] is worth being mentioned as well.

Experiments have shown that the vortices generated by the tail fins of fish
play a crucial role in their locomotion. Indeed, in nature, fish do interact with
these vortices. Exploiting the circulation in the flow allows them to reduce the
locomotory cost. Therefore, understanding how fish behave in the presence of
vortices is essential in studying aquatic propulsion and some models incorporate
artificially produced vortices [23, 36, 34, 15]. If we do not neglect the viscosity
effects, the relevant model incorporates the non-stationary Navier-Stokes equa-
tions for the fluid coupled with Newton’s laws for the fish-like swimming object.
This perspective is adopted by Carling, Williams and Bowtell in [6], Liu and
Kawachi in [22], Galdi in [9] or San Mart́ın, Scheid, Takahashi and Tucsnak in
[29]. However, and contrary to some common beliefs, forces and momenta acting
on the fish body by shed vortices are not solely responsible for the net locomo-
tion and among numerous mathematical articles studying fish locomotion, most
of them address the case of a potential flow which is by definition vortex-free: let
us mention here the works of Kelly and Murray [16], Kozlov and Onishchenko
[17], Kanso, Marsden, Rowley and Melli-Huber [14], Melli, Rowley and Rufat
[24] and Munnier [26, 27]. This is also the point of view we have chosen in
this article. Our model incorporate circulation which is an improvement with
respect to some prior vortex free models. However, this circulation is purely
due to initial conditions and not continuously generated from the body as in
[15] for instance. To sum up, our model is not valid as representative of real fish
swimming but can be seen as a step toward more realistic models and a contri-
bution to the development of mathematical theories involved in fluid-structure
interactions.

Thus, in this paper we are interested in studying the dynamics of a set of
articulated solid bodies (ASB) immersed in an ideal fluid. The relative positions
of the rigid solids composing each ASB are prescribed as functions of time. These
functions play the role of controls. They describe thoroughly the shape-changes
by which the bodies propel and steer themselves. The study of the locomotion
of more general shape-changing swimming bodies is addressed in [26].

Since the works of Thomson, Tait and Kirchhoff (summarized in the book
of Lamb [19]), the standard method to determine the Euler-Lagrange equation
driving the motion of rigid solids in an ideal fluid, has consisted in invoking the
least action principle of Lagrangian Mechanics for the fluid-bodies system. It has
been proved recently in [27] that an equivalent method (i.e. leading to the same
Euler-Lagrange equation) consists in invoking Newton’s laws for the set of solids,
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coupled with Euler’s equations for the motion of the fluid (providing that the
flow is irrotational at the initial time). This result is important because it proves
first that by considering a potential flow, there is no physical simplification but
the assumption that the flow is vortex-free at the time t = 0, and second that
the creation of vortices by the swimming bodies is not allowed in a perfect fluid
(without incorporating vortex shedding mechanisms). In the present article, we
will use the standard method based on Lagrangian Mechanics.

One of the main ingredient in the modeling of fluid-structure problems is the
notion of mass matrix arising in the expression of the Lagrangian. Using classical
notation we denote by q and q̇ the generalized coordinates and velocities; they
parameterize all of the degrees of freedom of the system and allow us to write
the Lagrangian of the fluid-bodies system in the short form:

L :=
1
2
q̇>M(q)q̇− P (q),

where M(q) is precisely the mass matrix (its elements depend on q and are
homogeneous to masses) and P (q) stands for the overall potential energy of the
system.

The Euler-Lagrange equation driving the free evolution of q with respect to
the time is an ODE (ordinary differential equation) resulting from the applica-
tion to L of the least action principle:

d

dt

∂L

∂q̇
− ∂L

∂q
= 0, (t ≥ 0). (1.1)

Some degrees of freedom can be prescribed as functions of the others and of
time. This idea writes:

q = F (t,p), (1.2)

where p stands for the remaining degrees of freedom of the system and F is a
given function. Such constraints on the mechanical system are termed holonomic
and well suited to describe the kinematics of swimming robots made of rigid
articulated parts. Considering now the Lagrangian as a function of t, p and ṗ,
the equation of motion of the ASB whose shape-changes are driven by relation
(1.2) is:

d

dt

∂L

∂ṗ
− ∂L

∂p
= 0, (t ≥ 0). (1.3)

Next, the game consists in expanding the left hand side term of this equality
and turn the equation into a convenient form allowing to study the locomotion
induced by the shape-changes. The tricky point is the computation of the
derivative of the mass matrix with respect to p (or more generally with respect
to q) because this task actually requires to differentiate the potential of the fluid
with respect to the positions of the solids (parameterized by q). The potential
of the fluid being defined as the solution of a Neumann boundary value problem
(NBVP) set in the fluid domain (which depends on the positions of the solids),
we have to compute so-called shape derivatives.
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Nevertheless this difficulty can be avoided when the mass matrix does not
depend on p. That means that all of the positions and directions in the fluid
are equivalent as seen by an observer attached to the bodies. This isotropy (or
symmetry) is ensured providing that:

(H1) There is only one body in the fluid.

(H2) The body-fluid system fills the whole space (identified with R2).

(H3) The body is neutrally buoyant.

(H4) The bodies-fluid system is at rest at the time t = 0.

Hypothesis (H1) can equivalently be replaced by:

(H1′) The dynamics of the immersed bodies are hydrodynamically decoupled,

which means that each body is handled as if being alone in the fluid. This
approximation makes sense when the immersed bodies are far apart but is not
relevant any longer when they are close. Most of the studies on swimming
shape-changing bodies in an ideal fluid are carried out under hypotheses (H1-4)
or (H1′-4).

One of our aims in this paper is to study the dynamics of a set of ASBs
relaxing all of these hypotheses. Thus, in Section 2, we address the case of n
rigid solids evolving freely in a fluid with potential flow, the fluid-solids system
being either unbounded, either partially or totally confined and we take into
account the buoyancy force. We compute the Lagrangian, expand the Euler-
Lagrange equation (1.1) and obtain a second order ODE in q that writes:

M(q)q̈ + 〈Γ(q), q̇, q̇〉+
∂P

∂q
(q) = 0, (t ≥ 0), (1.4)

where M(q) is the mass matrix and Γ(q) is a rank-3 tensor, usually called
Christoffel symbol in Lagrangian Mechanics. If we denote by Mij(q) the ele-
ments of the mass matrix we have:

Γkij(q) :=
1
2

(
Mki

∂qj
(q) +

Mkj

∂qi
(q)− Mij

∂qk
(q)
)
.

We next compute explicitly the elements Γkij(q), this task requiring formula of
shape sensitivity analysis. The resulting expressions, well suited for numerical
simulations, is the first novelty brought in this paper.

In Section 3, we consider a flow with non zero circulation. Circulation is
considered as extra degrees of freedom of the fluid flow. We show that the ODE
governing the circulation can be decoupled from that driving the motion of the
solids and explicitly solved. Therefore, the generalized coordinates relating to
the circulation can be canceled out in the Euler-Lagrange equation which finally
keeps the same general form as (1.4):

M(q)q̈ + 〈Γ(q), q̇, q̇〉+
∂P̃

∂q
(q) = 0, (t ≥ 0), (1.5)
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but where the potential energy contains an extra term due to the non zero
fluid circulation. The computation of this term requires also the use of shape
derivative formula. To our knowledge, such a model involving circulation is new
as well and is the second novelty of this paper.

We are next concerned with the well posedness of ODE (1.5). This is proved
in Section 4, assuming that the boundaries of all of the solids involved are smooth
enough. Further, we show that the solution is analytic and can be continued
indefinitely unless a collision between two bodies or between a body with a fixed
boundary of the fluid domain occurs. Such a result has already be obtained in
a more general case in [26] but the proof we give here is far more simple.

Unlike what happens in a viscous fluid, collisions are allowed with our model
as proved in [12]. How to handle collisions is the aim of Section 5. It is done by
adding to the Lagrangian function an electrostatic-like potential energy whose
electric charges are located along the boundaries of the solids and generate a
repulsive force. The potential energy has to be set for the repulsive force to be
neglectful when the solids are far apart but very strong when they get close in
order to avoid collisions. This refinement in the model is another novelty of our
work.

Then, in Section 6, we address the case of swimming ASBs as described above
by introducing holonomic constraints in the motions of the solids. We use the
work already done for a set of solids to derive the expanded form of the Euler-
Lagrange equation (1.3). The equation we obtain eventually is a generalization
of that given in [14] when hypotheses (H1-4) are relaxed and the buoyancy force
taken into account. We study the well posedness of this equation and get results
roughly similar to the previous ones, relating to rigid solids: existence of smooth
solutions up to an hypothetic collision.

It is classical in the literature to use as controls directly the shape-changes of
the bodies although a more realistic and interesting control would be the internal
forces and torques causing these deformations. About this issue, we first explain
in Section 7 how to compute a posteriori the internal forces, the shape-changes
being given. Then we prove that there is a one-to-one correspondence between
the shape-changes and the internal forces they result from. This new result
entails the equivalence between controlling directly with the shape-changes and
with the internal forces. This is of crucial importance for future works on the
controllability of our model.

The two last sections of the article deal with numerics. In Sections 8 we de-
scribe a numerical scheme implemented in a Matlab toolbox (Biohydrodynamics
Toolbox). It consists of an ODE solver coupled with an integral equations solver
for the computation of the fluid potential. Integral equations are numerically
solved by applying the Nyström method, which is fast and accurate. An impor-
tant feature is that the elements of the mass matrices and the shape derivatives
arising in the Euler-Lagrange equation can all of them be computed only in
terms of the values taken by the fluid potential along the boundaries of the
solids. It entails that there is no need to compute the fluid potential everywhere
in the fluid domain but only on its boundary. Numerically, there is no need to
mesh the 2d fluid domain but only its 1d boundary.
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In the last section (Section 9) we present some features of the Matlab toolbox.
As an example, we show that a result established by Sparenberg in [30, page 63]
ensuring that: a body of finite extent, moving periodically through an inviscid
and incompressible fluid without shedding vorticity, cannot exert a force with
non-zero mean value, is no longer true when the fluid contains fixed obstacles.
This result proves that a fish is not only able to propel itself without shedding
vorticity but can also generate a non-zero mean thrust.

2 Dynamics of a set of submerged rigid solids

2.1 Notation

Let (e1, e2) stand for a reference Galilean frame by which we identify the physical
space to R2. In this frame, the coordinates of the vectors are denoted x :=
(x1, x2)>. At any time t > 0, we denote by Si (i ∈ {1, . . . , n}) the open domain
occupied by the i-th solid. We set S := ∪iSi and F stands for the open region
of the fluid. With this notation, the domain M := F ∪ S̄, as being the domain
of the overall fluid-solids system, is independent of time. All of the domains
are denoted at the initial time t = 0 with subscript naught: Si0, S0 and F0.
We assume that ∂F0 is Lipschitz continuous and since F undergoes only rigid
deformations, ∂F has the same regularity for all time. We assume also that
the solids touch neither each other nor the fixed boundaries of the fluid at
the initial time, which means that S̄i0 ∩ S̄

j
0 = ∅ if i 6= j and S̄i0 ⊂ M for all

i ∈ {1, . . . , n}. We denote by n = (n1, n2)> the unitary normal vector to ∂F
directed toward the exterior of the fluid. The regularity of ∂F ensures that n
is well defined almost everywhere. Likewise, we introduce the unitary tangent
vector τ = (τ1, τ2)> to ∂F oriented such that {n, τ} be a direct basis (see fig 1).
When ∂F is more regular, namely at least C1,1 (continuously differentiable
with first derivative Lipschitz continuous), we can also consider the curvature κ
defined almost everywhere on ∂F by: ∂τn = −κτ .

Attached to each body, we define a moving frame (Ei1,E
i
2) whose origin

coincides at any time with the center of mass of the solid and we denote with
capital letters Xi := (Xi

1, X
i
2)> the relating body coordinates.

2.2 Rigid motion

Rigid displacements are described by elements g of G := SE(2) (the rigid body
or Euclidian group) consisting of pairs (R, r) where R ∈ SO(2) is a rotation
matrix and r := (r1, r2)> ∈ R2 is a vector. They would sometimes be identified
with the matrix:

g =
(
R r
0 1

)
,

and for any vector x = (x1, x2)> ∈ R2, we denote gx the vector such that:(
gx
1

)
:=
(
R r
0 1

)(
x
1

)
. (2.1)

6



In the sequel, we will make no difference in the notation between the pair (R, r)
and the associated isometry of R2 defined by (2.1). For all (R, Ṙ) ∈TSO(2)
(the tangent bundle to SO(2)), the matrix ṘR> is skew-symmetric and hence,
as it is classical in Solid Mechanics, we introduce ω ∈ R such that:

ṘR>x = ωx⊥, ∀x ∈ R2, (2.2)

where x⊥ := (−x2, x1)> stands the vector x := (x1, x2)> positively quarter
turned. The manifold SO(2) is parameterized by means of matrices R(θ) (θ ∈
R/2π) defined by:

R(θ) :=
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

Thereby TSO(2) is parameterized by pairs (θ, θ̇) ∈ R/2π × R and ω = θ̇ in
(2.2). We deduce that G is parameterized by (θ, r) ∈ R/2π × R2 and TG by
(θ, r, ω, ṙ) ∈ (R/2π × R2)× (R× R2).

Going back to our problem, and since the solids undergo rigid motions, at
any time there exists gi := (Ri, ri) ∈ SE(2) such that

Eij = Ri ej ,

and ri gives the coordinates of the center of mass of the solid (see figure 1).
With our notation we have furthermore:

x = giXi, (2.3)

and Si = gi(Si0). We deduce also the relation between the area elements:

dx = dXi.

Differentiating with respect to the time identity (2.3), we deduce that the Eu-
lerian velocity of the i-th body is:

vi(x) : = ġigi−1x

= ωi(x− ri)⊥ + ṙi, (x ∈ Si).

We next use the partition ∪iSi of S to define in S the overall Eulerian rigid
velocity v of the solids by setting, for all x ∈ S:

v(x) = vi(x), if x ∈ Si.

2.3 Fluid dynamics

The flow being assumed to be irrotational, at any time t the Eulerian velocity of
the fluid is equal to the gradient ∇ψ of a harmonic potential function ψ defined
in F . The classical non-penetrating or slip condition for inviscid fluids yields
Neumann boundary conditions for the function ψ, namely:

∂nψ = v · n on ∂S, (2.4)
∂nψ = 0 on ∂F \ ∂S. (2.5)
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Si
F

Ej2
Sj

ṙj

Ei1

Ei2

e1

e2

θi

θj
ṙi

Ej1
rj

∂F \ ∂S

ri

τ

n
τ

n

Figure 1: The fluid domain is denoted F , the i-th solid occupies the domain Si,
S := ∪iSi and M := F ∪ S. The coordinates of the center of mass of the i-th
solid in the reference frame (ek) are ri := (ri1, r

i
2)>. The frame (Eik) is attached

to the solid and θi gives its orientation with respect to (ek). At the time t = 0,
the domains and coordinates are denoted with subscripts naught: F0, Si0, ri0
and so on...

For this NBVP to be well-posed, we have to add conditions ensuring the unique-
ness of the solution. We choose for instance:∫

∂S
ψ dσ = 0.

Results on the well-posedness of such problems are given in the Appendix, Sec-
tion A.

For any solid i, we define three elementary potential functions: ψi1, ψi2 and
ψi3, all of them being harmonic in F and satisfying the following Neumann
boundary conditions on ∂F (using the convention that ∂nψ

i
j = 0 on every

unspecified boundary):

∂nψ
i
1 = e1 · n on ∂Si, (2.6a)

∂nψ
i
2 = e2 · n on ∂Si, (2.6b)

∂nψ
i
3 = (x− ri)⊥ · n on ∂Si. (2.6c)

We invoke next Kirchhoff’s law to obtain the following decomposition of the
overall potential:

ψ :=
∑
i

ṙi1ψ
i
1 + ṙi2ψ

i
2 + ωiψi3. (2.7)
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2.4 Lagrangian function

We denote by ρi > 0 the density of the i-th solid while ρf > 0 stands for the
constant density of the fluid. The mass and the momentum of inertia of the i-th
body are respectively:

mi :=
∫
Si

ρi dx, Ii :=
∫
Si

ρi|x− ri|2dx.

The kinematic energy of the i-th solid is:

Ki :=
1
2
mi|ri|2 +

1
2
Ii|ωi|2,

and its potential energy relating to the buoyancy reads:

P i := g(miri −mi
fr
i
f ) · e2, (2.8)

where g stands here for the standard gravity, mi
f > 0 is the mass of the fluid

occupying the same volume as the solid and rif is its center of buoyancy. They
are defined respectively by:

mi
f := ρf

∫
Si

dx, rif :=
ρf
mi
f

∫
Si

xdx.

When ρi is constant in Si then rif = ri. The kinematic energy of the fluid is
given by:

Kf :=
1
2
ρf

∫
F
|∇ψ|2dx,

and we deduce the expression of the Lagrangian function of the fluid-bodies
system:

L := Kf +
∑
i

(Ki − P i).

2.5 Generalized coordinates and mass matrices

Let us introduce the generalized coordinates:

qi := (ri1, r
i
2, θ

i)> and q := (q1, . . . ,qn)>,

and the generalized velocities q̇i and q̇. At the time t = 0, they turn out to be:

qi0 := (ri0, θ
i
0)> and q0 := (q1

0, . . . ,q
n
0 )>.

The components of q will be subsequently denoted either qi with i ∈ {1, . . . , 3n}
or qij with i ∈ {1, . . . , n} and j ∈ {1, 2, 3} if we want to emphasize the solids’
indices. We denote by Q the open subset of (R2 × R/2π)n consisting of all the
allowable q i.e. all the q for which the solids touch or overlap neither each others
nor the boundary of the fluid domain. The set Q being an open set of a Banach
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space, it can also be seen as an analytic manifold and we denote TQ its tangent
bundle consisting of the pairs (q, q̇).

The generalized coordinates will allow us to rewrite the Lagrangian function
in a convenient short form. Beforehand, we need to introduce the mass matrices
of the system. The mass matrix of the i-th body is defined by:

Mi
r := diag(mi,mi, Ii),

while the added mass matrix resulting from the remote interaction between the
i-th and the j-th solids in the fluid reads:

Mf
ij := ρf


∫
F ∇ψ

i
1 · ∇ψ

j
1dx . . .

∫
F ∇ψ

i
1 · ∇ψ

j
3dx

...
...∫

F ∇ψ
i
3 · ∇ψ

j
1dx . . .

∫
F ∇ψ

i
3 · ∇ψ

j
3dx

 . (2.9)

The overall virtual mass matrix of the fluid-solids system is next defined as being
the bloc matrix:

M :=


M1
r + Mf

11 Mf
12 . . . Mf

1n

Mf
21 M2

r + Mf
22 . . . Mf

2n

...
...

. . .
...

Mf
n1 Mf

n2 . . . Mn
r + Mf

nn

 .

The overall kinetic energy of the fluid-solids system can now be rewritten in a
very short form as a matrix-vectors product:

K :=
1
2
q̇>Mq̇, (2.10a)

and if we set furthermore:
P :=

∑
i

P i, (2.10b)

the expression of the Lagrangian function turns out to be:

L := K − P. (2.10c)

Observe that in the definition (2.9), the elements of the matrix Mf can be
rewritten, upon an integration by parts, as:∫

F
∇ψik · ∇ψ

j
l dx =

1
2

∫
∂Sj

ψik∂nψ
j
l dσ +

1
2

∫
∂Si

ψjl ∂nψ
i
k dσ, (2.11)

and this expression involves only boundary integrals.
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2.6 Euler-Lagrange equation

The Lagrangian is a function of q and q̇ only. We invoke now Hamilton’s
principle which tells us that the Euler-Lagrange equation driving the dynamics
of our system is:

d

dt

∂L

∂q̇
− ∂L

∂q
= 0, (t ≥ 0).

Expanding this equality and taking into account the expressions (2.10), we get
a second order non-linear ODE:

Mq̈ + 〈Γ(q), q̇, q̇〉+
∂P

∂q
= 0, (t ≥ 0), (2.12)

in which Γ(q) is a rank-3 tensor usually called Christoffel symbol in Lagrangian
Mechanics. Denoting by Mij the elements of the virtual mass matrix M (i, j ∈
{1, . . . , 3n}) and by qi the elements of q (i ∈ {1, . . . , 3n}), it is defined by:

Γkij :=
1
2

(
∂Mki

∂qj
+
∂Mkj

∂qi
− ∂Mij

∂qk

)
, (i, j, k ∈ {1, . . . , 3n}). (2.13)

We wish now to compute explicitly these quantities. Considering the expres-
sion of M, we realize that the main difficulty in carrying out this task is to
differentiate the elements of the added mass matrix:

Mf
ij := ρf

∫
F
∇ψi

′

i′′ · ∇ψ
j′

j′′dx, (2.14)

(i = 3(i′ − 1)′ + i′′, j = 3(j′ − 1) + j′′, i′, j′ ∈ {1, . . . , n}, i′′, j′′ ∈ {1, 2, 3}) with
respect to the generalized coordinates. Indeed, the quantities (2.14) depend
on q not only because the domain of integration F does but also because the
elementary potentials are defined as solutions of NBVPs in F . Although quite
involved, formulae to compute such derivatives are available. To display them
we need to introduce some additional notation.

We use in the sequel the results and the notation of the Appendix, Section B.
We denote by wi

k (i ∈ {1, . . . , n}, k ∈ {1, 2, 3}) the velocity fields defined on
∂Si by:

wi
1 := e1, wi

2 := e2, wi
3 := (x− ri)⊥,

so that the boundary conditions (2.6) can be rewritten as ∂nψik = wi
k ·n for all i

and k. Let us introduce also for all i ∈ {1, . . . , n} the functions ξi, ζi : ∂Si → R3,
defined by:

ξi :=

 −n2

n1

(x− ri) · n

 , ζi :=

 n1

n2

(x− ri)⊥ · n

 ,

and the matrices, defined on ∂Si as well, by:

Si := κ(ξi ⊗ ξi − ζi ⊗ ζi) + ξi ⊗ f3 + f3 ⊗ ξi − [(x− ri) · n](f3 ⊗ f3),
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where f3 := (0, 0, 1)>. At last, we recall the definition of the Kronecker symbol:

δij :=

{
1 if i = j,

0 otherwise.

We can state now the:

Proposition 2.1 The quantities (2.14) are analytic with respect to q. If ∂F
is of class C1,1, the Christoffel symbols (2.13) can be computed in terms of the
elementary potentials and we get, for all k = 3(k′ − 1) + k′′, i = 3(i′ − 1) + i′′

and j = 3(j′− 1) + j′′ with k′, i′, j′ ∈ {1, . . . , n} and k′′, i′′, j′′ ∈ {1, 2, 3} (which
means that k′, i′ and j′ are the indices of the solids):

Γkij = −ρf
2

∫
∂Si′

∂τψ
k′

k′′∂τψ
j′

j′′(w
i′

i′′ · n)dσ − ρf
2

∫
∂Sj′

∂τψ
k′

k′′∂τψ
i′

i′′(w
j′

j′′ · n)dσ

+
ρf
2

∫
∂Sk′

∂τψ
i′

i′′∂τψ
j′

j′′(w
k′

k′′ · n)dσ + δj
′

i′ ρf

∫
∂Si′

ψk
′

k′′Si
′

i′′j′′dσ

+ δj
′

i′ δ
k′

i′
ρf
2

∫
∂Sk′

(wk′

k′′ · n)(wi′

i′′ · n)(wj′

j′′ · n)dσ. (2.15)

Notice that, like for the elements of the mass matrix, all of the terms in (2.15)
are boundary integrals.

Proof: We study the sensitivity of the elements (2.14) of the matrix Mf at the
time t = 0, the method being similar at any time. We want to apply results of
Section B, so we need first to define the mapping φs arising over there.

Since the solids do no touch each other at the time t = 0, we can consider
open domains Siε and Oi such that S̄i0 ⊂ Siε, S̄iε ⊂ Oi, Ōi ⊂ M for all i ∈
{1, . . . , n} and Ōi ∩ Ōj = ∅ for all i 6= j. According to Urisohn’s Lemma, there
exists a function χ of class C∞, compactly supported and such that 0 ≤ χ ≤ 1,
χ = 1 in Siε and χ = 0 in R2 \ ∪iŌi. With the notation of Section B, we
specialize s = q and we set:

φs(x) :=

{
(1− χ(x))x + χ(x)(R(θi)(x− ri0) + ri) if x ∈ Ōi,
x if x ∈ R2 \ ∪iŌi.

For all q close enough to q0, the mapping φs is an infinitely differentiable
diffeomorphism from R2 onto itself and

φs(x) = R(θi)(x− ri0) + ri in Siε.

We next apply Proposition B.1 to get the analyticity of the quantities (2.14).
We wish then to apply Proposition B.3. To this purpose, we need to compute

the quantities involved in formula (B.3). Straightforward computations yield,
on ∂Si and for all i ∈ {1, . . . , n}:

wi
1 · τ = −n2, ∂τ (wi

1 · n) · τ = κn2,
wi

2 · τ = n1, ∂τ (wi
2 · n) · τ = −κn1,

wi
3 · τ = (x− ri) · n, ∂τ (wi

3 · n) · τ = (−1− κ)(x− ri) · n.

12



At last, we get:

γij(x) =

{
−(x− ri) · n if i = j = 3k, k ∈ {1, . . . , n} and x ∈ Sk,
0 otherwise,

and formula (B.3) coincides with formula (2.15). �

In (2.12), it remains only to compute the derivatives of the potential energy
(2.8) with respect to the generalized coordinates and it is straightforward to
obtain:

∂P i

∂qkj
=


g(mi −mi

f ) if i = k and j = 2,
g(miri −mi

fr
i
f )⊥ · e2 if i = k and j = 3,

0 otherwise.
(2.16)

3 Model with circulation

Adding circulation means adding a certain number of degrees of freedom to the
fluid flow. This number depends on p, the number of connected components
of ∂F . We denote ∂F i (1 ≤ i ≤ p) these connected components. Obviously,
since there are n solids in the fluid, we have p ≥ n and we set the indices
such that ∂F i := ∂Si for 1 ≤ i ≤ n. Let us now introduce p − 1 elementary
stream functions: ϕi, i ∈ {1, . . . , p− 1}, harmonic in F and satisfying Dirichlet
boundary conditions:

ϕi = 1 on ∂F i,
ϕi = 0 on ∂F \ ∂F i.

Observe that with this definition, there is no need to consider the function ϕi

for i = p because it is equal to 1 −
∑p−1
i ϕi. At any time, the overall stream

function relating to the circulation can be written as a linear combination of
the functions ϕi:

ϕ =
∑
i

ciϕi, (3.1)

where the coefficients ci are real for all i ∈ {1, . . . , p − 1} and depend on time.
We call c := (c1, . . . , cp−1)> the generalized circulation variable, homogeneous
to a generalized velocity. The unknowns of our problem are now q, q̇ and c. The
Eulerian velocity of the fluid becomes, when circulation is taken into account:

u := ∇ψ +∇ϕ⊥ in F .

We defined an additional symmetric (p− 1)× (p− 1) mass matrix:

C := ρf


∫
F ∇ϕ

1 · ∇ϕ1dx . . .
∫
F ∇ϕ

1 · ∇ϕp−1dx
...

...∫
F ∇ϕ

p−1 · ∇ϕ1dx . . .
∫
F ∇ϕ

p−1 · ∇ϕp−1dx

 ,
13



and we point out that its elements can be rewritten, using Green’s formula, in
the form: ∫

F
∇ϕi · ∇ϕjdx =

1
2

∫
∂Fi

∂nϕ
jdσ +

1
2

∫
∂Fj

∂nϕ
idσ, (3.2)

i.e. once more, as boundary integrals. The virtual mass matrix of the fluid-solids
system is now the bloc diagonal matrix:[

M 0
0 C

]
,

because all of the cross terms involving both an elementary potential and an
elementary stream function are null. Indeed, for any i ∈ {1, . . . , n}, k ∈
{1, . . . , p− 1} and j ∈ {1, 2, 3}, we have:∫

F
∇ψij · (∇ϕk)⊥dx = −

∫
F

(∇ψij)⊥ · ∇ϕkdx

= −
∫
∂Fk

(∇ψij)⊥ · ndσ

=
∫
∂Fk

∂τψ
i
jdσ

= 0.

Observe that the elementary stream functions depend on the position of the
solids and hence on q. We draw the same conclusion for the mass matrix C.
The Lagrangian function given in (2.10) rewrites now:

L :=
1
2
q̇>Mq̇ +

1
2
c>Cc− P.

Once more, Hamilton’s principle tells us that (remember that c is homogeneous
to a generalized velocity):

d

dt

∂L

∂c
= 0, (t ≥ 0),

which simplifies into:
d

dt
(Cc) = 0, (t ≥ 0).

It means that the impulse of the fluid (see [19] for a definition) corresponding
to the circulation is constant. We recover in particular a well known result: if
there is no circulation at the time t = 0, the circulation remains null for all
time. We denote Πf

c ∈ Rn the initial impulse related to the circulation and we
get:

c = C−1Πf
c , (t ≥ 0). (3.3)

The matrix C is positive because for any c ∈ Rp−1, c>Cc = ρf
∫
F |∇ϕ|

2dx ≥ 0
where the function ϕ is given by (3.1). Furthermore c>Cc = 0 if and only if

14



ϕ = 0 which means that c = 0. We deduce that C is positive definite and hence
always invertible. We next introduce the modified potential energy:

P̃ := P + Pc,

with
Pc := −1

2
(Πf

c )>C−1Πf
c .

The Lagrangian function turns out to be:

L :=
1
2
q̇>Mq̇− P̃ ,

and the Euler-Lagrange equation (2.12) must be modified as follows:

Mq̈ + 〈Γ(q), q̇, q̇〉+
∂P̃

∂q
= 0, (t ≥ 0). (3.4)

For all k′ ∈ {1, . . . , n} and k′′ ∈ {1, 2, 3}, we have:

∂Pc
∂qk

′
k′′

:= −1
2

(Πf
c )>(C−1)>

∂C
∂qk

′
k′′

C−1Πf
c . (3.5)

The following Lemma allows to go further in the computation of this term:

Lemma 3.1 If ∂F is of class C1,1, the elements of the matrix ∂C/∂qk′k′′ read:

∂

∂qk
′
k′′

(∫
F
∇ϕi · ∇ϕjdx

)
= −

∫
∂Sk′

∂nϕ
i∂nϕ

j(wk′

k′′ · n)dσ, (3.6)

for all i, j ∈ {1, . . . , p− 1}.

Proof: We just give the outline of the proof, most of the arguments being
similar to those of Section B. Using the same notation as in the proof of Propo-
sition 2.1 we first compute ∂siϕ

j for all i ∈ {1, . . . , 3n} and j ∈ {1, . . . , p − 1}.
Straightforward computations yield:

−∆∂si
ϕj = 0 in F ,

∂si
ϕj = 0 on ∂F \ ∂Si

′
,

where i = 3(i′ − 1) + i′′, i′ ∈ {1, . . . , n}, i′′ ∈ {1, 2, 3}. Differentiating with
respect to si the remaining boundary condition:

ϕj(φs) = δi
′

j on ∂Si
′

0 ,

we get:
∂si
ϕj +∇ϕj ·wi′

i′′ = 0 on ∂Si
′
.

But since ϕj is constant along ∂Si′ , we have ∇ϕj = (∂nϕj)n and the equality
above turns into:

∂si
ϕj = −∂nϕj(wi′

i′′ · n) on ∂Si
′
.
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Then, Reynolds’s formula (see [11, Corollary 5.2.2 page 172]) yields for all i ∈
{1, . . . , 3n} and j, k ∈ {1, . . . , p− 1}:

∂

∂si

(∫
F
∇ϕj · ∇ϕk dx

)
=
∫
∂Si′

(∇ϕj · ∇ϕk)(wi′

i′′ · n) dσ

+
∫
F
∇(∂si

ϕj) · ∇ϕk dx +
∫
F
∇ϕj · ∇(∂si

ϕk) dx. (3.7)

Once more, we observe that ∇ϕj = ∂nϕ
j on ∂F and we apply Green’s formula

with the two last terms to obtain formula (3.6). �

From equations (3.3) and (3.4) we deduce that the motion of the solids in
the fluid cannot generate circulation providing that the circulation is zero at
the initial time, but the converse is false: starting from rest, solids immersed in
a fluid with non zero circulation are certainly set into motion by the fluid.

4 Well-posedness of the Euler-Lagrange equa-
tions

We study now the well-posedness of equations (2.12) and (3.4). The main result
is:

Theorem 4.1 For any initial data (q0, q̇0) ∈ TQ, there exists a unique solution
t ∈ [0, T ) 7→ q ∈ Q to equation (3.4) such that (q(0), dqdt (0)) = (q0, q̇0). Further,
the solution is analytic and either T = +∞ or T corresponds to the time of a
collision between two solids or between a solid with any boundary of the fluid
domain.

Proof: Since F is at least Lipschitz-continuous, we deduce that for all i, j ∈
{1, . . . , n} and k, l ∈ {1, 2, 3}, the quantities:∫

F
∇ψik · ∇ψ

j
l dx and

∫
F
∇ϕi · ∇ϕjdx,

are analytic with respect to q. It is a non-trivial result of shape sensitivity
analysis proved in [26]. It entails that all of the terms in (3.4) are analytic with
respect to q and also with respect to q̇ because they are linear or quadratic with
respect to this variable.

The next argument is that the matrix M is definite-positive and hence in-
vertible for all q ∈ Q. The Cauchy-Lipschitz Theorem applies to EDO (3.4) and
ensures that for any initial data, there exists a unique analytic solution local in
time.

It remains to prove that the solution (q, q̇) cannot blow up in finite time
unless a collision occurs. To this purpose, we introduce the overall energy of the
fluid-solids system:

E :=
1
2
q̇>Mq̇ + P̃ .
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Differentiating with respect to time the identity:

E =
∂L

∂q̇
· q̇− L,

and applying the chain rule, we obtain the relation:

d

dt
E =

(
d

dt

∂L

∂q̇
− ∂L

∂q

)
· q̇,

which means that E is conserved. The solution t 7→ (q, q̇) is therefore bounded
in any compact subset of TQ. Classical results for ODEs tell that the solution
can be continued up to a maximum time T and that either T = +∞ or:

lim
t→T

(q, q̇) ∈ ∂(TQ),

which means, since the tangent spaces are boundary-less vector spaces, that:

lim
t→T

q ∈ ∂Q.

This condition characterizes a collision (or a contact) and the proof is com-
pleted. �

5 Collisions

Collisions between immersed rigid solids evolving freely in a potential flow can
occur as proved in [12]. In the numerical simulations, collisions and overlapping
of solids will cause the computation to fail and hence must be avoided. To this
purpose, we add to our model an electrostatic-like potential energy defined by:

V := ε

n∑
i=0

n∑
j=i+1

∫
∂Sj

∫
∂Si

|x− x′|−αdσxdσx′ ,

where we have denoted ∂S0 := ∂F \ ∂S (i.e. ∂S0 is the boundary of the fluid
not shared with the solids) and ε > 0, α > 0 are two constants. We set them
such that the repulsive force induced by the potential V be neglectful when the
solids are not very close. The potential V must be subtracted to the right hand
side term in the definition of the Lagrangian function and the Euler-Lagrange
equation (3.4) becomes:

Mq̈ + 〈Γ(q), q̇, q̇〉+
∂P̃

∂q
+
∂V

∂q
= 0, (t ≥ 0). (5.1)

We easily obtain that, for k = 3(k′ − 1) + k′′, (k′ ∈ {1, . . . , n}, k′′ ∈ {1, 2, 3}):

∂V

∂qk
′
k′′

= 2ε
∑
j 6=k′

∫
∂Sj

∫
∂Sk′
|x−x′|−α

[
(x− x′)
|x− x′|2

· n + κ

]
(wk′

k′′ ·n)dσxdσx′ . (5.2)

Once again, observe that this expression involves only boundary integrals.
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6 Dynamics of ASBs

To simplify, let us assume in this section that there is no circulation. The
dynamics of the ASBs can easily be deduced from the dynamics of a set a
solids. Indeed, ASBs are defined as a collection of rigid solids linked together
by holonomic constraints which are easily handled within Lagangian formalism.
We write that:

q = F (p,u),

where p := (p1, . . . , pm) belongs to P, an analytic manifold of dimension m
(1 ≤ m < 3n). The variable p and stands for the new degrees of freedom of the
system and u := (u1, . . . , ud) ∈ U (an analytic manifold of dimension d ≥ 1 such
that m + d = 3n) is a given control variable governing the relative position of
the solids composing the ASBs. To simplify we assume that F is also analytic
from P × U into Q.

Remember that the Lagrangian L = L(q, q̇) is a function of q and q̇ only.
We define then:

L(p,u, ṗ, u̇) := L

(
F (p,u),

∂F

∂p
ṗ +

∂F

∂u
u̇
)
, (6.1)

and the equation governing the motion of the ASBs is:

d

dt

∂L
∂ṗ
− ∂L
∂p

= 0, (t ≥ 0). (6.2)

Introducing the matrices:

Np :=
∂F

∂p
, Nu :=

∂F

∂u
,

and the rank-3 tensor (the second order derivative of F ):

〈D2F, ṗ, u̇〉 := 〈∂
2F

∂p2
, ṗ, ṗ〉+ 〈∂

2F

∂u2
, u̇, u̇〉+ 2〈 ∂

2F

∂p∂u
, ṗ, u̇〉,

the chain rule allows us to expand (6.2) as follows:

N>p MNpp̈ + N>p M〈D2F, ṗ, u̇〉+ N>p 〈Γ(F (p,u)),Npṗ + Nuu̇,Npṗ + Nuu̇〉

+ N>p MNuü + N>p
∂P

∂q

>
+ N>p

∂V

∂q

>
= 0, (t ≥ 0). (6.3)

The function F being given, the matrices Np and Nu and the tensor D2F
are explicitly known. We know how to evaluate all of the terms in (5.1) and
therefore we draw the same conclusion for (6.3). Some care has to be taken when
selecting the function F , for the ODE (6.3) to be well-posed. Let us consider a
given control u : R+ → U .
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Theorem 6.1 Assume that t ∈ R+ 7→ u ∈ U is of classe C2,1 (respectively
C2+k with k ≥ 1 or analytic) and assume that Np is full rank for all (p,u) ∈
P × U . Then, for any initial data (p0, ṗ0) ∈ TP there exists a unique solution
t ∈ [0, T ) 7→ p ∈ P to ODE (6.3) such that (p(0), dpdt (0)) = (p0, ṗ0).

Further, the solution if of class C2 (respectively C2+k or analytic) and either
T = +∞ or T corresponds to the time of a collision between two ASBs or
between a body with any boundary of the fluid domain.

The hypothesis on the rank of Np is not surprising. It means that for any value
of the control variable u, the function p 7→ F (p,u) is locally an immersion from
P into Q.

Proof: We use the same arguments as in the proof of Theorem 4.1.
The hypothesis on Np ensures that the matrix N>p MNp is positive definite

for all (p,u) and hence always invertible.
From the definition (6.1), we deduce that:

L :=
1
2
ṗ>N>p MNpṗ + ṗ>N>p MNuu̇ +

1
2
u̇>N>u MNuu̇− P (F (p,u)).

We set then:
P ∗ := −1

2
u̇>N>u MNuu̇ + P (F (p,u)),

and we introduce the energy like quantity:

E∗ :=
1
2
ṗ>N>p MNpṗ + P ∗.

Proceeding like in the proof of Theorem 4.1, we prove that E∗ remains constant
for all time and hence that the solution cannot blow up unless a collision occurs.
�

7 Computation of internal forces and torques

To govern the shape-changes, in place of the variable u, a more realistic control
variable would be the internal forces and torques causing these shape-changes.
Actually, under an additional assumption on F , we will show that both choices
are equivalent by proving that there is a one-to-one relation between u and the
internal forces.

The generalized forces, denoted by ν in the sequel, are defined in Lagrangian
Mechanics by:

d

dt

∂L
∂u̇
− ∂L
∂u

= ν, (t ≥ 0). (7.1)
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We can easily expand this identity by copy-pasting (6.3) and exchanging u and
p for they play symmetrical roles:

N>u MNuü + N>u M〈D2F, ṗ, u̇〉+ N>u 〈Γ(F (p,u)),Npṗ + Nuu̇,Npṗ + Nuu̇〉

+ N>u MNpp̈ + N>u
∂P

∂q

>
+ N>u

∂V

∂q

>
= ν, (t ≥ 0). (7.2)

Therefore, for any given smooth control t ∈ R+ 7→ u ∈ U , we can compute first
p by solving (6.3) and next use it to compute ν with (7.2). The converse is true
if the system of equations (6.3)-(7.2), seen as a system of ODEs in (p,u) can be
solved for any given right hand side ν. So, let now the function t ∈ R+ 7→ ν ∈ Rd
be given.

Theorem 7.1 Assume that both matrices Np and Nu are full-rank for all (p,u) ∈
P × U and that the function t 7→ ν(t) is Lipschitz continuous (respectively of
class Ck with k ≥ 1 or analytic). Then, for any (p0, ṗ0,u0, u̇0) ∈ TP×TU , the
system of ODEs (6.3)-(7.2) admits a unique solution t ∈ [0, T ) 7→ (p,u) ∈ P×U
such that (p(0), dpdt (0),u(0), dudt (0)) = (p0, ṗ0,u0, u̇0).

Further, the solution is of class C2 (respectively C2+k or analytic) and either
T = +∞ or T corresponds to the time of a collision between two ASBs or
between a body with any boundary of the fluid domain.

The hypotheses on Np and Nu entail that F is a local diffeomorphism from
P × U onto Q.

Proof: Once more, we proceed like in the proof of Theorem 6.1 and we obtain
the existence of a solution t 7→ (p,u) ∈ P × U local in time. We denote by T
the maximal time of existence of the solution, we assume that T < +∞ and we
define the natural overall energy by:

E :=
1
2
ṗ>N>p MNpṗ + ṗ>N>p MNuu̇ +

1
2
u̇>N>u MNuu̇ + P (F (p,u)).

We next easily check that:

∂L
∂ṗ
· ṗ +

∂L
∂u̇
· u̇− L = E.

Differentiating this equality with respect to time, we get:(
d

dt

∂L
∂u̇
− ∂L
∂u

)
· u̇ =

dE

dt
, (7.3)

which means that the variation of energy is equal to the power-like amount ν · u̇
expended by the internal forces. Assume now that F (p,u) remains in a compact
subset K of Q for all t ∈ [0, T [. Then, there exist α > 0 and Pmin ∈ R (the
minimum of the potential energy P in K) such that, for all (p,u) ∈ F−1(K):

α|u̇|2 ≤ E − Pmin.
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According to (7.3), we deduce that for all t ∈ [0, T [:

α|u̇|2 ≤ λ+
∫ t

0

|ν||u̇|ds, (7.4)

where λ := |E(0)− Pmin|. Setting then:

φ(t) :=
∫ t

0

|ν||u̇|ds,

we obtain after some basic algebra, that for all t ∈ [0, T [:

φ′(t)√
φ(t) + λ

≤ |ν|√
α
.

Integrating this inequality with respect to time, we get the estimate:

φ(t) ≤ λ+
[√

λ+
1

2
√
α

∫ t

0

|ν|ds
]2
.

After plugging this result into (7.4), we just have proved the Gronwall-type
inequality:

|u̇|2 ≤ 2
α
λ+

1
α

[√
λ+

1
2
√
α

∫ t

0

|ν|ds
]2
,

which means that u̇ is bounded for all t ∈ [0, T [. Considering (7.3), this entails
that E is also bounded and hence that ṗ is bounded as well. Classical behavior
results for solutions of ODEs tell us that this result contradicts the hypothesis
T < +∞. We deduce that either T = +∞ or

lim
t→T

F (p,u) ∈ ∂Q,

which means a collision in our system at the time T . �

One of the interest in computing the internal forces and torques is that it allows
us to quantify the efficiency of a locomotion strategy. Indeed, a relevant cost
functional associated with a displacement over a time interval [0, T ] could be:∫ T

0

|ν|2ds. (7.5)

This approach was for instance adopted in [13] to seek optimal strokes.

8 Numerical scheme

8.1 Introduction

The equations governing the motion of a collection of solids or ASBs are ODEs.
Therefore our numerical scheme will involve an ODE solver. Consider the ODE
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(5.1) without the circulation term (circulation has not been implemented yet)
and let us turn it into the normal form:

d

dt

[
q̇
q

]
=

−M−1
[
〈Γ(q), q̇, q̇〉+

∂P

∂q

>
+
∂V

∂q

>]
q̇

 . (8.1)

Each evaluation of the right hand side term requires the computation of the ele-
mentary potentials. Therefore, the numerical scheme will also involve a NBVPs
solver.

The amounts we need to compute are more precisely the elements of the
mass matrices: ∫

F
∇ψik · ∇ψ

j
l dx,

for all i, j ∈ {1, . . . , n} and k, l ∈ {1, 2, 3} as well as their derivatives with respect
to q. As already mentioned before, all of these quantities can be expressed as
boundary integrals (see formulae (2.15) and (2.11)). This is also true for the
repulsive force ∂V /∂q (see (5.2)).

Similarly, all of the elementary potentials, as being solutions of NBVPs,
are completely determined by their (Neumann) data on the boundaries of the
solids (see Appendix, Section A). Based on these considerations, the numerical
scheme will involve only computations on ∂F . It is a crucial point because one
of the main difficulty in dealing with fluid-structure problems is that the fluid
domain is not fixed but depends on the unknown positions of the immersed
structures. Therefore, if computations have to be performed in this domain, it
must be remeshed at each time step. Integral formulations allow this problem
to be avoided. Another advantage of this approach is that the discretization
of an integral equation set on the 1d fluid boundary leads to a linear system
having many less unknowns than the discretization of the same problem set in
the 2d fluid domain. At last, when the fluid domain is not bounded, dealing
with integral equations allows to avoid the tricky problem of truncating the
domain and determining artificial boundary conditions.

How to turn boundary value problems (2.6) into integral equations is a clas-
sical process (see [25]). For our problem, we have two choices for the integral
formulation: the direct or the indirect type. The direct formulation meets the
problem requirements because it gives directly the Dirichlet boundary data in
terms of the Neumann boundary data, that is, it corresponds to the Neumann-
to-Dirichlet operator. It reads (see [3]) for all i ∈ {1, . . . , n}, k ∈ {1, 2, 3} and
x ∈ ∂F :

ψik(x)− 1
π

∫
∂F

(x′ − x)
|x′ − x|2

· n(x′)ψik(x′)dσx′ =

− 1
π

∫
∂Si

log |x′ − x|bik(x′)dσx′ , (8.2)

where we denote by bik := ∂nψ
i
k = wi

k ·n the Neumann boundary data of ψik and
by n, the unitary normal to ∂F directed toward the exterior of the fluid. An
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additionnal equation is needed to ensure the uniqueness of the solution when F
is bounded: ∫

∂S
ψik(x′)dσx′ = 0. (8.3)

The next step consists in selecting a numerical method to solve (8.2) (cou-
pled with (8.3) in the bounded case). In most of the articles, the authors use
the so-called panel method [13, 14, 24]. It is a collocation method where the ap-
proximation function space consists of piecewise constant functions built from
a discretization of the boundary by small curves or straight segments.

However, when the boundaries are regular enough, several authors [3, 8]
advocate the Nyström method as being the best possible choice because it is al-
most as simple to implement as the panel method but has far better convergence
properties. In the following Subsections 8.2 and 8.3, we describe this method
applied to our NVBP. In Subsection 8.4 we give some convergence results and
Subsection 8.5 is devoted to the comparison between the Nyström method and
the panel method.

8.2 The Nyström method

The accuracy of the Nyström method depends on the quadrature rule choosen
to approximate the integrals. For any i ∈ {1, . . . , n}, we introduce a C`,1 (` ≥ 2)
parameterization of the boundary ∂Si:

γi : s ∈ [0, 2π[7→ γi(s) ∈ R2. (8.4)

It is obtained merely by composing a given parameterization of the fixed curve
∂Si0 with the rigid displacements gi := (Ri, ri). Similarly, we denote by γi
(i ∈ {n+ 1, . . . , N}) the parameterizations of the remaining N −n fixed bound-
aries (not shared with moving solids). Via these parameterizations, all of the
functions defined on the fluid boundaries can be seen as 2π-periodic functions
for which the rectangle rule is very well adapted as proved in [18, Corollary 9.27
page 210] (see also Appendix, Lemma C.2).

We next define for all j, l ∈ {1, . . . , N} the kernels Kl
j and Rlj by:

Kl
j(t, s) :=

(γj(s)− γl(t))
|γj(s)− γl(t)|2

· n(γj(s))|γ′j(s)|,

Rlj(t, s) := log |γj(s)− γl(t)||γ′j(s)|, (s, t ∈ [0, 2π[),

and we rewrite (8.2) for all i ∈ {1, . . . , n} and k ∈ {1, 2, 3} as:

ψik(γl(t))−
1
π

N∑
j=1

∫ 2π

0

Kl
j(t, s)ψ

i
k(γj(s))ds

= − 1
π

∫ 2π

0

Rli(t, s)b
i
k(γi(s))ds, (l = 1, . . . , N). (8.5)
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For any pair of indices (i, k) ∈ {1, . . . , n} × {1, 2, 3}, (8.5) is a linear system of
N integral equations with N unknowns. The unknowns are the pieces of the
solution ψik living on each one of the N boundaries. The kernels Kl

l (t, s) have
no singularity at t = s because:

lim
s→t

Kl
l (t, s) =

1
2
κ(γl(t))|γ′l(t)|,

where we recall that κ is the curvature of the boundary.

Notation: The process we are going to describe now is similar for any pair of
indices (i, k), so we will drop them in the notation. For instance, we will merely
denote ψ in place of ψik.

The Nyström method consists of two steps:

step 1 The domain [0, 2π[ of each function γj (j ∈ {1, . . . , N}) is uniformly
discretized with mj := 2nj+1 points (nj ≥ 1) denoted sjp := 2πp/mj (p =
0, . . . ,mj−1). The integrals in the left hand side of (8.5) are approximated
for all j, l ∈ {1, . . . , N} by means of the rectangular quadrature rule:

∫ 2π

0

Kl
j(t, s)ψ(γj(s))ds '

2π
mj

mj−1∑
p=0

Kl
j(t, s

j
p)ψ(γj(s

j
p)), (t ∈ [0, 2π[).

This approximation is quite accurate because, as already mentioned, s 7→
Kl
j(t, s)ψ(γj(s)) is a smooth 2π-periodic function. The quadrature rule

is used also for the right hand side of (8.5) except when l = i because
the kernel Rii(t, s) has an (integrable) singularity at t = s. This prob-
lem is overcome by using the following decomposition (see [3, page 329]),
available for any (s, t) ∈ [0, 2π[×[0, 2π[:

log |γi(t)− γi(s)| = log
∣∣∣∣2e−1/2 sin

(
t− s

2

)∣∣∣∣+Bi(t, s), (8.6)

where:

Bi(t, s) :=

log
|e1/2(γi(t)− γi(s))|
|2 sin((t− s)/2)|

, if s 6= t,

log |e1/2γ′i(t)| if s = t.

The function Bi(t, s) is a smooth periodic kernel without singularity at
s = t and the corresponding integral is approximated using again the
rectangular rule with mi = 2ni+1 points. To integrate the singular part in
(8.6), we use the following formula, specializing ϕ(s) := |γ′i(s)|bik(γi(s))|:
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− 1
π

∫ 2π

0

ϕ(s) log
∣∣∣∣2e−1/2 sin

(
t− s

2

)∣∣∣∣ds =

1√
2π

ϕ̂0 +
∑
|p|>0

ϕ̂p
|p|
eipt

 . (8.7a)

The equality is true for any 2π-periodic smooth function ϕ defined on
[0, 2π[. The approximation of the right hand side of (8.7a) is done by

• truncating the series at p = ±ni;
• replacing the Fourier coefficients ϕ̂p (|p| ≤ ni) by their discrete

Fourier transforms Φ̂p (based on the same rectangular quadrature
rule using the mi = 1 + 2ni points sij of [0, 2π[).

These two points correspond to the following matrix vector product:

Φ̂ =
√

2π
mi

Fmi
Φ, (i = 1, . . . , n), (8.7b)

where:

Φ := [ϕ(si0), ϕ(si1), . . . , ϕ(simi−1)]>, (8.7c)

Φ̂ := [Φ̂0, . . . , Φ̂ni
, Φ̂−ni

, . . . , Φ̂−1]>, (8.7d)

and Fm is defined for any m ≥ 1 as the usual discrete Fourier matrix:

Fm :=
[
e−2iπkj/m

]
0≤k,j≤m−1

. (8.7e)

Denoting by ψ̃l(t) and ỹl(t) (l ∈ {1, . . . , N}) the approximations obtained
by a similar process for respectively ψ(γl(t)) and for the right hand side
of (8.5), the N discretized equations (8.5) read:

ψ̃l(t)−
N∑
j=1

2
mj

mj−1∑
p=0

Kl
j(t, s

j
p)ψ̃j(s

j
p) = ỹl(t), (l = 1, . . . N). (8.8)

Observe that this equation allows to define the numerical solution ψ̃ =
[ψ̃1, . . . , ψ̃N ] everywhere on the boundary, once the quantities ψ̃j(sjp) are
known. It is the so-called Nyström interpolation formula.

step 2 Finally the N equations (8.8) are turned into an equivalent linear square
system whose unknowns are ψ̃j(sjp), by imposing that the identities (8.8)
be exact for t = slp (p = 0, . . . ,ml − 1). We get then:

N∑
j=1

Al,jΨj = Yl, (l = 1, . . . , N), (8.9)
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where each block matrix Al,j is of size ml ×mj . More precisely, we have:[
A l,j

l 6=j

]
q,p

= − 2
mj

Kl
j(s

l
q, s

j
p), 0 ≤ q ≤ ml − 1, 0 ≤ p ≤ mj − 1,

[
Al,l
]
q,p

= δq,p −
2
ml

Kl
j(s

l
q, s

l
p), 0 ≤ q, p ≤ ml − 1,

Ψj = [ψ̃j(s
j
0), . . . , ψ̃j(s

j
mj−1)]>,

Yl = [ỹl(sl0), . . . , ỹl(slml−1)]>, l = 1, . . . , N.

As already mentioned, Yl for l 6= i is built using the rectangular rule:

[Yl]q = − 2
mi

mi−1∑
p=0

Rli(s
l
q, s

i
p)b

i
k(γi(s

i
p)), 0 ≤ q ≤ ml − 1.

For l = i, the special treatment described throughout the equations (8.7)
leads to:

Yi = DΦ+ F−1
mi

diag(w)FmiΦ,

[D]q,p = − 2
mi

Bi(siq, s
i
p), 0 ≤ q, p ≤ mi − 1,

w = [1, 1, 1/2, . . . , 1/ni, 1/ni, . . . , 1/2, 1]>,

where the term DΦ corresponds to the rectangular rule applied to the
smooth kernel Bi. The other part is computed fastly in O(log(mi)mi)
operations using the fast Fourier transform algorithm followed by mi di-
visions and finally by the inverse fast Fourier transform (this reads simply
ifft(w.*fft(Phi)) in Matlab language).

The overall matrix A corresponding to the linear system (8.9) is defined
by blocks:

A :=

A1,1 . . . A1,n

...
...

An,1 . . . An,n

 .
Unlike the right hand side term in system (8.9) which depends on the
potential ψik, the matrix A is the same for all of the elementary potentials.

When F is bounded, the matrix A is not invertible any longer (or very badly
conditioned). It is not surprising since the solution of the continuous problem
is defined only up to a constant and must be supplemented by (8.3) to recover
uniqueness. This problem can be overcome by replacing one of the equations
by the linear equation resulting from the discretization of (8.3):

n∑
l=1

2π
ml

ml−1∑
p=0

ψ̃ik(slp)|γ′i(slp)| = 0. (8.10)
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For symmetry reasons, the removed equation is first substracted to all of the
others before being replaced by (8.10). Although we did not carry out a rigorous
analysis, this choice has resulted better, after several numerical tests, than the
same method but without substraction and than the classical method consisting
in imposing a value to the potential at a given point.

8.3 Additional details on the scheme

The linear system (8.9) must be solved for all of the elementary potentials ψik
(i ∈ {1, . . . , n}, k ∈ {1, 2, 3}), that is to say for 3n different right hand side terms
built from the 3n boundary data bik. Since the matrix A remains unchanged,
the more efficient way to carry out this task consists in using a LU factorization
rather than an iterative method especially when n is large.

When the computations of the elementary potentials is done, a lot of con-
tour integrals must be approximated in (2.11) and (2.15). We use again the
rectangular formula with the same boundary discretization (sjp = 2πp/mj ,
p = 0, . . . ,mj − 1).

Some terms in (2.11) and (2.15) require the knowledge at the integration
points sjp of the tangential derivatives of the potentials. This is done by trigono-
metric interpolation using the discrete Fourier transform and its inverse.

Eventually, we tried out several Matlab built-in ODEs solvers and selected
ode113 which is a variable order Adams-Bashforth-Moulton PECE solver (we
refer to the Matlab documentation for details).

8.4 Accuracy of the scheme

The purpose of this subsection is to study how accurate is the approximation
of the right hand side of ODE (8.1) obtained when the potentials are computed
with the Nyström method. More precisely, the quantities to be evaluated are
the entries of the mass matrix Mf (see (2.11)) having the form:∫

∂Sj

ψik∂nψ
j
l dσ =

∫
∂Sj

ψik(wj
l · n) dσ, (8.11)

and the elements of the rank-3 tensor Γkij which involves terms of the form (see
(2.15)): ∫

∂Si′
∂τψ

k′

k′′∂τψ
j′

j′′∂nψ
i′

i′′ dσ =
∫
∂Si′

∂τψ
k′

k′′∂τψ
j′

j′′(w
i′

i′′ · n)dσ. (8.12)

According to [3, page 333], the accuracy of the Nyström method depends on
the smoothness of both the Neumann boundary data and the boundaries pa-
rameterization. Denoting by h := maxi 2π/mi the size of the discretization, we
obtain in our case:

Lemma 8.1 Assume that the boundary ∂F is of class C` (` ≥ 2), then we
have, for all i ∈ {1, . . . , n} and k ∈ {1, 2, 3}:

‖ψ̃ki − ψki ‖L∞(∂F) = O(| log(h)|h`−1).
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Proof: If the boundary is of class C`, then the Neumann boundary data
bik = wi

k ·n are of class C`−1. We next apply the result given in [3, page 333]. �

Based on the results given in Appendix, Section C, we next show:

Lemma 8.2 Assume the parameterization of the boundary ∂F if of class C`,1

(` ≥ 3). Then we can approximate the integrals (8.11) with an error of order
O(h`−1| log h|) and the integrals (8.12) with an error of order O((log h)2h`−2).

Proof: The parameterization being of class C`,1, the Neumann data bik := wi
k ·n

are C`−1,1. Classical results on the regularity of solutions of NBVPs ensure that
the solutions ψik are C`,1 on ∂F . So the functions ψik(wj

l · n) arising in (8.11)
are C`−1,1 on ∂F . These functions are first approximated by ψ̃ki (wj

l ·n), where
ψ̃ki is computed by means of the Nyström method. So, integrals (8.11) involve a
2π-periodic function of class C`−1,1 which is known up to a perturbation term
bounded by Ch`−1| log h| (C a positive constant). Lemma C.2 gives for these
integrals an error of size O(h`) +O(h`−1| log h|) = O(h`−1| log h|).

Integrals (8.12) also involve 2π-periodic functions of class C`−1,1 but we
must estimate first the error of the approximated tangential derivatives. Ap-
plying Proposition C.1 with a perturbation of size ‖e‖L∞(∂F) = Ch`−1| log h|,
we obtain an error bounded by:

C| log h|h` + C ′
| log h|
h

Ch`−1| log h| = O((log h)2h`−2),

where C and C ′ are two positive constants. Then, applying Lemma C.2 with this
perturbation, we obtain an overall error for (8.12) of orderO(h`)+O((log h)2h`−2) =
O((log h)2h`−2). �

Summarizing the results of Lemma 8.1 and Lemma 8.2, we obtain:

Proposition 8.1 Assume that the parameterization of the boundary ∂F if of
class C`,1 (` ≥ 3), then the rhs of ODE (8.1) is computed with an error of order
O((log h)2h`−2).

An experimental study of the accuracy of the scheme involving the ODE solver
will be presented in Subsection 9.2.

8.5 Nyström method versus panel method

As already mentioned before, the panel method is a collocation method of or-
der 1: the error between the exact solution ψ and its approximation ψh on ∂F
satisfies ‖ψh − ψ‖∞ = O(h) with possibly superconvergence property at the
collocation points tj : |ψh(tj)− ψ(tj)| = O(h2) (see [10, remark 4.4.8 page 85]).
However, this superconvergence property requires an exact approximation of
the boundary geometry unlike what is done in most of the cases [14, 24, 15]
where the boundary is only approximated with small segments. In this case,
the approximation in O(h) can not be improved, whatever is the regularity of

28



the boundary. On the contrary, the accuracy of the solution computed with
the Nyström method increases along with the regularity of ∂F . Indeed, accord-
ing to Lemma 8.1 we have the estimate: ‖ψh − ψ‖∞ = O(| log(h)|h`−1), the
convergence becoming even exponential with C∞ boundaries.

The elements (8.11) of the mass matrix Mf , when the potentials are com-
puted with the panel method and assuming superconvergence property, will next
be obtained with an error of order O(| log h|h) (most likely worth than that if
segments are used to approximate the boundary) versus O(| log h|h`−1) with the
Nyström method. When the boundary is of class C` with ` > 3, the Nyström
method is definitively more accurate (or many less points are needed to obtain
the same accuracy).

It does not really make sense to compare both methods for the computation
of the elements (8.12) of the rank-3 tensors arising in the rhs of the main ODE
(8.1). Indeed, this part of the ODE is due to the fact that hypotheses (H1-4)
have been relaxed and is an original point of this paper.

9 Biohydrodynamics Matlab Toolbox

9.1 Introduction

The Biohydrodynamics Toolbox (BhT) is a Matlab Toolbox designed to perform
numerical simulations of rigid solids immersed in a potential flow. The system
fluid-solids can be either confined, partially bounded or unbounded. The buoy-
ant force and collisions between solids are supported (but circulation is not yet).
The solids can be free of constraints or linked together in order to constitute
ASBs. In the latter case, the constraints are prescribed by the user as functions
of time and the induced motion is computed. Post-processing functions are pro-
vided to compute the internal torques, the power and the energy expended by
the swimming bodies.

BhT is free (distributed under license GNU GPL) and comes with complete
html documentation including plenty examples and tutorials. It is available at:

• http://bht.gforge.inria.fr/ (hosted by INRIA Gforge).

• http://www.mathworks.com/matlabcentral/fileexchange/21872
(hosted by Matlab Central).

Going through all of the features of BhT would be too long and is out of the
scope of this article. So after giving some results on how the numerical scheme
performs, we will rather use BhT to discuss and illustrate the following Sparen-
berg’s affirmation (see [30, page 63]): A body of finite extent, moving periodically
through an inviscid and incompressible fluid without shedding vorticity, cannot
exert a force with non-zero mean value. In particular, we will show that this
statement seems no longer true when the fluid domain contains fixed obtacles.
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9.2 Convergence of the scheme

The purpose of this subsection is not to present a rigorous numerical analysis
of BhT’s solver but only to provide some benchmarks and to illustrate how the
numerical scheme performs. Keep in mind that BhT’s solver is an ODE solver
(namely the buit-in MATLAB solver ode113) coupled with a solver of integral
equations (based on Nyström’s method). We set the relative tolerance of the
ODE solver ode113 to 1e-14 with the option odeset(’RelTol’,1e-14).

We consider two identical neutrally buoyant ellipse-shaped solids of semi-
major axis 2 and semiminor axis 0.9. The coordinates of their centers of mass
are respectively (2,−1.1) and (−2, 1.1) at the initial time and their initial linear
velocities (−0.5, 0) and (0.5, 0). Both have zero initial angular velocity. Fig-
ure 2 displays some screenshots of what the solids motion looks like and the
animation can be watched on the web page http://bht.gforge.inria.fr/
Examples/demos.html. The ellipses never touch and their deviations with re-
spect to straight lines are only due to hydrodynamic forces (if hydrodynamically
decoupled, the trajectories would be straight lines).

We study how the number of points used in the discretization of the ellipses
boundaries, impacts the accuracy of the trajectory computation. We compute
first the trajectories and velocities of the ellipses with 1890 points and use this
solution as the reference one. Next, we decrease the number of points and
perform again the same computation. The results are displayed in Figures 3–6
below. Observe that all of these graphs have log scale y-axis.

Figure 2: Screenshots of the ellipses at different times. The dashed blue lines
show the trajectories of the centers of mass.

In figure 7 is ploted the CPU time required for the computation of the tra-
jectories with respect to the number of points (with log scale x and y-axis). The
left hand side of the graph is not relevant since the time used by MATLAB’s
interpreter is larger than that used for computations. From 100 points of dis-
cretization, the time grows as the number of points to the power 2.3. However,
if we assume that for a larger numbers of points most of the CPU time will be
used to factorize at each time step a n × n linear system (n being the number
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Figure 3: Error for the position of the centers of mass with respect to the number
of points

of points), it is expected to asymptotically grow as the number of points to the
power 3.

9.3 Simulation settings

We consider a fish-like swimming body made of four ellipse-shaped rigid solids
as pictured in figure 8. The three angles of the joints are driven by the functions
drawn in fig 9 over the time interval [0, 6π]. Notice that all of the functions are
compactly supported. The fish starts from rest, undergoes shape-changes yield-
ing a net forward motion and stop dead in its initial shape. We are interesting
in studying its final velocity. Indeed, denoting by m > 0 the total mass of the
fish and by ṙ the velocity of its center of mass, first Newton’s law tells us that:

1
6π
mṙ(6π) =

1
6π

∫ 6π

0

F dt, (9.1)

where F stands for the hydrodynamical force generated by the fish to propel
itself. Thereby, the right hand side in (9.1) is precisely the mean value of this
force over the time interval [0, 6π].

We are going to perform twice the same simulation. In a first time, the fish
will be alone in the fluid and the system fluid-fish will fill the whole space. In a
second time, the fluid will contain also two fixed rectangular obstacles and the
fish will swim between them in its course (see figure 10).

The movies are available at:

http://bht.gforge.inria.fr/Examples/demos.html.
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Figure 4: Error for the orientation of the ellipses with respect to the number of
points

9.4 Results

With BhT we can compute the velocity of the center of mass of the fish at any
time. It is pictured in figures 11 and 12.

We clearly observe in figure 11 that the final velocity of the fish is zero,
which confirms Sparenberg’s statement in this case. On the other hand, with
the same sequence of strokes, figure 12 tells us that the fish generates non zero
mean thrust when the fluid contains obstacles.

An other interesting point that can be observed using BhT is that the torques
applied at the joints to produce the shape-changes are not equal in both cases
although the deformations are. In figure 13 we have drawn the values of the
torques for the first case (fluid without obtacles) and in figure 14 the difference
between the values of the torques in the first and second cases.

Computing next the cost of each displacement as quantified by the cost
functional (7.5), we obtain that the second strategy is 3.22% cheaper than the
first one. These surprising results can be summarized by saying that not only
generates the fish non-zero mean thrust by swimming between the obstacles but
also it swims more effortlessly.

32



0 100 200 300 400 500 600 700 800 900 1000
10−15

10−10

10−5

100

Figure 5: Error for the linear velocities with respect to the number of points

A Neumann boundary value problem

This section is dedicated to recalling some results stated in [5, 1, 2], on the
well-posedness of NBVPs. We write the problem in the generic form:

−∆ψ = 0 in F , (A.1a)
∂nψ = g on ∂F , (A.1b)

and we assume that g ∈ H−1/2(∂F) is given (H−1/2(∂F) is the dual space of
the Sobolev space H1/2(∂F); see [21, §7.3 pages 38-42]). For problem (A.1) to
admit solutions, g has to satisfy the compatibility condition:

〈g, 1〉H−1/2(∂F)×H1/2(∂F) = 0. (A.2)

A.1 Bounded domain

In this case, we introduce the function space X1(F) := {ψ ∈ H1(F) : ∆ψ ∈
L2(F)}. For any ψ ∈ X1(F), its normal trace ∂nψ exists in H−1/2(∂F). Lax-
Milgram Theorem ensures that there exists a unique weak solution ψ ∈ X1(F)
satisfying both identities:∫

F
∇ψ · ∇ϕdx =

∫
∂F

gϕdσ, ∀ϕ ∈ H1(F), (A.3a)∫
∂S
ψ dσ = 0. (A.3b)

Moreover, we have an estimate:

‖ψ‖X1(F) ≤ C‖g‖H−1/2(∂F), (A.4)
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Figure 6: Error for the angular velocities with respect to the number of points

for some constant C > 0 independent of ψ and g.
Assume now that ∂F is C1,1 (continuously differentiable with first derivative

Lipschitz continuous) and g ∈ H1/2(∂F), then the solution ψ of (A.3) belongs
to:

X2(F) := {ψ ∈ H2(F) : ∆(∂xi
ψ) ∈ L2(F), ∀ i = 1, 2}.

For such function, both quantities ∂2
nψ := n · D2ψ n and ∆σψ (the Laplace-

Beltrami operator) are well defined on ∂F as elements of H−1/2(∂F). We have
again an estimate:

‖ψ‖X2(F) ≤ C‖g‖H1/2(∂F),

for some constant C > 0 independent of ψ and g.

A.2 Unbounded domain

When F is not bounded, we define the weight function:

ρ(x) :=
√

1 + |x|2 log(2 + |x|2), (x ∈ R2),

and the Lebesgue space:

L2
N (F) := {ψ ∈ D′(F) : ρ−1ψ ∈ L2(F)},
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Figure 7: CPU time (seconds) with respect to the number of points (compu-
tations performed with MATLAB R2007a, running on a laptop MacBook Pro,
processor 2.5 GHz, Intel Core 2 Duo, 4Go 667 MHz DDR2 SDRAM).

Figure 8: Screenshots of the swimming fish

where D′(F) is the space of distributions. Classical Sobolev spaces must be
replaced by weighted Sobolev spaces:

H1
N (F) : = {ψ ∈ L2

N (F) : ∂xi
ψ ∈ L2(F), ∀ i = 1, 2},

X1
N (F) : = {ψ ∈ H1

N (F) : ρ∆ψ ∈ L2(F)},
H2
N (F) : = {ψ ∈ H1

N (F) : ρ∂2
xixj

ψ ∈ L2(F), ∀ i, j = 1, 2},

X2
N (F) : = {ψ ∈ H2

N (F) : ρ2∆(∂xi
ψ) ∈ L2(F), ∀ i = 1, 2}.

When g ∈ H−1/2(∂F), the solution of (A.3a-A.3b) exists in H1
N (F) and is

unique. Further, it can be proved that the solution belongs to X1
N (F).

As in the bounded case, if ∂F is C1,1 and g ∈ H1/2(∂F), then the solution
is in X2

N (F).
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Figure 9: Angles of the joints with respect to time (given functions). Joint 1
corresponds to the fish’s head and joint 3 to the tail.

Figure 10: Fish swimming between two obstacles

B Shape sensitivity analysis

This section is self-contained and independent, including for the notation. We
recall results of shape optimization theory, most of them being proved in [26].

Let F0 ⊂ R2 and define for all s = (s1, . . . , sn) ∈ Rn (n ≥ 1) diffeomorphisms
φs of class Cm (m ≥ 1) from R2 onto itself, equal to the identity outside
a large fixed compact ball B. We denote by Dm the Banach space of such
diffeomorphisms, endowed with the norm of the Sobolev space Wm,∞(B,B)
(uniform convergence in B of the function and the derivatives up to order m).

Denote F := φs(F0), wi := ∂si
φs ◦φ−1

s , γij := ∂2
sisj

φs ◦φ−1
s and wn

i and wτ
i

the normal and tangential components of wi on ∂F such that:

wi = wn
i n + wτ

i τ .

Define likewise γn
ij , the normal component of γij .

For any i ∈ {1, . . . , n}, let then ψi be the solution of the NBVP:

−∆ψi = 0 in F ,
∂nψi = wn

i on ∂F ,

and define for any i, j ∈ {1, . . . , n} the functional:

Jij(s) :=
∫
F
∇ψi · ∇ψj dx.

Providing that F0 is Lipschitz continuous, we have:
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Figure 11: Velocity of the center of mass of the fish with respect to time (fluid
without obstacle).
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Figure 12: Velocity of the center of mass of the fish with respect to time (fluid
with obstacles).

Proposition B.1 Assume that the mapping s 7→ φs ∈ Dm is of class Ck with
k ≥ 2 (respectively analytic) and m ≥ 1, then s 7→ Jij is of class Ck−1 (respec-
tively analytic).

The proof is given in [26] in a more general framework. Assuming additional
regularity on ∂F0, we can compute the partial derivatives of Jij :

Proposition B.2 Assume that F0 is of class C1,1 and that the mapping s 7→
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Figure 13: Values of the torques at the joints with respect to time in the first
case.
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Figure 14: Difference between the values of the torques at the joints in the first
and second case.

φs ∈ Dm is of class C2 with m ≥ 2. Then, for all i, j, k ∈ {1, . . . , n}, we have:

∂

∂si

(∫
F
∇ψj · ∇ψk dx

)
= −

∫
∂F

(∂τψj∂τψk)wn
i dσ

−
∫
∂F

(
κwi ·wj − γn

ij + (∂τw
n
j · τ )wτ

i + (∂τw
n
i · τ )wτ

j

)
ψk dσ

−
∫
∂F

(
κwi ·wk − γn

ik + (∂τw
n
k · τ )wτ

i + (∂τw
n
i · τ )wτ

k

)
ψj dσ

+
∫
∂F

∂nψi∂nψj∂nψk dσ.

Straightforward but tedious computations yield:

Proposition B.3 Under the assumptions of Proposition B.2 and for all i, j, k ∈

38



{1, . . . , n}, the following identity holds:

∂

∂sj

(∫
∂F
ψi∂nψk dσ

)
+

∂

∂si

(∫
∂F
ψj∂nψk dσ

)
− ∂

∂sk

(∫
∂F
ψi∂nψj dσ

)
=

−
∫
∂F

(∂τψk · ∂τψi)wn
j dσ −

∫
∂F

(∂τψk · ∂τψj)wn
i dσ +

∫
∂F

(∂τψi · ∂τψj)wn
k dσ

− 2
∫
∂F

(
κwi ·wj − γn

ij + (∂τw
n
j · τ )wτ

i + (∂τw
n
i · τ )wτ

j

)
ψk dσ

+
∫
∂F
∂nψk∂nψi∂nψj dσ. (B.1)

C Error estimates for the numerical approxima-
tions

In this section we recall or slightly adapt some results about Fourier series
and interpolating trigonometric polynomial series which are needed in Subsec-
tion 8.4. In all the sequel, f will be a 2π-periodic function of class C`,α with
` ≥ 0 and α ∈ (0, 1]. For any k ∈ Z, we denote by f̂k its Fourier coefficients:
f̂k := 1/2π

∫ 2π

0
f(t)e−iktdt and for any positive integer n, Fn(f) stands for its

truncated Fourier series: Fn(f)(t) :=
∑
|k|≤n f̂ke

ikt. When this series is conver-
gent, its sum is denoted F(f). We also consider a uniform partition of [0, 2π]
built with m := 2n + 1 points tj := jh (j = 0, . . . ,m − 1, h := 2π/m). The
interpolating trigonometric polynomial of f of degree n is denoted In(f). It is
defined by:

In(f)(t) =
∑
|k|≤n

cke
ikt, ck =

1
m

m−1∑
j=0

f(tj)e−2iπkj/m.

Another useful expression of In(f) given in [4] involves the Dirichlet kernel:

In(f)(t) =
2
m

m−1∑
j=0

Dn(t− tj)f(tj), Dn(t) :=
sin((n+ 1/2)t)

2 sin(t/2)
. (C.1)

Subsequently, we will use the notation C and C ′ for positive constants depending
on f but not on the discretization parameters (m, n or h) and C̃ will stand for
any pure constant.

The first result concerns the convergence of the Fourier series and the inter-
polating trigonometric polynomial series. The proof can be found in [4, pages
128-129].

Lemma C.1 For any integer n ≥ 2, we have:

‖f −Fn(f)‖∞ ≤ C
log n
n`+α

and ‖f − In(f)‖∞ ≤ C ′
log n
n`+α

.
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We consider now the quantity I(f) :=
∫ 2π

0
f(t)dt and its approximation based

on the rectangular rule: IRm(f) := h
∑m−1
j=0 f(ti).

Lemma C.2 The error between I(f) and IRm(f) can be estimated as follows:

|I(f)− IRm(f)| ≤ C

m`+α
= C ′h`+α. (C.2a)

If we replace f(ti) by f̃(ti) = f(ti)+ei, an approximation of f(ti) with an error
ei, then we get:

|I(f)− IRm(f̃)| ≤ C ′h`+α + 2π‖e‖∞. (C.2b)

Proof: The estimate (C.2a) is trivial when ` = 0. When ` ≥ 1, Fn(f) converges
absolutely to F(f) and F(f) = f . We compute first the error for the functions
eikt and we deduce that: I(f) − IRm(f) = −2π

∑
p∈Z∗ f̂pm. But the Fourier

coefficients of a function of class C`,α satisfy the estimate: |f̂k| ≤ C|k|−`−α (see
[37],p. 45). The conclusion follows. The estimate (C.2b) being obvious, the
proof is then completed. �

We define b(t) := (2/m)
∑m−1
j=0 |D′n(t− tj)| for all t ∈ R and we state:

Lemma C.3 The following estimate holds:

max
t
b(t) ≤ C̃ n log n.

Proof: Proceeding as in [28, page 15], we easily obtain that b is an even 2π/m-
periodic function. So we can seek its maximum on the interval [0, π/m]. We
use the crude bound:

max
t
b(t) ≤ 2

m

m−1∑
j=0

Bj , Bj := max
t∈[0,π/m]

|D′n(t− tj)|.

From the definition of the points tj = 2πj/m and the fact that |D′n(t)| is an
even 2π-periodic function we deduce that:

m−1∑
j=0

Bj =
m−1∑
j=0

Mj , Mj = max
t∈[jπ/m,(j+1)π/m]

|D′n(t)|.

Using the expression Dn(t) = 1/2 +
∑n
k=1 cos(kt) of the Dirichlet kernel we get

D′n(t) = −
∑n
k=1 k sin(kt). We deduce that |D′n| is increasing on the interval

[0, π/m] (because for any t ∈ [0, π/m], nt ≤ nπ/m = nπ/(2n + 1) < π/2) and
next that M0 ≤ M1. To estimate Mj (j = 1, . . . ,m − 1) we differentiate the
expression (C.1) of the Dirichlet kernel to obtain that:

D′n(t) =
1

2 sin(t/2)

(
(n+ 1/2) cos((n+ 1/2)t)− 1

2
sin((n+ 1/2)t)

tan(t/2)

)
.
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One easily shows that, for all t ∈ R:∣∣∣∣12 sin((n+ 1/2)t)
tan(t/2)

∣∣∣∣ ≤ n+
1
2
,

which implies that

|D′n(t)| ≤ 2n+ 1
2| sin(t/2)|

=
m

2| sin(t/2)|
,

and so Mj ≤ m/(2| sin(πj/2m)|) for j = 1, . . . ,m− 1. Now using the inequality
sinx ≥ 2x/π, (x ∈ [0, π/2]), we get 1/sin(πj/2m) ≤ m/j whence we deduce
that:

2
m

m−1∑
j=0

Mj ≤ m+
m−1∑
j=1

m

j
≤ C̃(n log n), (m = 2n+ 1),

and the proof is completed. �

In Subsection 8.4, we need to compute boundary integrals involving the tan-
gential derivatives of some potentials. Tangential derivatives are approximated
by the derivatives of interpolating trigonometric polynomials.

Proposition C.1 Assume that ` ≥ 1. Then we have the error estimate:

‖f ′ − (In(f))′ ‖∞ ≤ C
log n
n`−1+α

. (C.3a)

If we replace f(ti) by an approximation f̃(ti) = f(ti) + ei then we get:

‖f ′ −
(
In(f̃)

)′
‖∞ ≤ C

log n
n`−1+α

+ C̃‖e‖∞n log n. (C.3b)

Proof: Since we have, for all integer n, Fn(f ′) = Fn(f)′, we can write that:

‖f ′ − (In(f))′ ‖∞ ≤ ‖f ′ −Fn(f ′)‖∞ + ‖Fn(f)′ − In(f)′‖∞.

According to Lemma C.1, the first term is bounded by C log n/n`−1+α. For the
second term we have, since In(Fn(f)) = Fn(f):

Fn(f)′ − In(f)′ = (Fn(f)− In(f))′ = (In(Fn(f)− f))′ .

Using the expression (C.1), we get:

(In(Fn(f)− f))′ (t) =
2
m

m−1∑
j=0

D′n(t− tj)(Fn(f)− f)(tj),

and therefore:

| (In(Fn(f)− f))′ (t)| ≤ ‖Fn(f)− f‖∞
2
m

m−1∑
j=0

|D′n(t− tj)|.
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Using Lemma C.1 and Lemma C.3, we obtain estimate (C.3a). To prove (C.3b),
we write that:

f ′(t)− In(f̃)′(t) = (f ′(t)− In(f)′(t))− 2
m

m−1∑
j=0

D′n(t− tj)ej ,

and the estimate for the last term is obtained by applying again Lemma C.3.
The proof is then completed. �
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by V. M. Babič, V. G. Maźja and I. Ja. Bakelm̀an. Translated from the
Russian. North-Holland Series in Applied Mathematics and Mechanics, Vol.
11. North-Holland Publishing Co., Amsterdam, 1970.

43



[26] A. Munnier. On the self-displacement of deformable bodies in a potential
fluid flow. Math. Models Methods Appl. Sci., 18(11):1945–1981, december
2008.

[27] A. Munnier. Locomotion of deformable bodies in an ideal fluid: Newtonian
versus lagrangian formalism. J. Nonlinear Sci., 19(6):665–715, 2009.

[28] T.J. Rivlin. The Chebyshev Polynomials, volume 1,2 of Pure and Applied
Mathematics. John Wiley and Sons, 1974.

[29] J. San Martin, J. F. Scheid, T. Takahashi, and M. Tucsnak. An initial
and boundary problem modeling fish-like swimming. Arch. Ration. Mech.
Anal., 2008.

[30] J. A. Sparenberg. Hydrodynamic propulsion and its optimization (Ana-
lytic theory). Fluid Mechanics and its Applications. 27. Dordrecht: Kluwer
Academic Publishers. 384 p., 1994.

[31] J. A. Sparenberg. Survey of the mathematical theory of fish locomotion.
J. Engrg. Math., 44(4):395–448, 2002.

[32] G. Taylor. Analysis of the swimming of microscopic organisms. Proc. R.
Soc. Lond., Ser. A, 209:447–461, 1951.

[33] G. Taylor. Analysis of the swimming of long and narrow animals. Proc. R.
Soc. Lond., Ser. A, 214:158–183, 1952.

[34] M. S. Triantafyllou, G. S. Triantafyllou, and D. K. P. Yue. Hydrodynamics
of fishlike swimming. In Annual review of fluid mechanics, Vol. 32, vol-
ume 32 of Annu. Rev. Fluid Mech., pages 33–53. Annual Reviews, Palo
Alto, CA, 2000.

[35] T. Y. Wu. Mathematical biofluiddynamics and mechanophysiology of fish
locomotion. Math. Methods Appl. Sci., 24(17-18):1541–1564, 2001.

[36] Q. Zhu, M. J. Wolfgang, D. K. P. Yue, and M. S. Triantafyllou. Three-
dimensional flow structures and vorticity control in fish-like swimming. J.
Fluid Mech., 468:1–28, 2002.

[37] A. Zygmund. Trigonometric Series, volume 1,2. Cambridge University
Press, Cambridge, 1968.

44


	Introduction
	Dynamics of a set of submerged rigid solids
	Notation
	Rigid motion
	Fluid dynamics
	Lagrangian function
	Generalized coordinates and mass matrices
	Euler-Lagrange equation

	Model with circulation
	Well-posedness of the Euler-Lagrange equations
	Collisions
	Dynamics of ASBs
	Computation of internal forces and torques
	Numerical scheme
	Introduction
	The Nyström method
	Additional details on the scheme
	Accuracy of the scheme
	Nyström method versus panel method

	Biohydrodynamics Matlab Toolbox
	Introduction
	Convergence of the scheme
	Simulation settings
	Results

	Neumann boundary value problem
	Bounded domain
	Unbounded domain

	Shape sensitivity analysis
	Error estimates for the numerical approximations

