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Abstract: This paper focuses on a subclass of Dynamic Fault Trees (DFTs), called Priority
Dynamic Fault Trees (PDFTs), containing only static gates and Priority Dynamic Gates (PAND
and FDEP) for which a priority relation among the input nodes completely determines the
output behavior. We define events as temporal variables and we show that, by adding to the
usual Boolean operators new temporal operators denoted BEFORE and SIMULTANEOUS,
it is possible to derive the structure function of the Top Event with any cascade of Priority
Dynamic Gates and repetition of basic events. A set of theorems are provided to express the
structure function in a sum-of-product canonical form. We finally show through an example
that the canonical form can be exploited in order to determine directly and algebraically the
failure probability of the Top Event of the PDFT without resorting to the corresponding Markov
model. The advantage of this approach is that it provides a complete qualitative description of
the system and that any failure distribution can be accommodated.

Keywords: Dynamic Fault Tree, Algebraic approach, Qualitative analysis, Quantitative
analysis.

1. INTRODUCTION

Fault Tree Analysis (FTA) is one of the oldest and
most diffused techniques in industrial applications, for
the dependability analysis of large safety-critical systems
(Henley and Kumamoto (1981); Stamatelatos and Vesely
(2002)). FTA is usually carried out at two levels: a qualita-
tive level in which the list of all the possible combinations
of events that lead to the Top Event (TE) is determined
(the minimal cut sets). A quantitative level, in which the
probability of occurrence of the TE, and of the other nodes
of the tree, is calculated; the quantitative level requires
the additional knowledge of the time-to-failure probability
distributions of all the basic events. One of the main
restrictive assumptions in FTA is that basic events must
be assumed as statistically independent (s-independent)
and their interaction is described by means of boolean
OR/AND gates, so that only the combination of events
is relevant and not their sequence. We refer to this model
as Static Fault Tree (SFT). Several attempts have been re-
ported in the literature to remove these constraints and in-
clude various kinds of temporal and s-dependencies in the
model. A Priority-AND (PAND) gate has been introduced
in (Fussel et al. (1976)) to model situations in which the
failure of the gate occurs if the inputs fail in a preassigned
order. However, the model that has received the greatest
attention is the Dynamic Fault Tree (DFT), proposed by
Dugan et al. (Dugan et al. (1992, 2000)). The DFT is based
on the definition of new gates that induce temporal as well

as s-dependencies: Priority-AND (PAND), Functional De-
pendency (FDEP), Warm Spare (WSP) and Sequence en-
forcing (SEQ). Some compositional techniques have been
later envisaged to build DFTs, either in terms of Stochastic
Petri Nets (Bobbio and Raiteri (2004)), or in terms of
Input/Output Interactive Markov Chains (Boudali et al.
(2007)), in order to include chains of dynamic gates. The
quantitative analysis of the DFT consists in exploding
minimal modules (Dutuit and Rauzy (1996)) of dynamic
gates into their state-space representation and computing
numerically the related occurrence probability by means of
a Continuous Time Markov Chain (Dugan et al. (1992)),
thus assuming exponential time-to-failure distributions. A
new approach, able to include any probability distribu-
tion, has been presented in (Amari et al. (2003)), where
closed form expressions are determined as a function of the
generic probability distributions of the basic events, and a
numerical integration is proposed to solve them.

In the present paper, we restrict the consideration of clas-
sical dynamic gates to priority gates PAND and FDEP,
only, for which a temporal relation completely defines the
output, and we refer to this restriction as Priority DFT
(PDFT). In order to build up an algebraic framework for
PDFTs, we define events as temporal binary variables and
we introduce, beside Boolean operators OR and AND,
temporal operators BEFORE (BF) and SIMULTANEOUS
(SM) (Merle and Roussel (2007)). We include the possibil-
ity that basic events are repeated without restriction and
we allow any cascade of Priority Dynamic Gates. We show



that it is possible to provide a complete qualitative descrip-
tion of the PDFT through an algebraic expression of the
structure function that can be reduced to a sum-of-product
canonical form. Each product term of the canonical form
contains basic events connected by Boolean and temporal
operators. Finally, we show how to compute the probabil-
ity of occurrence of the TE from the canonical form, by
assigning to basic events any failure time distribution.

The PDFT model with repeated events is formalized in
Section 2, and the new temporal variables and operators
are introduced in Section 3. Section 4 shows how to
derive the canonical form of the structure function whereas
the probabilistic analysis, with a completely developed
example, is reported in Section 5.

2. PRIORITY DYNAMIC FAULT TREES WITH
REPEATED EVENTS

According to (Dugan et al. (2000)), DFTs comprise ba-
sic events, static gates (OR, AND and K-out-of-N) and
dynamic gates (PAND, FDEP, WSP and SEQ). Dynamic
gates can be divided into two categories according to their
temporal and statistical behavior:

• gates PAND and FDEP have sequential or preemption-
based behaviors and can be modeled by means of
discrete mathematics, as presented in Section 3.3.

• Warm Spare (WSP) and Sequence enforcing (SEQ)
gates are s-dependent on event duration, and their
probability of occurrence is not completely defined
by an order relation.

We have retained the term of Priority Dynamic Gates
for gates PAND and FDEP since both gates express a
semantics of ”priority”: a priority between input events
for gate PAND; a preemption priority for gate FDEP. FTs
containing Priority Dynamic Gates are denoted as Priority
DFTs (PDFTs) and constitute a subclass of DFTs. The
formal definitions of gates PAND and FDEP (Coppit et al.
(2000); Stamatelatos and Vesely (2002)) is reminded in
Table 1.

Table 1. Definitions of Priority Dynamic Gates

Symbol Definition

PAND

from (Stamatelatos and Vesely (2002))

FDEP
Asserts a functional dependency – that the failure of

the trigger event causes the immediate and simulta-

-neous failure of the dependent basic events.

from (Coppit et al. (2000))

In a FT, simultaneity among events may arise in two
ways. Basic events can occur simultaneously if they have
a discrete probability distribution with a non-null prob-
ability mass exactly at the same time. Since usually, the

failure probabilities distributions are considered as con-
tinuous functions with infinite support, the simultaneous
occurrence has null probability and can be neglected.

A second case of simultaneity may arise at any level of a
FT when there are repeated basic events and has not yet
been explored in its full generality.

Let us consider the PDFT in Figure 1, in which event
A is a repeated basic event. If basic events A, B, C and

Fig. 1. An example of PDFT with one repeated basic event

D occur according to sequences [B, C, A], [C, B, A] or
[D, A], intermediate events G and H occur simultane-
ously at the same time as A occurs. This example shows
that intermediate nodes of a FT can occur simultaneously
because of the presence of repeated basic events. The si-
multaneity problem has been briefly addressed in (Boudali
et al. (2007)) and has been solved resorting to the concept
of ”non-determinism”, concept that is hardly acceptable
in the engineering practice. We assert that a choice must
be made regarding the semantics of simultaneous events
and priority dynamic gates. For instance, in the case of
simultaneous events in input to a PAND gate, two choices
are possible (Figure 1):

• if the order relation is considered strictly, when inter-
mediate events G and H occur simultaneously, TE1
does not occur. Gate PAND would then be considered
as being ”non-inclusive”.

• if the order relation is not considered strictly, when
intermediate events G and H occur simultaneously,
TE1 occurs at the same time as G or H. Gate PAND
would then be considered as being ”inclusive”.

Both interpretations of the order relation can be taken into
account and algebraically modeled.

3. ALGEBRAIC FORMALIZATION OF PDFTS

3.1 Temporal events

In SFTs, basic events are considered as Booleans. However,
the Boolean model cannot render the order of occurrence
of events as previously defined for Priority Dynamic Gates.
In order to take into account this temporal aspect, we
consider the TE, the intermediate events and the basic
events as temporal functions, which are piecewise right-
continuous on R+ ∪ {+∞} and whose range is B = {0,1}.
Since we consider non-repairable events, only, a generic
timing diagram of an event a is given in Figure 2, where
d(a) is the unique date of occurrence of a. We denote by
Enr the set of non-repairable events.

The definition of Boolean operators OR and AND can be
extended to Enr . The identity elements of these operators



in Enr , equivalent to 0 and 1, are denoted by ⊥ and > to
which the following dates can be assigned:

d(⊥) = +∞ ; d(>) = 0

6
-0

1
t����a

d(a)
Fig. 2. A non-repairable event

(Enr ,+, ·,⊥,>) is an Abelian dioid, like ({0, 1} ,+, ·, 0, 1),
so that the properties of Boolean algebra that are com-
monly used for the simplification of SFTs can still be
applied with our model, and their structure functions can
be determined as usual. A complete description of the
algebraic framework developed for temporal events can be
found in (Merle et al. (2008)). Because of the notation
difference between the identity elements of Enr and the
identity elements of {0, 1} for operators + and ·, the
rewriting of four common theorems of Boolean algebra is
necessary:

a +⊥ = a a · > = a
a +> = > a · ⊥ = ⊥

3.2 Temporal operators

In order to model priority relations among temporal
events, we introduce a temporal operator non-inclusive
BEFORE (BF, with symbol �) and a temporal operator
SIMULTANEOUS (SM, with symbol 4), whose formal
definitions, based on the dates of occurrence of a and b,
are as follows:

a � b =


a if d(a) < d(b)
⊥ if d(a) > d(b)
⊥ if d(a) = d(b)

a4 b =


⊥ if d(a) < d(b)
⊥ if d(a) > d(b)
a if d(a) = d(b)

Based on the previous two operators, we can introduce a
non-strict or INCLUSIVE BEFORE (IBF, with symbol �)
operator:

a � b = a � b + a4 b (1)

whose definition based on the dates of occurrence of a and
b is:

a � b =


a if d(a) < d(b)
⊥ if d(a) > d(b)
a if d(a) = d(b)

Operator 4 is commutative, while � and � are not. These
three operators satisfy the following theorems, which will
be used later in the paper (A more complete set of
theorems and their proofs can be found in (Merle et al.
(2008))).

(a � b) + b = a + b (2)
a · (a � b) = a � b (3)

a � (b · c) = (a � b) + (a � c) (4)
a � (b � c) = (a � b) + (a · b · (c � b)) + (a4 b) · (b � c) (5)

(a · b) � c = (a � c) · (b � c) (6)

(a � b) � c = (a � b) · (a � c) (7)

(a � b) · (b � c) · (a � c) = (a � b) · (b � c) (8)

a � a = ⊥ (9)

a · (a � b) = a � b (10)

(a � b) · (b � a) = ⊥ (11)

3.3 Algebraic model of Priority Dynamic Gates

In Section 2, we have shown how both a strict and a
non-strict order relation can be taken into account and
algebraically modeled. However, a non-strict inclusive in-
terpretation of priority dynamic gates seems more coherent
with the designers’ expectations. For this reason, in the
remainder of this paper, we define an algebraic model of
gates PAND and FDEP by means of operator IBF (�),
only.

Q = (A ·B) · (A � B) AT = (A � T ) + T
(2)
= A + T

(3)
= B · (A � B) BT = (B � T ) + T

(2)
= B + T

(a) (b)

Fig. 3. Algebraic models of gates PAND and FDEP

The algebraic expression of gate PAND is in Figure 3.a,
whereas the expression for gate FDEP is in Figure 3.b.
Regarding gate FDEP, basic events A and B can fail
by themselves or are forced to fail by the trigger event
T . We choose to denote the global behavior of basic
events A and B by the substituted variables AT and BT

to explicitly indicate the effect of trigger T . As already
noticed in (Stamatelatos and Vesely (2002)), the algebraic
formalization proves that gate FDEP can be represented
by Boolean OR gates, only.

Furthermore, we assume that basic events are s-indepen-
dent and have a continuous failure time distribution so
that they cannot occur simultaneously. Hence, for any two
basic events A and B with the above characteristics, the
following relation holds:

A4B = ⊥ (12)

In order to arrive to the determination of the structure
function of any PDFT, special attention should be payed
to the cascades of PAND gates.

3.4 Cascading PAND gates

Two elementary combinations of cascading PAND gates
are possible, as represented in Figures 4.a and 4.b, respec-
tively.

The structure function of the PDFT in Figure 4.a can be
written as:



(a) (b)

Fig. 4. Basic PDFTs made of a cascade of PAND gates

TE2 = C · (F � C)

= C · ((B · (A � B)) � C)
(6),(7)

= C · (B � C) · (A � B) · (A � C)
(8)
= C · (A � B) · (B � C) (13)

The second possible combination of cascading PAND gates
is given in Figure 4.b and its structure function can be
determined and developed thanks to the theorems of Sec-
tion 3.2. Note, in particular, that theorem (5) is somewhat
counterintuitive, but simply states that a � (b � c) is true
iff (a � b) or if (b � c) = ⊥ is true.

TE3 = J · (A � J)

= C · (B � C) · (A � (C · (B � C)))
(4)
= C · (B � C) · ((A � C) + (A � (B � C)))

= C · (B � C) · (A � C)

+C · (B � C) · (A � (B � C))
(5)
= C · (A � C) · (B � C) + C · (B � C) · (A � B)

+C · (B � C) · (A ·B · (C � B))

+C · (B � C) · (A4B) · (B � C)
(12)
= C · (A � C) · (B � C) + C · (A � B) · (B � C)

+A ·B · C · (B � C) · (C � B)
(11)
= C · (A � C) · (B � C)

+C · (A � B) · (B � C) (14)

4. CANONICAL FORM OF THE STRUCTURE
FUNCTION

The algebraic models of Priority Dynamic Gates (Figures
3.a and 3.b) allow us to determine the structure function
of any PDFT as a function of basic events that can be
repeated without restrictions.

Given a PDFT with n basic events {bi, i ∈ (1, ..., n)},
the structure function for the TE becomes an expression
containing at most the n basic events and operators +, ·,
�,4 and �. The structure function can then be developed
and simplified thanks to the theorems presented in Section
3.2, to arrive to a standardized sum-of-product canonical
form where each product term contains operator · and

ordered pairs of variables linked by operator �, only. The
steps to be followed to arrive to the canonical form are:

(1) Starting from the TE, in a top down fashion, replace
each FDEP gate by its algebraic expression in Figure
3.b and each PAND gate by its algebraic expression
in Figure 3.a.

(2) In the case of cascading PAND gates, apply theorems
(5) and (7).

(3) Eliminate the parenthesis by applying distributivity
theorems, such as theorems (4) to (7).

(4) The structure function is then expressed in a sum of
product terms as in (15):

TE =

∑(∏
bi ·
∏(

bj � bk

)
·
∏

(bl � bm) ·
∏(

bo 4 bp

))
(15)

(5) Since bo and bp are basic events, in virtue of theorem
(12), function (15) can always be simplified to the
following form:

TE =
∑(∏

bi ·
∏

(bj � bk) ·
∏

(bl � bm)
)

(16)

(6) Taking into account theorems (1) and (12), we can
write bj � bk = bj � bk. Hence the expression in (16)
becomes:

TE =
∑(∏

bi ·
∏

(bj � bk)
)

(7) According to theorem (9), j = k ⇒ bj � bk = ⊥, then
the structure function can be simplified to:

TE =
∑(∏

bi ·
∏

(bj � bk)
)

, j 6= k

(8) Finally, according to theorem (10), i = j ⇒bi·(bj � bk)
= bj � bk, so we get the structure function in canon-
ical form:

TE =
∑(∏

bi ·
∏

(bj � bk)
)

, j /∈ {i, k} (17)

5. PROBABILISTIC ANALYSIS OF PDFTS

In the case of DFTs, the determination of the failure
probability of the TE from the failure probabilities of
the basic events is computed numerically by developing
dynamic modules into the corresponding Markov chain.
Close form expressions for the dynamic gates with any
distribution function are given in (Amari et al. (2003)).
In this section, we show that the TE probability of any
PDFT can be evaluated in a purely algebraic way from the
canonical form of the structure function, for any possible
time-to-failure distribution of basic events.

The quantitative analysis of PDFTs is illustrated by means
of an example taken from (Fussel et al. (1976)). First,
the traditional approach consisting in the generation and
solution of the Markov chain is applied. Then the alge-
braic solution with exponential distributions is proposed
starting from the canonical form, showing that the same
procedure can be extended to any probability distribution
(the Erlang distribution is considered as an example).

Figure 5 shows the PDFT of a non-repairable electrical
supply system that has a principal power supply (P), a
parallel spare (S), and a switch (C) that commutes on S
when P fails (Fussel et al. (1976)). We assume that the
principal power supply and the parallel spare fail with
failure rates λp and λs, respectively, and that the switch
fails with failure rate λc.



Fig. 5. Example of sample logic model from (Fussel et al.
(1976))

5.1 Calculation of the failure probability with Markov
chains

The state transition diagram of the corresponding Markov
chain is shown in Figure 6, where state 8 is the only failure
state and represents the TE. The state probabilities of the

Fig. 6. State transition diagram of the Markov chain for
the PDFT shown in Figure 5

Markov chain are obtained by solving the following system
of differential equations:

dP (t)
dt

= P (t) ·Q (18)

where P (t) is the state probability vector and Q the
transition rate matrix given by:∣∣∣∣∣∣∣∣∣∣

−λp − λs − λc λp λs λc 0 0 0 0

0 −λc − λs 0 0 λc 0 0 λs

0 0 −λc − λp 0 0 λc 0 λp

0 0 0 −λp − λs 0 0 λs λp

0 0 0 0 −λs 0 0 λs

0 0 0 0 0 −λp 0 λp

0 0 0 0 0 0 −λp λp

0 0 0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣
(19)

Solving Equation (18) with transition rate matrix (19)
provides the following close form expression for the prob-
ability of state 8:

Pr {TE4} (t) = Pr {8} (t) =
λp

λc + λp
e−(λc+λp+λs)t

−e−λpt − λp

λc + λp
e−λst + 1 (20)

5.2 Calculation of the failure probability with the algebraic
approach

When the structure function of the TE is expressed in
canonical form (17), the probability can be calculated
starting from the expressions of the product terms. Given

an event x with distribution function Fx(t) and density
function fx(t), the following expressions hold under the
hypothesis of s-independence by extension of (Amari et al.
(2003); Fussel et al. (1976)):

Pr {a · b} (t) = Fa(t)× Fb(t)

Pr {a + b} (t) = Fa(t) + Fb(t) − Fa(t)× Fb(t)

Pr {a � b} (t) =
∫ t

0

fa(u)(1− Fb(u)) du

Pr {b · (a � b)} (t) =
∫ t

0

fb(u)Fa(u) du (21)

The canonical form of the structure function of the PDFT
shown in Figure 5 is:

TE4 = (P · S) + (P · (C � P ))
(1),(12)

= (P · S) + (P · (C � P )) (22)

We then calculate Pr {TE4} as:

Pr {TE4}= Pr {P · S}+ Pr {P · (C � P )}
−Pr {(P · S) · (P · (C � P ))}

= Pr {P · S}+ Pr {P · (C � P )}
−Pr {S · (P · (C � P ))}

= Pr {P} × Pr {S}
+(1− Pr {S})× Pr {P · (C � P )} (23)

In the case of exponential distributions, we obtain from
(21):

Pr {P} (t) = 1− e−λpt Pr {S} (t) = 1− e−λst

Pr {P · (C � P )} (t) =
∫ t

0

λpe
−λpu(1− e−λcu) du

=
λp

λc + λp
e−(λc+λp)t − e−λpt +

λc

λc + λp

Hence:

Pr {TE4} (t) =
λp

λc + λp
e−(λc+λp+λs)t

−e−λpt − λp

λc + λp
e−λst + 1 (24)

The result in (24) coincides with the one in (20). How-
ever, structure function (22) is suited to evaluate the TE
probability with any distribution.

5.3 Case of non-exponential distributions

If the components of the studied systems do not exhibit
an exponential behavior, application of the Markov chain
procedure is unfeasible, whereas algebraic manipulation
remains a viable solution.

In the case of mechanical systems, for instance, exponen-
tial distribution is not the most suitable one and other
distributions, such as the Erlang distribution, are more



commonly used. We show that the failure probability of
such systems can be determined algebraically by resorting
to the expressions (21). The Erlang distribution has the
expression shown in Equation (25).

F (t) = 1−
k−1∑
n=0

(λt)n

n!
e−λt f(t) =

λktk−1e−λt

(k − 1)!
(25)

Starting from the TE probability expression in (23) we
obtain:

Pr {P} (t) = 1−
kp−1∑
n=0

(λpt)
n

n!
e−λpt

Pr {S} (t) = 1−
ks−1∑
n=0

(λst)
n

n!
e−λst

Pr {P · (C � P )} (t)

=
∫ t

0

λ
kp
p ukp−1e−λpu

(kp − 1)!

(
1−

kc−1∑
n=0

(λcu)n

n!
e−λcu

)
du

= 1−
kp−1∑
n=0

(λpt)
n

n!
e−λpt

−
kc−1∑
n=0

(
n + kp − 1

kp − 1

)
λn

c λ
kp
p

(λc + λp)
n+kp

−
kc−1∑
n=0

n+kp−1∑
q=0

(
n + kp − 1

kp − 1

)
λn

c λ
kp
p tqe−(λc+λp)t

q! (λc + λp)
n+kp−q

Consequently:

Pr {TE} (t) = 1−
kp−1∑
n=0

(λpt)
n

n!
e−λpt

−
ks−1∑
n=0

kc−1∑
q=0

(
q + kp − 1

kp − 1

)
λq

cλ
kp
p λn

s

n! (λc + λp)
q+kp

tne−λst

+
ks−1∑
n=0

kc−1∑
q=0

q+kp−1∑
r=0

(
q + kp − 1

kp − 1

)
λq

cλ
kp
p λn

s tn+re−(λc+λp+λs)t

n!r! (λc + λp)
q+kp−r

The calculation of the failure probability of the TE can
be performed with any other non-exponential distribution.
If the considered failure distribution is not analytically
integrable (as for instance the Weibull distribution), the
probabilistic relation deducted from the canonical form of
the structure function can still be used by resorting to
numerical integration.

6. CONCLUSION

In this paper, we have defined a subclass of DFTs, called
Priority Dynamic Fault Trees (PDFTs), comprising Pri-
ority Dynamic Gates, PAND and FDEP, only. We have
modeled both gates by means of new temporal operators
called BF, SM and IBF defined on a set of temporal
variables and allowing the simultaneity of intermediate
events which can be caused by the use of repeated basic
events. The definition of an algebraic model allows the

determination of the structure function of any PDFT.
Thanks to the theorems that we presented, this structure
function can always be simplified to a sum-of-product
canonical form, which can then be reduced by removing
redundant terms. On the one hand, this canonical form
can be used for the qualitative analysis of PDFTs. On the
other hand, we presented a quantitative approach allowing
the direct algebraic determination of the failure probability
of the TE from the canonical form, whatever the failure
distributions.

On-going work is now addressed to the determination of
an algebraic model for WSP and SEQ gates in order to
extend the work presented in this paper to the whole DFT
formalism.
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