
HAL Id: hal-00394454
https://hal.science/hal-00394454

Submitted on 11 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Test sequence construction from SFC specification
Julien Provost, Jean-Marc Roussel, Jean-Marc Faure

To cite this version:
Julien Provost, Jean-Marc Roussel, Jean-Marc Faure. Test sequence construction from SFC specifi-
cation. 2nd IFAC Workshop on Dependable Control of Discrete Systems (DCDS’09), Jun 2009, Bari,
Italy. pp.341-346. �hal-00394454�

https://hal.science/hal-00394454
https://hal.archives-ouvertes.fr

Test sequence construction
from SFC specification ?

J. PROVOST J.-M. ROUSSEL J.-M. FAURE

LURPA, ENS Cachan,
61 Avenue du Président Wilson, 94235 Cachan Cedex, France.

(e-mail: {provost, roussel, faure}@lurpa.ens-cachan.fr)

Abstract: This paper focuses on conformance test of electronic programmable devices whose
specification is given in Sequential Function Chart (SFC). More precisely, a method is proposed
to obtain automatically, from this specification, one minimum length test sequence which permits
the exhaustive test of the behavior of the device. This method takes advantage of previous results
on construction of the state machine representation of a SFC and on test of Mealy machines;
conversely, it extends the industrial use possibilities of this latter technique. The contribution
is exemplified on a simple model. Copyright c©2009 IFAC

Keywords: conformance test, model-based test, SFC, Mealy machine, logic controllers.

1. INTRODUCTION

Critical systems are increasingly being controlled by elec-
tronic programmable devices, like ECUs (Electronic Con-
trol Units) for automotives or PLCs (Programmable Logic
Controllers) for railway transport systems and power
plants. To ensure systems’ dependability, the conformance
of these devices’ behavior to control specifications must
be tested. Roughly speaking, conformance test consists of
(see Fig. 1):

• sending inputs sequence to the device;
• observing the response to this sequence;
• comparing the observed outputs sequence to the

expected one.

Fig. 1. Conformance test principle

Inputs and expected outputs sequences are termed a test
sequence and are coming from the specification model.
However, generating a test sequence manually is a very
tedious and error-prone task. This explains why model-
based test is a popular research issue that already yielded
many significant results (see Broy et al. (2005)). The aim of
this approach is to construct automatically a test sequence
from specification in a well formalized language, e.g. Mealy
machine or transition system (see Brinksma et al. (1990),
Lee and Yannakakis (1996), Tretmans (2008)).
? This work is funded by the French National Research Agency
(TESTEC, Réf. TLOG 07-022)

However, to the best of our knowledge, none of these works
has addressed the issue of test sequence construction from
specification in a standardized industrial control language.
The aim of this paper is to fill this gap when the control is
specified in SFC (IEC60848 (2002)). More precisely, this
paper presents a method to obtain, from a SFC which
describes the expected behavior of a logic controller, one
test sequence that permits to check whether a device
that is assumed to implement this specification conforms
to it (see Fig. 2). This test sequence must permit the
exploration of the whole state space of the specification
so as to obtain trustworthy test results, and be minimum
length to reduce test duration.

Fig. 2. Aim of the work

The different stages of this method are outlined in sec-
tion 2, while the principles of conformance test of Mealy
machines, a formal frame that underlies this research,
are reminded in section 3. Section 4 is devoted to the
description of the main contribution of this work: trans-
lation of the state machine equivalent to a SFC into a

Mealy machine. Finally, section 5 shows how a minimum
length test sequence can be obtained from the result of
this translation.

2. METHOD OVERVIEW

To provide trustworthy results, conformance test of devices
which control highly critical systems must be:

• Black-box type. The internal structure of the device
is unknown and its behavior can be obtained only by
observing its responses to an inputs sequence.
• Non invasive. No probe or piece of code can be

introduced within the device to get values of internal
signals or variables during the test.
• Exhaustive. The whole state space of the specification

model, a SFC in this work, must be explored. It will
be assumed in the rest of this paper that the size of
this state space is small enough to avoid combinatory
explosion; scalability of the test sequence construction
method will not be addressed. This assumption is
quite reasonable when dealing with safety-related
functions of highly critical systems.

Moreover, only non timed systems are considered in this
paper. This implies that the SFC specification does not
include any time-dependent transition condition or action.

Given these constraints and this limitation, a test sequence
can be obtained by the following method which comprises
three stages:

(1) construction of the Reachable Situation Automaton
(RSA) which represents the behavior of the initial
SFC;

(2) translation of this state machine with transition con-
ditions into an event-based Mealy machine;

(3) construction of the test sequence from this machine.

The aims of the first two stages are respectively to find all
the underlying states of the SFC specification and all the
event-based transitions between these states. It matters to
remind indeed that:

• Several steps may be simultaneously active in a SFC;
hence, at each date, the state of a SFC is a set of
active steps variables, termed situation.
• A SFC transition can be fired for several inputs

combinations; exhaustive test sequence construction
requires to represent explicitly all these combinations.

At the end of these two stages, the whole state space of the
specification is available. It is then possible, during stage
3, to build the test sequence.

A detailed presentation of stage 1 can be found in Roussel
and Lesage (1996). The main results of this reference are
recalled below:

• Any SFC which includes no time-dependent element
(transition condition or action) can be translated into
a state machine that describes all possible evolutions
of this SFC. This state machine is called RSA. Each
state of the RSA represents a situation of the initial
SFC.
• A RSA includes only one active situation at each

moment.

• Each situation of the RSA is reachable from the initial
situation.

• All transition conditions of a RSA are Boolean ex-
pressions on the inputs of the initial SFC.

• The values of the outputs of the RSA only depend on
the active situation.

• There is no transient evolution within a RSA (a for-
mal statement of this feature will be given in section
4). If the initial SFC contains transient evolutions,
they are replaced by non transient ones during RSA
construction.

Last, to ensure non-invasive test, it will be assumed that
a different set of actions is associated with each situation
of the RSA. This permits to identify the active situation
only from the values of the outputs.

Figure 3 depicts a simple case of RSA which will serve as
example in the rest of this paper.

Fig. 3. Example of a Reachable Situation Automaton

Prior to detailing stage 2 of the test sequence construction
method in section 4, it matters to remind the reader of
the principle of conformance test of Mealy machines; this
is the aim of the next section.

3. CONFORMANCE TEST OF MEALY MACHINES

Many researches about conformance test of Mealy ma-
chines have been achieved in the past. A good synthesis of
these works is proposed in Lee and Yannakakis (1996).
A brief description of their main results, based on the
previous reference and on Broy et al. (2005) is given below.

Formally, a Mealy machine M is a 6-tuple
(IM ,OM ,SM ,sinitM ,δM ,λM) where:

• IM and OM are nonempty sets of symbols, respec-
tively, of inputs and outputs;

• SM is a nonempty set of states;
• sinitM ∈ SM is the initial state;
• δM : SM × IM −→ SM is the transition function;
• λM : SM × IM −→ OM is the output function.

By definition, Mealy machines are deterministic since δM
and λM are defined by functions. It is generally assumed
that these machines are complete, which means that the
functions δM and λM are defined for each 2-tuple (s, i) ∈
SM × IM .

The figure 4 represents a Mealy machine with 4 states
built on the input alphabet {i, j} and the output alphabet
{X,Y }.

Fig. 4. Example of a Mealy machine

Within a Mealy machine, two states si and sj are equiv-
alent if for any inputs sequence (σ ∈ IM

∗) 1 , the Mealy
machine produces the same outputs sequence:

∀σ ∈ IM ∗ [λM (si, σ) = λM (sj , σ)] (1)
A Mealy machine is minimal if it does not include any
pair of different equivalent states. Two machines M1 and
M2 which have the same alphabet are said equivalent if
for any state in M1 there is an equivalent state in M2 and
vice versa.

Given these definitions, the problem of conformance test
based on this model can be described as follows: Let S be
a known machine (the specification) and I an unknown
machine (the implementation under test) which can be
only observed through its inputs and outputs, determine
by a test that includes a finite sequence of inputs and
expected outputs whether I is equivalent to S or not.

In order to solve this problem, it is generally assumed that
the specification is minimal and strongly connected (each
state is reachable from any other state). Then, the equiv-
alence between an implementation I and a specification
S consists in verifying that none of the following errors
happens during the test of I:

• Output error: s being the active state, when the input
i occurs, I produces the output o′ instead of the
expected output o.
• Transfer error: s being the active state, when the

input i occurs, the transition labeled i/o is fired but
the arrival state is s′′ instead of s′.

The test sequence is constructed from S and must permit
to detect these two kinds of errors, for each state and each
transition. Hence, each elementary test corresponds to a

transition s
i/o−→ s′ of S and is defined as follows:

(1) Go to s (synchronization).
(2) Apply input i and check whether the emitted output

is o.
(3) Check whether the arrival state is s′ (identification).

Then, the problems of synchronization and identification
arise. To lessen or solve these problems, a Mealy machine
can be endowed with two particular functions: reset and
status. The reset function puts the Mealy machine in its
initial state from the active state; the status function
provides the value of the active state. The reset function
permits to simplify synchronization because the path from
the initial state to a given state s, source state of the
transition which must be tested, is often shorter than
the path from the active state to the state s. The status

1 IM
∗ represents IM power any strictly positive integer.

function permits identification once a transition is fired
and whatever the emitted output.

When the status function exists, a test sequence is usually
obtained by the transition tour method (see Naito and
Tsunoyama (1981)). The aim of this method is to find the
shortest sequence of input symbols to cross at least once
each arc of the graph corresponding to the Mealy machine.
At the end of each stage of the test sequence, the status
function is requested so as to determine the active state
of the tested machine. Simplicity of implementation and
efficiency are the main advantages of this method.

4. TRANSLATION OF A REACHABLE SITUATION
AUTOMATON INTO A MEALY MACHINE

This section is aiming to define the translation rules of
a Reachable Situation Automaton (RSA) derived from a
SFC into an event-based Mealy machine (stage 2 of the test
sequence construction method proposed in section 2). The
equivalence of behaviors of the resulting Mealy machine
and the initial RSA is ensured by construction. It matters
to highlight that RSA transitions are not labeled by
events; only Boolean conditions are associated with these
transitions. Conversely, a Mealy machine is an event-based
model. Hence, the scientific issue to solve is translation of
a condition-based finite state machine into an event-based
one, without any semantics loss.

4.1 Formal definition of Reachable Situation Automatons

A RSA can be formally represented by the following
6-tuple: (VI ,VO,SRSA,sinitRSA,T ,A), noted RSA, where:

• VI is a nonempty set of logical input variables, (Car-
dinality of VI : |VI | = nVI

).
• VO is a nonempty set of logical output variables,

(|VO| = nVO
).

• SRSA is a set of situations, (|SRSA| = nSRSA
).

• sinitRSA ∈ SRSA is the initial situation.
• T is a set of transitions t.
• A is a set of actions a.

By construction, VI , VO and SRSA are distinct and
nonempty sets.

A transition t of T is completely defined by the 3-tuple:
t = (Up(t), Dw(t), C(t)), where:

• Up(t) is the situation immediately before (Upstream)
the transition t, (Up(t) ∈ SRSA).

• Dw(t) is the situation immediately after (Down-
stream) the transition t, (Dw(t) ∈ SRSA)

• C(t) is the transition condition associated to the
transition t. A transition condition C(t) is a Boolean
condition only composed of input variables in VI .

An action a of A is completely defined by the 2-tuple:
a = (s(a), o(a)), where:

• s(a) is the situation which the action is associated
with, (s(a) ∈ SRSA).

• o(a) is the output which is set by the action,
(o(a) ∈ VO).

According to these definitions, the RSA illustrated in
Fig. 3 can be represented by the following 6-tuple:



VI = {a, b, c}
VO = {U, V,W}
SRSA = {s1, s2, s3, s4, s5, s6}
sinitRSA = s1
T = {(s1, s2, ā.b.c), (s1, s3, ā.(b̄+ c̄)),

(s2, s1, a.b̄.c̄), (s3, s4, a.b̄.c), (s3, s5, a.b.c̄),
(s4, s6, b), (s5, s6, c), (s6, s1, a.b̄.c̄)}

A = {(s2, U), (s3, V), (s3,W), (s4, U), (s4, V),
(s5, U), (s5,W), (s6,W)}

(2)

Moreover, the RSA which has to be translated will be
assumed well structured, i.e.:

• When a transition is fired, the active situation
changes (no self-loop):

∀t ∈ T [Up(t) 6= Dw(t)] (3)

• Transitions are not redundant:

∀(ti, tj) ∈ T 2 [Up(ti) = Up(tj)⇒ Dw(ti) 6= Dw(tj)] (4)

• Actions are not redundant:

∀(ai, aj) ∈ A2 [s(ai) = s(aj)⇒ o(ai) 6= o(aj)] (5)

• Each situation of the RSA is reachable from the
initial situation; there exists at least one sequence of
transitions from the initial situation to any situation:

∀s ∈ {SRSA − {sinitRSA}} ∃(t1..tn) ∈ Tn(n ∈ N∗)[{
Up(t1) = sinitRSA

Dw(tn) = s
∀i ∈ [1, n− 1], Dw(ti) = Up(ti+1)

]
(6)

Last, the three following statements can be written. The
first two ones are true for any RSA derived from an
initial SFC; the third one holds only if a test sequence
for non-invasive test, i.e. such that the active situation
can be known only from the values of the outputs, can
be constructed from the Mealy machine translation of the
RSA. Hence, this statement will be used to check whether
the assumption on observability of situations through
outputs is valid.

• The RSA includes only one active situation at each
moment, i.e. the transitions which follow a situation
are mutually exclusive:

∀s ∈ SRSA,∀(ti, tj) ∈ T 2

[Up(ti) = Up(tj) = s⇒ C(ti) · C(tj) = 0] (7)

• There is no transient evolution within the RSA:

∀s ∈ SRSA,∀(ti, tj) ∈ T 2

[Up(ti) = Dw(tj) = s⇒ C(ti) · C(tj) = 0] (8)

• A different set of actions is associated with each
situation:

∀(si, sj) ∈ S2
RSA [O(si) 6= O(sj)] (9)

where O(si) is the subset of VO that contains all
outputs which are set when situation si is active.

O(si) = {o(a) | ∃a ∈ A [s(a) = si]} (10)

4.2 Mealy machine construction

A Mealy machine M : (IM ,OM ,SM ,sinitM ,δM ,λM) can be
constructed from any Reachable Situation Automaton

RSA: (VI ,VO,SRSA,sinitRSA,T ,A). This Mealy machine
behaves strictly as the RSA and is defined as follows:

• IM : input alphabet. This alphabet contains 2nVI

elements. Each element ii of this alphabet must
represent a different combination of logical variables
of VI . Each element ii is associated with a distinct
minterm 2 built on the variables of VI (see Table 1
for the studied example). Let mI(ii) be the minterm
associated with the input event ii. mI(ii) is built as
follows:

∀(ii, ij) ∈ I2
M [mI(ii) ·mI(ij) = 0] (11)

Table 1. Association input event/minterm

Input event i0 i1 i2 i3 i4 ... i7
Minterm ā.b̄.c̄ ā.b̄.c ā.b.c̄ ā.b.c a.b̄.c̄ ... a.b.c

• OM : output alphabet. This alphabet contains 2nVO

elements. Each element oi of this alphabet must
represent a different combination of logical variables
of VO. Each element oi is associated with a distinct
minterm built on the variables of VO (see Table 2
for the studied example). Let mO(oi) be the minterm
associated with the output event oi. mO(oi) is built
as follows:

∀(oi, oj) ∈ O2
M [mO(oi) ·mO(oj) = 0] (12)

Table 2. Association output event/minterm

Output event o0 ... o5 o6 o7

Minterm Ū.V̄ .W̄ ... U.V̄ .W U.V.W̄ U.V.W

• SM : set of states. A state of the Mealy machine M is
associated to each situation of the Reachable Situa-
tion Automaton RSA. To make the translation easier
to understand, the state of M and the associated
situation of RSA will be denoted in the same way.
Thus, the set SM is the same as the set SRSA of RSA.

SM ≡ SRSA (13)
• sinitM : initial state. This state is associated with the

initial situation of RSA.
sinitM ≡ sinitRSA (14)

• The transition function δM and output function λM

are defined on the basis sets VI , VO, SRSA, T , A
and IM , OM , SM . The Mealy machine must be
deterministic and completely specified, i.e.:

∀(s, i) ∈ SM × IM
[{
∃!δM (s, i) ∈ SM

∃!λM (s, i) ∈ OM

]
3 (15)

The transition function δM of the machine M is defined
as follows:

∀s ∈ SM ,∀i ∈ IM
if ∃t ∈ T

[{
Up(t) = s
C(t) ·mI(i) = mI(i)

]
[δM (s, i) = Dw(t)]
else
[δM (s, i) = s]

 (16)

The transition function δM is completely specified since
a value is defined for each 2-tuple (s, i) ∈ SM × IM . This
2 A minterm is a logical expression of n variables that uses only the
logical conjunction operator and the complement operator.
3 ∃!: There exists exactly one.

Fig. 5. Graphical representation of the Mealy machine corresponding to the RSA presented Fig. 3

value is unique because transitions which follow a situation
s are mutually exclusive (see equation 7).

Construction of the output function λM relies on the
property that outputs values depend only on the active
situation of the RSA. Then, the output function λM is
defined as follows:
∀s ∈ SM ,∀i ∈ IM [λM (s, i) = oj]
where ∀oj ∈ OM[{
∀v ∈ O(δM (s, i)) [mO(oj) · v = mO(oj)]
∀v ∈ {VO −O(δM (s, i))} [mO(oj) · v̄ = mO(oj)]

]
(17)

The proposed definitions of δM and λM ensure deter-
minism of evolution and determinism of output events
emission. The Mealy machine obtained is therefore deter-
ministic and completely specified. Moreover, each state of
this Mealy machine is reachable from the initial state since
this constraint is true for the situations of the RSA (see
equation 6).

The Mealy machine corresponding to RSA given in Fig. 3
is graphically represented in Fig. 5. Its mathematical
definition is described by the following 6-tuple:

IM = {i0, i1, i2, i3, i4, i5, i6, i7}
OM = {o0, o1, o2, o3, o4, o5, o6, o7}
SM = {s1, s2, s3, s4, s5, s6}
sinitM = s1
δM = SM × IM −→ SM

λM = SM × IM −→ OM

(18)

The tabular representation of transition function δM and
output function λM for this example is given in Table 3.
In this table, the 2-tuple (δM (s, i), λM (s, i)) is associated
to each 2-tuple (s, i).

Table 3. Tabular representation of functions
δM (s, i) and λM (s, i) for the case study

HH
HHi

s
s1 s2 s3 s4 s5 s6

i0 s3,o3 s2,o4 s3,o3 s4,o6 s5,o5 s6,o1

i1 s3,o3 s2,o4 s3,o3 s4,o6 s6,o1 s6,o1

i2 s3,o3 s2,o4 s3,o3 s6,o1 s5,o5 s6,o1

i3 s2,o4 s2,o4 s3,o3 s6,o1 s6,o1 s6,o1

i4 s1,o0 s1,o0 s3,o3 s4,o6 s5,o5 s1,o0

i5 s1,o0 s2,o4 s4,o6 s4,o6 s6,o1 s6,o1

i6 s1,o0 s2,o4 s5,o5 s6,o1 s5,o5 s6,o1

i7 s1,o0 s2,o4 s3,o3 s6,o1 s6,o1 s6,o1

As shown in this representation of functions δM (s, i) and
λM (s, i), each 2-tuple (s, i) ∈ SM × IM verifies:

∀((s, i), (s′, i′)) ∈ (SM × IM)2

[δM (s, i) = δM (s′, i′)⇒ λM (s, i) = λM (s′, i′)]
(19)

This result is a consequence of two features of the RSA
(outputs values only depend on the active situation and a
different set of actions is associated with each situation)
and ensures minimality of the obtained Mealy machine.

The constructed Mealy machine contains as many states
(or nodes in the graphical representation) as situations
in the RSA. The number of transitions (or arcs in the
graphical representation) only depends on the number of
situations and input variables of the RSA.{

nstates = nSRSA

ntransitions = nSRSA
· 2nVI

(20)

For the case being considered, the obtained Mealy machine
contains 6 states and 48 transitions. It must be noted that
the number of transitions of the RSA has no influence on
the size of the obtained event-based Mealy machine.

5. BUILDING THE TEST SEQUENCE

The Mealy machine which is constructed from a RSA rep-
resents all evolutions of the initial SFC. It is then possible
to build from this machine a minimum length test se-
quence which can be used for conformance test of an EPD
(Electronic Programmable Device), which is supposed to
implement the SFC specification, by the transition tour
method (see Naito and Tsunoyama (1981)). This method
is a particular solution, for a graph which represents the
structure of a Mealy machine, of a well-known problem in
graph theory: the Chinese postman problem (see Mei-Ko
(1962) and Edmonds and Johnson (1973)). The general
formulation of this problem is the following: Find a min-
imum length closed walk that traverses each edge of the
graph at least once.

A graph which describes the structure (states and transi-
tions between states) of a Mealy machine is directed, but
not weighted, which simplifies the optimization problem.
In that case, it has been demonstrated (see previous ref-
erences) that the optimal solution is the minimum length
Eulerian cycle 4 , if the graph is Eulerian (every node has
equal in and out degrees). If the graph is non Eulerian (at
least one node has different in and out degrees), it must
be transformed into an Eulerian one. This transformation
consists in finding the shortest paths that connect in pairs
4 An Eulerian cycle is a sequence whose start and end nodes are the
same and that crosses only once each arc of the graph.

the nodes whose in and out degrees are different and
doubling these paths as many times as necessary.

Table 4 provides the test sequence built for the graph
obtained from the example of Figure 5. In this example,
the in degree is greater than the out degree for the nodes
which correspond to states s3 and s6 (the difference being
1 and 7 respectively), while the in degree is smaller than
the out degree for the nodes which correspond to states s1,
s4 and s5 (the difference being -2, -3 and -3 respectively).
Hence, the structure of this Mealy machine is described by
a non Eulerian graph. To obtain an Eulerian graph, arcs
are to be added, as explained below:

(1) The node that corresponds to state s6 is the node
which has the greater difference between in and out
degrees. The only solution to balance in an out
degrees is to double 7 times the arc labeled i4/o0 from
s6 to s1.

(2) Then, the node which has the greater difference be-
tween in and out degrees is the node that corresponds
to state s1. A possible solution to balance in an out
degrees is to double 5 times the arc labeled i2/o3 from
s1 to s3.

(3) Finally, nodes that correspond to states s3, s4 and
s5 are balanced by doubling 3 times the arc labeled
i5/o6 from s3 to s4 and 3 times the arc labeled i6/o5
from s3 to s5.

Thus, 18 arcs are added. In practice, doubling an arc
means crossing it several times. For example, the arcs
labeled i4/o0 from s6 to s1 and i2/o3 from s1 to s3 are
used respectively 8 and 5 times in the test sequence (Ta-
ble 4). Then, the minimum length test sequence obtained
starts from the initial state s1 and comprises 66 (48+18)
elementary tests.

Table 4. Test sequence of the Mealy machine
described in Fig. 5

Test step 1 2 3 4 5 6 7 8 9 10

Input i0 i7 i4 i3 i2 i1 i0 i5 i5 i4

Output o3 o3 o3 o3 o3 o3 o3 o6 o6 o6

11 12 13 14 15 16 17 18 19 20 21 22

i1 i0 i3 i7 i6 i5 i3 i2 i1 i0 i4 i7

o6 o6 o1 o1 o1 o1 o1 o1 o1 o1 o0 o0

23 24 25 26 27 28 29 30 31 32 33 34

i6 i5 i4 i2 i5 i7 i4 i2 i5 i6 i4 i2

o0 o0 o0 o3 o6 o1 o0 o3 o6 o1 o0 o3

35 36 37 38 39 40 41 42 43 44 45 46

i6 i6 i4 i2 i0 i3 i4 i2 i6 i7 i4 i2

o5 o5 o5 o5 o5 o1 o0 o3 o5 o1 o0 o3

47 48 49 50 51 52 53 54 55 56 57 58

i6 i5 i4 i2 i6 i1 i4 i1 i5 i2 i4 i3

o5 o1 o0 o3 o5 o1 o0 o3 o6 o1 o0 o4

59 60 61 62 63 64 65 66

i7 i6 i5 i3 i2 i1 i0 i4

o4 o4 o4 o4 o4 o4 o4 o0

This test sequence is used during the test as follows. The
input signals that are sent to the EPD to test are built
from the second line of table 4. The output signals issued
from the tested EPD are compared to the expected output
ones which are given by the third line of table 4. This
comparison allows detection of both transfer and output
errors, provided that a different set of outputs is associated

to each internal state of the EPD; it matters to underline
that the status function is no more necessary to detect
transfer errors if this condition is true.

6. CONCLUSION

This paper has shown how to construct, from a SFC speci-
fication, a minimum length test sequence to be used for ex-
haustive conformance test of EPDs. The main contribution
of this work is the definition of formal rules to translate a
SFC specification into a Mealy machine which represents
all evolutions of this specification. The minimum length
test sequence can be obtained then by the transition tour
method.

On going works focus on three complementary issues so as
to increase this contribution to dependability assessment
of EPDs:

• introduction of the EPD scanning cycle model for test
sequence generation;

• coupling to formal verification techniques so as to
check the assumption on internal state observation
through outputs values;

• extension of these results to more complex specifica-
tions, e.g. in the form of SFCs which include time
dependent elements.

REFERENCES

Brinksma, E., Alderden, R., Langerak, R., van de Lage-
maat, J., and Tretmans, J. (1990). A formal approach
to conformance testing. In J. de Meer, L. Mackert, and
W. Effelsberg, editors, Second International Workshop
on Protocol Test Systems, 349–363.

Broy, M., Jonsson, B., Katoen, J.P., Leucker, M., and
Pretschner, A. (eds.) (2005). Model-Based Testing of
Reactive Systems, Advanced Lectures, volume 3472 of
Lecture Notes in Computer Science. Springer.

Edmonds, J. and Johnson, E.L. (1973). Matching, Euler
tours and the Chinese postman. Mathematical Program-
ming, 5, 88–124.

IEC60848 (2002). GRAFCET specification language for
sequential function charts. 2. International Electrotech-
nical Commission.

Lee, D. and Yannakakis, M. (1996). Principles and meth-
ods of testing finite state machines - a survey. In
Proceedings of the IEEE, volume 84, 1090–1123.

Mei-Ko, K. (1962). Graphic programming using odd or
even points. Chinese Mathematics, 1, 273–277.

Naito, S. and Tsunoyama, M. (1981). Fault detection for
sequential machines by transitions tours. In Proceedings
of the IEEE Fault Tolerant Computer Symposium, 238–
243.

Roussel, J.M. and Lesage, J.J. (1996). Validation and
verification of grafcet using state machine. In Pro-
ceedings of IMACS-IEEE ”CESA’96”, 758–764. URL
http://hal.archives-ouvertes.fr/hal-00353188.

Tretmans, J. (2008). Model based testing with labelled
transition systems. In R.M. Hierons, J.P. Bowen, and
M. Harman (eds.), Formal Methods and Testing, vol-
ume 4949 of Lecture Notes in Computer Science, 1–38.
Springer.

