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Chapter 1

Two-fluid barotropic models for powder-snow
avalanche flows

Yannick Meyapin, Denys Dutykh and Marguerite Gisclon

Abstract In the present study we discuss several modeling issuesvwadgresnow

avalanche flows. We take a two-fluid modeling paradigm. Ferstike of simplic-
ity, we will restrict our attention to barotropic equationge begin the exposition
by a compressible model with two velocities for each fluidwdwer, this model
may become non-hyperbolic and thus, represents seriolismip@s for numerical
methods. To overcome these issues, we derive a single tetoodel as a result of
a relaxation process. This model can be easily shown to berhgfic for any rea-
sonable equation of state. Finally, an incompressibld lifthis model is derived.

1.1 Introduction

Snow avalanches represent a serious problem for societypimtain regions.
The avalanche winter of 1999 attracted a lot of attentiorhie hazardous natural
phenomenorﬂD.O]. Further development of mountain regiequires an adequate
level of avalanche safety. Therefore, avalanche proteadtigasures (deflecting and
catching dams) become increasingly importﬂwt [9]. Durlmggame winter, several
avalanches overran avalanche dams, underlining the neudttoer research in this
field. Proper design of protecting structures necessifatefound understanding
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of the snow avalanches flow and of the interaction proceds gdims and other
obstacles[j6] 13].

Natural snow avalanches are believed to consist of thréerelift layers: a dense
core, a fluidised layer and a suspension cloud. Sometimesutheunding powder
cloud is absent and we speak about an avalanche in the floagime. Obviously,
transition boundaries between these layers are not sharphanclassification is
rather conventional.

The dense core consists of snow particles in persistetibinil contact]. The
density is of the order of 300 kgfrand the depth of this layer does not exceed 3
m. The fluidised régime is characterized by particle’s mfraa-paths up to several
particle’s diameters. This dynamics at microscopic levgdl@ns more fluid-like
behaviour at large scales. The density of this layer is irrainge of 50 - 100 kg/rh
and the height is about 3 - 5 m. To model successfully this &irftbws it is crucial
to know the complex fluid rheology. Finally, these two intetayers can be covered
by the powder cloud which is a turbulent suspension of snatigbes in the air. The
density ranges from 4 to 20 kgfand an avalanche in aerosol régime can reach the
height of 100 m or moremr4]. This flow is driven essentiallytbgbulent advection
and particles collisions are unimportant.

In the present study we are concerned with some questionswdgr-snow
avalanche modelling. Since the interface cannot be defioethis type of flows,
we choose the modelling paradigm of two-phase flows. In this@ach the govern-
ing equations of each phase are spatially averaged to coméhughe description
of the fluid mixture [y [15].

It is known ] that the front of such an avalanche can dgvéie speetiu; ~
100 m/s. For comparison, the speed of socgieh the air is about 300 m/s. It means
that the local Mach number Ma can reach the value of

Ma = 2 ~0.33
Co

Hence, compressible effects may become important. Thatyswe begin our ex-
position with a compressible model. Then, we gradually $ifyjt to come up with
an incompressible one at the end of the present article. dakig achieved by
taking the limit as the Mach number tends to zero.

The present article is organized as follows. In Sec@h Edresent a barotropic
compressible two-phase model with two velocities. Thes,itiodel is simplified in
Sectio using a velocity relaxation process. The inaesgble limit of resulting
system is derived in Secti.4. Finally, several conolusiand perspectives are
drawn out in Sectiofi 1.5.

1 When we estimate the Mach number magnitude, the particlmcteaistic velocity should be
taken. However, this information is not easily accessiblé \&e took the maximum front velocity.
It can lead to some overestimation of the Mach number.



1 Two-fluid models for powder-snow avalanche flows 3

1.2 Two-phase flow modelling

Let us consider a domai? C R3 where a simultaneous flow of two barotropic
fluids occurs. All quantities related to the heavy and lightd$ will be denoted
by + and — correspondingly. In view of application to snow avalanche®e can
consider the heavy fluid of being constituted of snow paetieind the light fluid is
the air. When the mixing process is extremely complicatedliiis impossible to
follow the interface between two fluids, the classical mtidgbrocedure consists in
applying a volume average operaﬂrﬂ, 15]. Thereby, we rapgear two additional
variablesa®(x,t), x € Q which are called the volume fractions and defined as:

40|

+ t) = I |

a=(x0) \ds!2r|TlO [dQ| ’
dQ

the heavy fluid occupies voluntkQ ™ C dQ and the light one the volumdQ ~ C
dQ (see Figurd 1}1) such that

dQ| = [dQ |+ |dQ . (1.1)

From the relation[(1} 1) it is obvious that" (x,t) + a~(x,t) = 1,¥x € Q.
After performing the averaging process, one obtains twaggus of mass and
momentum conservation:

a(a*p*)+0-(a*p*u™) =0, (1.2)
d(atprut)+0-(a*prut@ut)+a*Op=0-(a*1")+a prg, (1.3)
wherep®(x,t),u®(x,t), 75(x,t) are densities, velocities and viscous stress tensors

of each fluid respectively. Traditionally, the vectpdenotes the gravity accelera-

tion. We assume that both fluids share the same présgurg™ (p*) and equations
of state of each phase fulfill minimal thermodynamical regpunents:

Fig. 1.1 An elementary fluid volumeQ occupied by two phases.

2 |In general, this kind of assumptions is reasonable, siresation processes will tend to equili-
brate the system when time evolves.
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op*(p*)
+0nt +
(p™) >0, (”T>O, for p=>0. 1.4)
In order to obtain a well-posed problem, governing equatiin), {1.8) should be
completed by appropriate initial and boundary conditions.

If we assume both fluids to be Newtonian, the viscous stresote™ takes the
following classical form:

= 2AFtrD(Ud) +2u D), trDu*)=0-u*, (1.5)

: : . 1 :
wherel := (&))1<i j<3 is the identity tensorD(u) := E(Dui +t(Dui)) is the
deformation rate andi*, u* are viscosity coefficients. For ideal gases, for example,
these coefficients are related by Stokes relafiér- %ui = 0. In application to

powder-snow avalanches, viscosity coefficietits u* should be understood in the
sense of eddy viscosity.

Remark 1. From physical point of view, presented here mo@ (l)G:B.far from
being complete. For example, one could supplement it byllaapj effects in the
Korteweg form. Also we omited all the terms which model massementum and
energy exchange between two phases. Generally, their ®eimdangly dependent
on the physical situation under consideration.

Remark 2. Since we do not consider the total energy conservation exuahe flu-
ids are implicitly assumed to be barotropic. In the absericgsoous stresses”,
the flow is isentropic. This simplification can be adoptedvided that important
energy transfers do not occur. Non-isentropic flows areidensd in ].

Remark 3. While considering two-phase flows, it is useful to introdseegeral addi-
tional quantities which play an important role in the dgston of such flows. The
mixture densityp and mass fractionsr™ are naturally defined as:

p(xt):=atpT+a p >0, V(x,t)eQx[0,T],

atpt
rr]fE = p s m+ +m = 1.
P
The total density is assumed to be strictly positive everywhere in the dondin
Hence, the void creation is forbidden in our modeling.
Important quantitie®, m* will appear several times below.

In principle, one could use equatiol.m(l.S) to modelous two-phase
flows. However, this system remains quite expensive forelatale simulations
required by real-life applications. The major difficultyroes from the advection
operator associated to modgl {1.4),(1.3) which can be rypestvolic [3,[ZF]. In
the next section we will derive a simplified two-fluid modeliatnis proposed as a
candidate for powder-snow avalanche compressible simonkat
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1.3 Velocity relaxation

We would like to reduce the number of variables in the sysfem)( (1.B). The
main idea is to introduce the common velocity field for botlagds. For this pur-
pose, we will introduce a relaxation term to the momenturrseovation equation

E€:

d(a*prud)+0- (afptuFout)+atlp= D-(airi)+aipigig(u+—u*),
(1.6)

wherek = O(1) is a constant and is a small parameter which controls the mag-
nitude of the relaxation term. Physically this additioreaht represents the friction
between two phases. In the following, we are going to takesthgular limit as
the relaxation parameter— 0. This is achieved with Chapman-Enskog type ex-
pansion. In this way, we constrain velocitigs(x,t) to tend to the common value
u(x,t). This technigue has been already successfully appliecet®#er-Nunziato
model [3] in [12].

The first step consists in rewriting the governing equati@), ) in the
quasilinear form. To shorten notations, we will also usentfagerial time derivative
which is classically defined for any smooth scalar functigr,t) as

d*¢ .99
dt = ot
Lemma 1. Smooth solutions to equations (1.2), (fL.6) satisfy the following system:

+ut-0¢.

di d:i:a:i:
a* dt_p P )P g AP (e)? 0 ut =0, (1.7)
diui K
atpt—g—+a*Op=0-(a*t")+a pigx _(u —u7),  (1.8)

where (cf)?:= Z—Sz . represents the sound speed in each phase +.

S
Proof. This result follows from direct calculations. First of alle remark that the
mass conservation equati1.2) can be rewritten usingnéterial derivative as

follows:

d* (ap*)
dt

Using equations of state= p*(p*), we can express the density material derivative
in terms of the pressure and the sound speed:

+a*ptO-uf=o0. (1.9)

dipi 1 dip

dt  (c)? dt

Now, it is straightforward to derive equation (1.7) fropndL.
Finally, if we multiply equation9) bw* and subtract it from the momentum
conservation equatiofi (1.6), we will get desired reuB)1.
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Equations 7),@.8) can be also recast in the matrix fotithvis particularly
useful for further developments:
oV, R(V.
A(Vs)a—ta—FB(Vg)DVs - DT(V£)+S(V5)+ (86), (110)
where we introduced several notations. The vedorepresents four unknown
physical variable®/; :=t(p,a™,u*,u”) andaﬁ—\{f =Yap,dat,qut,qu") and
Ve :="(Op, Oa ™, (-O)ut, (-0)u~). MatricesA(Ve) andB(V;) are defined as

at pt(cd)? 0 0
_|la —p(c)? O 0
AlVe) =1 0 atptl 0 |
0 0 0 apl
atut ptehut atpt(c)d 0
au —p (cs)2u 0 a p(cs)?
Bve) = | @ 1) P (Os) atptut po(s>
0 al 0 a - p u-

In these matrix notations the size of zero entries must beerhto make the multi-
plication operation possible.

On the right hand side of (1]L0), the work of viscous forcegeisoted by symbol
O-T(Ve):=%0,0,0-1t%,0-17). The source terr8(V;) :='(0,0,a*ptg,a " p~g)
incorporates the gravity force am{V;) :=(0,0,k (u™ —u~),—k(u* —u~)) con-
tains the relaxation terms.

Since we expect the limi¥; — V to be finite ass — 0, necessary the limiting
vectorV lies in the hypersurfade(V) = 0. In terms of physical variables, it implies
ut =u~. Consequently, we find our solution in the form of the follagiChapman-
Enskog type expansion:

Ve =V +eW +O(£?).

After substituting this expansion intp (1]10) and takingiaccount thaR(V) = 0,
at the leading order ia one obtains:

A(V)Z—\t/ +BWV)OV =0-T(V)+S(V) + R (V)W, (1.11)
where
00 0 O
, . |00 0o ©
R(V):= 00 kI —«kli
00—kl kIl

Henceforth, we make a technical assumption of the presefioetio phases in
any pointx € Q of the flow domain. Mathematically it means thakOa*+ < 1.
Sincea™ + a~ = 1, the same inequality holds far~. Otherwise, the relaxation
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process physically does not make sense and we will have s@tieematical tech-
nical difficulties.

Under the aforementioned assumption, the makiiY) is invertible. Hence, we
can multiply on the left both sides df (1]11) BA~1(V) where the projection matrix
P is to be specified below:

ov

P+ PA~Y(V)B(V)DV = PA~Y(V)O-T(V) + PR (V)W + PAY(V)S(V),

i (1.12)
whereR'(V) := A~1(V)R/(V) and has the following components
00 0 0
00 0 0
5/ . K K
Rv)=|o00 a+p+| ~ oo
00——— X
ap- ap-

The vector of physical variablég has four (in 1D) componentgp,a™,u,u)
and only three are different. In order to remove the redutiddéormation, we will
introduce the new vectas defined ad) :=!(p,a™*,u). The Jacobian matrix of this
transformation can be easily computed:

100
j._9v_|o010
~9u |00l

00l

In new variables equatiofi (1]12) becomes:

PJ[;—LtJ +PA{(U)B(U)JIOU = PA"1U)O-T(U) + PR'(U)W + PA"1(U)S(U).
(1.13)

Now we can formulate two conditions to construct the ma®ikirst of all, the
vectorW is unknown and we need to remove it from equatipn (1.13). Hene
requirePIi’(V) = 0. Then, we would like the governing equations to be expyicit
resolved with respect to time derivatives. It gives us theoed conditionPJ = 1.
The existence and effective construction of the ma®isatisfying two aforemen-
tioned conditions

PR(V)=0, PJ=I,

are discussed below. Presented in this section resultsvatl great Iines@Z].

We will consider a slightly more general setting. Let vedtfoe R" and its re-
duced counterpat € R" X, k < n. In such geometryR'(V) € Mathn(R), J €
Mat, n_k(R) and, consequentl, € Mat,_ n(R). Here, the notation May(R) de-
notes the set ah x n matrices with coefficients iiR. We have to say also that from
algebraic point of view, matricd%’(v) andR’(V) are completely equivalent. Thus,
for simplicity, in the following propositions we will reasdan terms ofR’(V).
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Lemma 2. The columns of the Jacobian matrix J form a basis of ker(R'(V)).

Proof. If we differentiate the relatiorR(V) = O with respect tdJ, we will get

the identityR’(V)J = 0. It implies that rangg)) C ker(R'(V)). By direct com-
putation one verifies that dimran@®(V)) = k. From the well-known identity
ranggR’(V)) @ ker(R'(V)) = R", one concludes that dimkg®’(V)) = n—k. But

in the same time, the rank dfis equal ton — k as well. It proves the result.

Theorem 1.We suppose that for all V, ranggR’(V)) nker(R'(V)) = {0} then it
existsamatrix P € Mat,_ n(R) such that PR'(V) = 0and PJ = I, .

Proof. Hypothesis rang@R’(V)) Nker(R'(V)) = {0} implies that rangeR’(V)) &
ker(R'(V)) = R". From LemmdR it follows that rang@) = ker(R'(V)). Thus,
the spaceR" can be also represented as a direct sum reRig¥)) & ranggJ).
We will defineP to be the projection on kéR’(V)) = ranggJ). Since obviously
R'(V) e ranggR’(V)) andJ € ranggJ), we have two required identitieBJ = I ,_
andPR(V) =0.

Now, in order to compute effectively the projection matfixwe will construct
an auxiliary matrixD(V) = [3%,...,3" % 11, ... 1X], whereJ' is the columri of the
matrixJ and{11,...,1¥} are vectors which form a basis of rarf&é(V)). We remark
thatPD(V) = [In_,0]. Lemma[p implies that the matrR(V) is invertible. Thus,
the projectiorP can be computed by invertirng(V):

P=[Ihk0]-D7L(V).

Let us apply this general framework to our model (1..12), wimer: 4 andk = 1.
The matrixD(V) and its invers® (V) take this form:

D(V)=|o00l C(Jr—p+| , D'V)=[00 m'l m-1 ,
+ +
00|_L| OOmmpI—mmpI
a—p- K

wherem are mass fractions defined in Remfrk 3.
Now, the projection matri® can be immediately computed:

10 0 O
P=(01 0 0 |.
o0omtl mI

Finally, after computing all matrix produc®A~1(U)B(U)J, PA~Y(U)O-T(U),
PA-1(U)S(U) present in equation (1]13), we obtain the desired singlecitgl
model:
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Ip

E—Fu-Dp—i—pcﬁD-u:O, (1.14)
da* P
TJru-Da +o07a"é0-u=0, (1.15)
Jdu
pﬁ+p(u-D)u:pg+D-T, (1.16)

wherep = a*p* 4 a~p~ is the mixture density ancf is the sound velocity in the
mixture which is determined by this formula:

prp(cd)?(cs)?

2= ,
P = i)+ arp ()2
andJd is given by
5. PE)-p(e)?
Tap)rate ()2

Finally, 7 := A trD(u)l + 2uD(u) is the viscous stress tensor of the mixture. Vis-
cosity coefficientd\, u are naturally defined as

A=a" AT +a A", p=atut+a pu.

Equations[(1.14) {(1.16) can be recast in the conservaiive Which is more
convenient for numerical computations and theoreticalaig To achieve this pur-
pose, we replace the pressyra () byp® using the equation of state:

dp~ L PG
—— +4u-0 S J-u=0.
ot TUP T
The last equation is multiplied by*, the second equati015) is multiplied by
p* and we sum them to come up with two mass conservation eqsafioans-
formation of the momentum conservation equati@l.lG)rtsi@tforward. The
resulting conservative system takes this form:

a(a*p*)+0-(a*p*u) =0, (1.17)
g(pu)+0-(pueu)+Op=0-1+pg. (1.18)

These equations represent a barotropic version of thedquations model pro-
posed in [1[B].

It can be shown that the advection operator of the model]{1([L7LY) is hy-
perbolic for any reasonable equation of st (1.4). Mozedhis system contains
fewer variables which allow more efficient computationauieed in practice.
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1.4 Incompressible limit

The main scope of this paper is certainly around compressia-fluid models.
However, we decided to derive an incompressible limit ofdimgle velocity model
(L.17), (1.1B) for the case when acoustic effects shouldteed out. The presence
of acoustic waves represent, for example, a major resnidtr the time step, if an
explicit scheme is used.

For the sake of simplicity, we will neglect dissipative &ffewhich do not af-
fect the acoustic wave propagation. Thus, in this sectioravesider the following
system of equations:

a(a*p*)+0-(a*pFu) =0, (1.19)
péu—+p(u-0O)u+Op=pg. (1.20)
(1.21)

For convenience, we rewrite equatign (3.18) in noncongisevéorm.

In order to estimate the relative importance of various gemre introduce dimen-
sionless variables. The characteristic length, time, aldcity scales are denoted
by ¢, to andUq respectively. For examplé,may be chosen as the diameter of the
fluid domainQ, tg is the biggest vortex turnover time aby is the typical flow ve-
locity. The density and the sound velocity scales are chtusba those of the heavy
fluid, i.e. p; andcf, correspondingly. Since we are interested in acoustic sffec
the natural pressure scale is givendgy(c)?. If we summarize these remarks, de-
pendent and independent dimensionless variables (dewdtedrimes) are defined
as:

/. X . t /. u :t)/ . pi

p
= T pl:_
P

P (cge)?

Remark 4. There is nothing to do for the volume fractioa$, since this quantity is
dimensionless by definition.

After dropping the tildes, nondimensional system of equraliecomes:
Sta(a*p*)+0-(a*p*u) =0, (1.22)

1 1
St -0 ——Op=— 1.23
pau-+p(u-Oju+ a2 2P = g2PY (1.23)

where several scaling parameters have appeared:

14 . .
e Strouhal number St= O In this study we will assume the Strouhal number
olo

to be equal to one, i.¢g = —.
Uo
U . L
e Mach number Ma= C—f which measures the relative importance of the flow

0
speed and the sound sBeed in the medium.
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U N _ .
e Froude number Fe —Oé compares inertia and gravitational force. This param-
eter will not play an important réle in the present study.

All physical variablesa™, p*, p andu are expanded in formal series in powers of
the Mach number:

¢:¢0+Ma¢l+Ma2¢2+---7 ¢ E{aivpi7p7u}' (124)
Formal expansio4) is then substituted into the sysfea®), [1.2B). At the

orders Ma 2 and Ma 1, we obtain
Upo=0p1=0.

In other wordspp = po(t) andps = pi(t) are only functions of time. At the order
Ma® we get the following system of equations:

a(agpy)+0- (a5 pguo) =0, (1.25)

1
PodkUo + Po(Uo - D)ug+ L= 2P0 (1.26)
(1.27)

where byrr we denoteps.
Using the same asymptotic expansipn (lL.24), one can shavattibe leading
order we keep usual relations between densities and voltangdns:

ag +05 =1, po=0ag Py +0g ;- (1.28)
In order to investigate the behaviourpjf, we will invert the equation of state
p* =p*(p) = (p*)~1(p) and expand it in powers of Ma:
azpi
op?

a +
pl-i-l\/laz(ﬁLp

a +
p*()=p*(po) + Ma -

p?) +O(Ma’)
Po

p2+

Po Po

On the other hand, fronj (1]24) we know that
p* = pg +Map;i: +Ma%py +...

Matching these expansions at two lowest orders showmﬁfpare functions only
of the time variable: '

Py =P (Po(t) =15(1), pr =7~ o= ).
Po

Itis possible to show thajgfl are just constants. Consider the Gibbs relation which
reads '

3 The functionp = p*(p*) is invertible since it is a strictly increasing functi%ﬁ]}pﬂi >0.
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Tds* = de* (pi)zdpi.

Since we consider isentropic flondst = 0 and, consequently, the Gibbs relation
takes a much simpler form:

det = P dp*. 1.29

It can be shown by considering the total energy conservaration ], that
the internal energg* naturally scales withJ2. After dividing (1.29) bydt and
switching to dimensionless variables, equat 1.2%gdke following form (after
droping the primes):

de" __p dp*

dt  Ma?(p*)2 dt
Expandinge® in the series4) and looking at two leading terms, lead$é¢

desired result:

d:i:
%:o = pgy = const

The incompressibility conditionl - ug = 0 is obtained by summing up mass conser-

vation equationd (1.25) and taking into account relatjoBg}1

If we summarize all developments made above and switch lmadkensional
variables, the resulting incompressible system will beeom

da*+Oa*-u=0, (1.30)
O-u=0, (1.31)
pou+p(u-Oyu+0Omr=pg+0-T1, (1.32)

where we dropped the index 0 and added again dissipativetgfféiscous stress
tensorr is still defined by expressio.5), as in compressible.dagbis case, we

can speak about two-fluid Navier-Stokes equations. Thiesysf equatioO)
— (..32) is much easier to solve numerically than its comgibés analogug (1.17),
(L.18). In particular, this simplification is due to remoatiffness of acoustic waves.

1.5 Conclusions and perspectives

In this study we presented several barotropic two-fluid nexdéich can be used
for numerical simulation of powder-snow avalanche flowse @hthe main objec-
tives of this paper was to reveal the connection betweentiogrio models with
single and two velocities. The extension to more generaldlis in progresml].

Our exposition began with compressible two-phase m) ,(@) possessing
two velocity variables. Then, using a relaxation procegscenstrained the system
to have a common velocity for both phases. Mathematicallyasg achieved with a
Chapman-Enskog type expansion. Resulting mddel|(1.L2)8)1s hyperbolic for
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any reasonable equation of std@(lA). Finally, two-fluaidr-Stokes equations
1.30) — LEP) were derived as an incompressible limit efgimgle velocity model
1.17), (1.1B).

Hence, we presented three different two-fluid models whiehralated by for-
mal derivation procedures. Simplifications made abovegsmt a good trade-off
between accuracy and computational complexity. The finaloehshould be made
after determining the flow régime and main goals of the satioih.

We did not incorporate yet any turbulence modeling. In thislg we were fo-
cused essentially on the advection operators. Howevemphvious that the physical
flow under consideration is fully turbulent in its aerosoitp[@]. As the first phys-
ical approximation, turbulence effects can be taken intwant by adding eddy
viscosity terms and, thus, by modifying the viscous streasdrt. It will be done
in future studies.
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