
HAL Id: hal-00394434
https://hal.science/hal-00394434v1

Submitted on 11 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sequencing and counting with the multicost-regular
constraint

Julien Menana, Sophie Demassey

To cite this version:
Julien Menana, Sophie Demassey. Sequencing and counting with the multicost-regular constraint. 6th
international conference Integration of AI and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems (CPAIOR’09), May 2009, United States. pp.178-192, �10.1007/978-
3-642-01929-6_3�. �hal-00394434�

https://hal.science/hal-00394434v1
https://hal.archives-ouvertes.fr

Sequencing and Counting with the

multicost-regular Constraint

Julien Menana and Sophie Demassey

École des Mines de Nantes, LINA CNRS UMR 6241, F-44307 Nantes, France.
{julien.menana,sophie.demassey}@emn.fr

Abstract. This paper introduces a global constraint encapsulating a
regular constraint together with several cumulative costs. It is moti-
vated in the context of personnel scheduling problems, where a schedule
meets patterns and occurrence requirements which are intricately bound.
The optimization problem underlying the multicost-regular constraint
is NP-hard but it admits an efficient Lagrangian relaxation. Hence, we
propose a filtering based on this relaxation. The expressiveness and the
efficiency of this new constraint is experimented on personnel scheduling
benchmark instances with standard work regulations. The comparative
empirical results show how multicost-regular can significantly out-
perform a decomposed model with regular and global-cardinality

constraints.

1 Introduction

Many combinatorial decision problems involve the simultaneous action of se-
quencing and counting objects, especially in the large class of routing and schedul-
ing problems. In routing, a vehicle visits a sequence of locations following a path
in the road network according to some numerical requirements on the whole
travelling distance, the time spent, or the vehicle capacity. If only one numer-
ical attribute is specified, finding a route is to solve a shortest/longest path
problem. For several attributes, the problem – a Resource Constrained Short-
est/Longest Path Problem (RCSPP) – becomes NP-hard. All these numerical
requirements may drastically restrict the set of paths in the network which cor-
respond to the actual valid routes. Hence, it is much more efficient to take these
requirements into account throughout the search of a path, rather than each sep-
arately. Personnel scheduling problems can be treated analogously. Planning a
worker schedule is to sequence activities (or shifts) over a time horizon according
to many various work regulations, as for example: “a working night is followed
by a free morning”, “a night shift costs twice as musch as a day shift”, “at least
10 days off a month”, etc. Hence, a schedule meets both structural requirements
– defined as allowed patterns of activities – and numerical requirements – de-
fined as assignment costs or counters – which are intricately bounds. Modelling
these requirements individually is itself a hard task, for which the expressiveness
and the flexibility of Constraint Programming (CP) is recognized. Modelling
these requirements efficiently is still a harder task as it means to aggregate all

of them in order to process this set of tied requirements as a whole. By intro-
ducing the regular global constraint, Pesant [1] has proposed an elegant and
efficient way to model and to enforce all the pattern requirements together. The
allowed patterns are gathered in an acyclic digraph whose paths coincide with
the valid sequences of activities. This approach was later extended to optimiza-
tion constraints soft-regular [2] and cost-regular [3] for enforcing bounds
on the global cost – a violation cost or any financial cost – of the sequence of
assignments. The underlying problem is now to compute shortest and longest
paths in the acyclic graph of patterns. The cost-regular constraint was success-
fully applied to solve real-world personnel scheduling problems under a CP-based
column-generation approach [3]. Nevertheless, the authors complained about the
weak interaction in their CP model between the cost-regular constraint and
an external global-cardinality used for modelling occurrence requirements.
Actually, with such a decomposition, the support graph of cost-regular main-
tains many paths which do not satisfy the cardinality constraints. In this pa-
per, we still generalize this approach for handling several cost attributes within
one global constraint multicost-regular. Such a constraint allows to reason
simultaneously on the sequencing and counting requirements occurring in per-
sonnel scheduling problems. As mentioned above, the underlying optimization
problem is a RCSPP and it remains NP-hard even when the graph is acyclic.
Hence, the filtering algorithm we present achieves a relaxed level of consistency.
It is based on the Lagrangian relaxation of the RCSPP following the principle
by Sellmann [4] for Lagrangian relaxation-based filtering. Our implementation
of multicost-regular is available in the distribution of the open-source CP
solver CHOCO 1.

The paper is organized as follows. In Section 2, we present the class of
regular constraints and provide a theoretical comparison between the path-
finding approach of Pesant [1] and the decomposition-based approach of Beldi-
ceanu et al. [5]. We introduce then the new constraint multicost-regular. In
Section 3, we introduce the Lagrangian relaxation-based filtering algorithm. In
Section 4, we describe a variety of standard work regulations and investigate a
systematic way of building one instance of multicost-regular from a set of re-
quirements. In Section 5, comparative empirical results on benchmark instances
of personnel scheduling problems are given. They show how multicost-regular

can significantly outperform a decomposed model with regular and global-

cardinality constraints.

2 Regular Language Membership Constraints

In this section, we recall the definition of the regular constraint and report
on related work, before introducing multicost-regular. First, we recall basic
notions of automata theory and introduce notations used throughout this paper:

We consider a non empty set Σ called the alphabet. Elements of Σ are called
symbols, sequences of symbols are called words, and sets of words are called

1 http://choco.emn.fr/

languages over Σ. An automaton Π is a directed multigraph (Q, ∆) whose arcs
are labelled by the symbols of an alphabet Σ, and where two non-empty subsets
of vertices I and A are distinguished. The set Q of vertices is called the set of
states of Π, I is the set of initial states, and A is the set of accepting states.
The non-empty set ∆ ⊆ Q×Σ×Q of arcs is called the set of transitions of Π.
A word in Σ is said to be accepted by Π if it is the sequence of the arc labels
of a path from an initial state to an accepting state in Π. Automaton Π is a
deterministic finite automaton (DFA) if ∆ is finite and if it has only one initial
state (I = {s}) and no two transitions sharing the same initial extremity and
the same label. The language accepted by a FA is a regular language.

2.1 Path-Finding and Decomposition: Two Approaches for regular

The regular language membership constraint was introduced by Pesant in [1].
Given a sequence X = (x1, x2, ..., xn) of finite domain variables and a deter-
ministic finite automaton Π = (Q, Σ, ∆, {s}, A), the constraint regular(X, Π)
holds iff X is a word of length n over Σ accepted by DFA Π. By definition, the
solutions of regular(X, Π) are in one-to-one correspondance with the paths of
exactly n arcs connecting s to a vertex in A in the directed multigraph Π. Let
δi ∈ ∆ denote the set of transitions that appears as the i-th arc of such a path,
then a value for xi is consistent iff δi contains a transition labelled by this value.

Coincidently, Pesant [1] and Beldiceanu et al [5] introduce two orthogonal
approaches to achieve GAC on regular (see Figure 1). The approach proposed
by Pesant [1] is to unfold Π as an acyclic DFA Πn which accepts only the words
of length n. By construction, Πn is a layered multigraph with state s in layer 0
(the source), the accepting states A in layer n (the sinks), and where the set of
arcs in any layer i coincides with δi. A breadth-first search allows to maintain the
coherence between Πn and the variable domains by pruning the arcs in δi whose
labels are not in the domain of xi, then by pruning the vertices and arcs which
are not connected to a source and to a sink. In Beldiceanu et al [5], a regular

is decomposed as n tuple constraints for modelling the sets δ1, δ2, . . . , δn. The
decomposition introduces state variables q0 ∈ {s}, q1, . . . , qn−1 ∈ Q, qn ∈ A

and uses triplet relations defined in extension to enforce GAC on the transition
constraints (qi−1, xi, qi) ∈ δi. Such a constraint network being Berge-acyclic,
enforcing AC on the decomposition achieves GAC on regular.

In the first approach, a specialized algorithm is defined to maintain all the
support paths, while in the second approach, the transitions are modeled with
tuple constraints which are directly propagated by the CP solver. The two ap-
proaches are orthogonal. Actually, the second model may mimic the specialized
algorithm depending on the chosen propagation.

If we assume w.l.o.g. that Σ is the union of the variable domains, then the
initial run of Pesant’s algorithm for the construction of Πn is performed in
O(n|∆|) time and space (with ∆ ≤ |Q||Σ| if Π is a DFA). Incremental filtering
is performed with the same worst-case complexity with a forward/backward
traversal of Πn. Actually, the complexity of the algorithm relies more on the size
|∆n| of the unfolded automaton Πn rather than on the size |∆| of the specified

a

1s

b

b

a

unfolded automaton:

a

s
a

a

b

b

s s

111 1

s

b

b
b

a
s

a
decomposed model:

(q0, x1, q1) ∈ {(s, a, s), (s, b, 1)},
(q1, x2, q2) ∈ {(s, a, s), (1, a, 1)},
(q2, x3, q3) ∈ {(s, a, s), (1, b, s),//////////////////////(s, b, 1), (1, a, 1)},
(q3, x4, q4) ∈ {(s, b, 1),//////////(1, b, s)}.

Fig. 1. Consider the DFA depicted above applied to X ∈ {a, b}×{a}×{a, b}×{b}. The
unfolded automaton of regular is depicted on the left and the decomposed model on
the right. The dashed transitions are discarded in both models.

automaton Π. Note for instance that when the specified automaton Π accepts
only words of length n then it is already unfolded (Π = Πn) and the first run of
the algorithm is in O(|∆|). In practice, as in our experiments (Section 5), Πn can
even be much smaller than Π, meaning that many accepting states in Π cannot
be reached in exactly n transitions. The incremental filtering is performed in
O(|∆n|) time with, in such a case, |∆n| ≪ n|∆|.

regular is a very expressive constraint. It is useful to model pattern con-
straints arising in many planning problems, but also to reformulate other global
constraints [5] or to model tuples defined in extension. An other application of
regular is to model a sliding constraint: recently, Bessière et al. [6] have in-
troduced the slide meta constraint. In its more general form, slide takes as
arguments a matrix of variables Y of size n × p and a constraint C of arity pk

with k ≤ n. slide(Y,C) holds if and only of C(y1
i+1, . . . , y

p
i+1, . . . , y

1
i+k, . . . , y

p
i+k)

holds for 0 ≤ i ≤ n−k. Using the decomposition proposed in [5], regular(X, Π)
can be reformulated as slide([Q, X], C∆), where Q is the sequence of state vari-
ables and C∆ is the transition constraint C∆(q, x, q′, x′) ≡ (q, x, q′) ∈ ∆. Con-
versely [6], a slide constraint can be reformulated as a regular but it may
require to enumerate all valid tuples for C. This reformulation can however be
useful in the context of planning (especially for car sequencing) to model a sliding
cardinality constraint also known as sequence. Even if powerful specialized al-
gorithms exist for this constraint (see e.g. [7]), the automaton resulting from the
reformulation can be integrated with other pattern requirements as we will show
in Section 4. Finally, one should notice the work (see e.g. [8]) related to context-
free grammar constraints. Though, most of the rules encountered in personnel
scheduling can be described using regular languages.

2.2 Maintaining Patterns with Cumulative Costs and Cardinalities

Personnel scheduling problems are usually defined as optimization problems.
Most often, the criterion to optimize is a cumulative cost, i.e. the sum of costs
associated to each assignment of a worker to a given activity at a given time.

Such a cost has several meanings: it can model a financial cost, a preference, or
a value occurrence. Now, designing a valid schedule for one worker is to enforce
the sequence of assignments to comply with a given pattern while ensuring that
the total cost of the assignments is bounded. This can be specified by means of a
cost-regular constraint [3]. Given c = (cia)i∈[1..n]×a∈Σ a matrix of real assign-
ment costs and z ∈ [z, z] a bounded variable (z, z ∈ R), cost-regular(X, z,Π, c)
holds iff regular(X, Π) holds and

∑n

i=1 cixi
= z. Note that it has the knapsack

constraint [9] as a special case and that, unless P = NP , one can enforce GAC
on a knapsack constraint at best in pseudo-polynomial time, i.e. the run time is
polynomial in the values of the bounds of z. As a consequence, enforcing GAC
on cost-regular is NP-hard.

The definition of cost-regular reveals a natural decomposition as a regular
constraint channeled to a knapsack constraint. Actually, it is equivalent to the
decomposition proposed by Beldiceanu et al. [5] when dealing with one cumu-
lative2 cost: cost variables ki are now associated to the previous state variables
qi, with k0 = 0 and kn = z, and several arithmetic and element constraints
model the knapsack and channeling constraints. In short, this formulation
can be rewritten as slide([Q, X, K], Cc

∆), with Cc
∆(qi−1, xi−1, ki−1, qi, xi, ki) ≡

(qi−1, xi−1, qi) ∈ ∆∧ki = ki−1+cixi
. Depending on the size of the domains of the

cost variables, GAC can be enforced on knapsack in reasonable time. However,
even in this case, since the constraint hypergraph of the decomposed model is
no longer Berge-acyclic but α-acyclic, one has to enforce pairwise-consistency on
the shared variables – a pair (qi, ki) of state and cost variables – of the transition
constraints in order to achieve GAC. A similar option proposed for slide [6] is
to enforce AC on the dual encoding of the hypergraph of the Cc

∆ constraints,
but again it requires to explicit all the support tuples and then, it may be of no
practical use.

The filtering algorithm presented in [3] for cost-regular is a slight adap-
tation3 of Pesant’s algorithm for regular. It is based on the computation of
shortest and longest paths in the unfolded graph Πn valued by the transition
costs. To each vertex (i, q) in any layer i of Πn are associated two bounded cost
variables k−

iq and k+
iq modelling the lengths of the paths respectively from layer 0

to (i, q) and from (i, q) to layer n. The cost variables can trivially be initialized
during the construction of Πn: k−

iq in the forward phase and k+
iq in the backward

phase. The bounds of variable z are then pruned according to the condition
z ⊆ k+

0s. Conversely, an arc ((i − 1, q), a, (i, q′)) ∈ δi can be removed whenever:

k−

(i−1)q + cia + k+
iq′ > z or k−

(i−1)q + cia + k+
iq′ > z.

As graph Πn is acyclic, maintaining the cost variables, i.e. shortest and longest
paths, can be performed by breadth-first traversal with the same time complexity
O(|∆n|) than for maintaining the connexity of the graph in regular.

2 The model in [5] can deal not only with sum but also with various arithmetic func-
tions on costs, but no example of use is provided.

3 Previously, the algorithm was partially – for minimization only – applied to the
special case soft-regular[hamming] in [5] and in [2].

As said before, this algorithm achieves a hybrid level of consistency on
cost-regular. As a matter of fact, it enforces a sort of pairwise-consistency on
the decomposed model between each state variable and the bounds of the asso-
ciated cost variable, according to the relation qi = (i, q) ⇐⇒ ki = k−

iq. Hence, it
dominates the decomposed model knapsack∧regular when only Bound Consis-
tency is enforced on the cost variables. Otherwise, if AC is enforced on knapsack

then the two approaches are incomparable as show the two examples depicted
in Figures 2 and 3.

3s

1

2

a [1]

b [0]

a [1]

[0,1]
b [0]

x1 ∈ {//a, b}, x2 ∈ {//a, b}, z ∈ [0, 1].

(q0, x1, q1, j1) ∈ {(s, a, 1, 1), (s, b, 2, 2)},
element(k1, j1, (k0 + 1, k0)),
(q1, x2, q2, j2) ∈ {(1, a, 3, 1), (2, b, 3, 2)},
element(z, j2, (k1 + 1, k1)),
q0 ∈ {s}, q1 ∈ {1, 2}, q2 ∈ {3},
k0 ∈ {0}, k1 ∈ {0, 1},
x1 ∈ {a, b}, x2 ∈ {a, b}, z ∈ {0, 1}.

Fig. 2. Consider the depicted DFA with costs in brackets applied to X = (x1, x2) ∈
{a, b} × {a, b} and z ∈ [0, 1]. The cost-regular algorithm (on the left) discards the
dashed transitions and hence achieves GAC. The decomposed model (on the right) is
arc-consistent but not globally consistent.

s [2,2]

a [0]

b [2]
b [2]

c [1]

a [0]

21

x1 ∈ {a, b, c}, x2 ∈ {a, b}, z ∈ [2, 2].

(x1, j1) ∈ {(a, 1),///////(c, 2), (b, 3)},
element(k1, j1, (k0,/////////k0 + 1, k0 + 2)),
(x2, j2) ∈ {(a, 1), (b, 2)},
element(z, j2, (k1, k1 + 2)),
k0 ∈ {0}, k1 ∈ {0,//1, 2},
x1 ∈ {a, b,/c}, x2 ∈ {a, b}, z ∈ {2}.

Fig. 3. Consider now the depicted DFA applied to X = (x1, x2) ∈ {a, b, c} × {a, b}
and z ∈ [2, 2]. Enforcing AC on the decomposed model (on the right) achieves GAC.
The cost-regular algorithm (on the left) does not achieve GAC since the minimum and
maximum paths traversing arc x1 = c are consistent with the bounds on z.

2.3 The multicost-regular Constraint

A natural generalization of cost-regular is to handle several cumulative costs:

given a vector Z = (z0, ..., zR) of bounded variables and c = (cr
ia)

r∈[0..R]
i∈[1..n],a∈Σ

a matrix of assignment costs, multicost-regular(X, Z,Π, c) holds if and only
if regular(X,Π) holds and

∑n

i=1 cr
ixi

= zr for all 0 ≤ r ≤ R. Such a gener-
alization has an important motivation in the context of personnel scheduling.
Actually, apart a financial cost and pattern restrictions, an individual schedule

is usually subject to a global-cardinality constraint bounding the number of
occurrences of each value in the sequence. These bounds can drastically restrict
the language on which the schedule is defined. Hence, it could be convenient
to tackle them within the regular constraint in order to reduce the support
graph. As a generalization of cost-regular or of the global-sequencing con-
straint [10], we cannot hope to achieve GAC in polynomial time here. Note that
the model by Beldiceanu et al [5] – and similarly the slide constraint – was also
proposed for dealing with several costs but again, it amounts to decompose as a
regular constraint channeled with one knapsack constraint for each cost.

Hence, we ought to exploit the structure of the support graph of Πn to get a
good relaxed propagation for multicost-regular. The optimization problems
underlying cost-regular were shortest and longest path problems in Πn. The
optimization problems underlying multicost-regular are now the Resource
Constrained Shortest and Longest Path Problems (RCSPP and RCLPP) in Πn.
The RCSPP (resp. RCLPP) is to find the shortest (resp. longest) path between
a source and a sink in a valued directed graph, such that the quantities of
resources accumulated on the arcs do not exceed some limits. Even with one
resource on acyclic digraphs, this problem is known to be NP-hard[11]. Two
approaches are most often used to solve RCSPP [11]: dynamic programming
and Lagrangian relaxation. Dynamic programming-based methods extend the
usual short path algorithms by recording the costs over every dimension at each
node of the graph. As in cost-regular, this could easily be adapted for filtering
by converting these cost labels as cost variables but it would make the algorithm
memory expensive. Instead, we investigate a Lagrangian relaxation approach,
which can also easily be adapted for filtering from the cost-regular algorithm
without memory overhead.

3 A Lagrangian Relaxation-Based Filtering Algorithm

Sellmann [4] laid the foundation for using the Lagrangian relaxation of a lin-
ear program to provide a cost-based filtering for a minimization or maximiza-
tion constraint. We apply this principle to the RCSPP/RCLPP for filtering
multicost-regular. The resulting algorithm is a simple iterative scheme where
filtering is performed by cost-regular on Πn for different aggregated cost func-
tions. In this section, we present the usual Lagrangian relaxation model for the
RCSPP and explain how to solve it using a subgradient algorithm. Then, we
show how to adapt it for filtering multicost-regular.

Lagrangian Relaxation for the RCSPP. Consider a directed graph G =
(V,E, c) with source s and sink t, and resources (R1, ...,RR). For each resource
1 ≤ r ≤ R, let zr (resp. zr) denote the maximum (resp. minimum4) capacity
of a path over the resource r, and cr

ij denote the consumption of resource r on

4 in the original definition of RCSPP, there is no lower bound on the capacity: zr

arc (i, j) ∈ E. A binary linear programming formulation for the RCSPP is as
follows:

min
∑

(i,j)∈E

cijxij (1)

s.t. zr ≤
∑

(i,j)∈E

cr
ijxij ≤ zr ∀r ∈ [1..R] (2)

∑

j∈V

xij −
∑

j∈V

xji =

1 if i = s,

−1 if i = t,

0 otherwise.
∀i ∈ V (3)

xij ∈ {0, 1} ∀(i, j) ∈ E. (4)

In this model, a binary decision variable xij defines whether arc (i, j) be-
longs to a solution path. Constraints (2) are the resource constraints and Con-
straints (3) are the usual path constraints.

Lagrangian relaxation consists in dropping “complicating constraints” and
adding them to the objective function with a violation penalty cost u ≥ 0,
called the Lagrangian multipliers. The resulting program is called the Lagrangian
subproblem with parameter u and it is a relaxation of the original problem.
Solving the Lagrangian dual is to find the multipliers u ≥ 0 which gives the best
relaxation, i.e. the maximal lower bound.

The complicating constraints of the RCSPP are the 2R resource constraints (2).
Indeed, relaxing these constraints leads to a shortest path problem, that can be
solved in polynomial time. Let P denote the set of solutions x ∈ {0, 1}E satisfy-
ing Constraints (3). P defines the set of paths from s to t in G. The Lagrangian
subproblem with given multipliers u = (u−, u+) ∈ R

2R
+ is:

SP (u) : f(u) = min
x∈P

cx +
R

∑

r=1

ur
+(crx − zr) −

R
∑

r=1

ur
−

(crx − zr) (5)

An optimal solution xu for SP (u) is then a shortest path in graph G(u) =
(V,E, c(u)) where:

c(u) = c+

R
∑

r=1

(ur
+−ur

−
)cr, κu =

n
∑

r=1

(ur
−

zr −ur
+zr) and f(u) = c(u)xu +κu. (6)

Solving the Lagrangian Dual. The Lagrangian dual problem is to find the
best lower bound f(u), i.e. to maximize the piecewise linear concave function f :

LD : fLD = max
u∈R

2R

+

f(u) (7)

Several algorithms exist to solve the Lagrangian dual. In our approach, we con-
sider the subgradient algorithm [12] as it is rather easy to implement and it does
not require the use of a linear solver. The subgradient algorithm iteratively solves

one subproblem SP (u) for different values of u. Starting from an arbitrary value,
the position u is updated at each iteration by moving in the direction of a super-
gradient Γ of f with a given step length µ: up+1 = max{up +µpΓ (up), 0}. There
exist many ways to choose the step lengths for guaranteeing the convergence
of the subgradient algorithm towards fLD (see e.g. [13]). In our implementa-
tion, we use a standard step length µp = µ0ǫ

p with µ0 and ǫ < 1 “sufficiently”
large (we have empirically fixed µ0 = 10 and ǫ = 0.8). For the supergradient,
solving SP (u) returns an optimum solution xu ∈ P and Γ (u) is computed as:
Γ (u) = ((crxu − zr)r∈[1..R], (z

r − crxu)r∈[1..R]).

From Lagrangian Relaxation to Filtering. The key idea of Lagrangian
relaxation-based filtering, as stated in [4], is that if a value is proved to be
inconsistent in at least one Lagrangian subproblem then it is inconsistent in the
original problem:

Theorem 1. (i) Let P be a minimization linear program with optimum value
f∗ ≤ +∞, z ≤ +∞ be an upper bound for P , and SP (u) be any Lagrangian
subproblem of P , with optimum value f(u)∗ ≤ +∞. If f(u) > z then f∗ > z.
(ii) Let x be a variable of P and v a value in its domain. Consider Px=v (resp.
SP (u)x=v) the restriction of P (resp. SP (u)) to the set of solutions satisfy-
ing x = v and let f∗

x=v ≤ +∞ (resp. f(u)x=v ≤ +∞) its optimum value. If
f(u)x=v > z then f∗

x=v > z.

Proof. Statement (i) of Theorem 1 is straightforward, since SP (u) is a relax-
ation for P , then f(u) ≤ f∗. Statement (ii) arises from (i) and from the fact
that, adding a constraint x = v within P and applying Lagrangian relaxation,
or applying Lagrangian relaxation and then adding constraint x = v to each
subproblem, result in the same formulation.

The mapping between multicost-regular(X, Z,Π, c), with |Z| = R+1 and
an instance of the RCSPP (resp. RCLPP) is as follows: We single out one cost
variable, for instance z0, and create R resources, one for each other cost variable.
The graph G = (Πn, c0) is considered. A feasible solution of the RCSPP (resp.
RCLPP) is a path in Πn from the source (in layer 0) to a sink (in layer n) that
consumes on each resource 1 ≤ r ≤ R is at least zr and at most zr. Furthermore,
we want to enforce an upper bound z0 on the minimal value for the RCSPP (resp.
a lower bound z0 on the maximal value for the RCLPP). The arcs of Πn are in
one-to-one correspondance with the binary variables in the linear model of these
two instances.

Consider a Lagrangian subproblem SP (u) of the RCSPP instance (the ap-
proach is symmetric for the maximization instance of RCLPP) . We show that
a slight modification of the cost-regular algorithm allows to solve SP (u) but
also to prune arcs of Πn according to Theorem 1 and to shrink the lower bound
z0. The algorithm starts by updating the costs on the graph Πn with c0(u), as
defined in (6) and then by computing, at each node (i, q), the shortest path k−

iq

from layer 0 and the shortest path k+
iq to layer n. We get the optimum value

f(u) = k+
0s + κu. As it is a lower bound for z0, one can eventually update this

lower bound as z0 = max{f(u), z0}. Then, by a traversal of Πn, we remove each
arc ((i − 1, q), a, (i, q′)) ∈ δi such that k−

(i−1)q + c0(u)ia + k+
iq′ > z0 − κu.

The global filtering algorithm we developed for multicost-regular is as
follows: starting from u = 0, a subgradient algorithm guides the choice of the
Lagrangian subproblems to which the above cost-filtering algorithm is applied.
The number of iterations for the subgradient algorithm is limited to 20 (it usu-
ally terminates far before). The subgradient algorithm is first applied to the
minimization problem (RCSPP) then to the maximization problem (RCLPP).
As a final step, we run the original cost-regular algorithm on each of the
cost variables to shrink their bounds (by the way, it could deduce new arcs to
filter, but it did not happen in our experiments). Note that due to the parame-
ter dependancy of the subgradient algorithm, the propagation algorithm is not
monotonic.

4 Modelling Personnel Scheduling Problems

In this section we show how to model standard work regulations arising in Per-
sonnel Scheduling Problems (PSP) as one instance of the multicost-regular

constraint. The purpose is to emphasize the ease of modelling with such a con-
straint and also to derive a systematic way of modelling PSP.

4.1 Standard work regulations

In PSP, many kinds of work regulations can be encountered, however, we can
categorize most of them as rules enforcing either regular patterns, fixed cardi-
nalities or sliding cardinalities.

To illustrate those categories, we consider a 7 days schedule and 3 activities:
night shift (N), day shift (D) or rest shift (R). For example: R R D D N R D

Regular patterns can be modelled directly as a DFA. For instance the rule
“a night shift is followed by a rest” is depicted in Figure 4 (A). The rules can
either be given as forbidden patterns or allowed patterns. In the first case, one
just need to build the complement automaton.

s

R, D

R

N

1

(A) a regular pattern example.

3

R, N

s
D

R, N R, N

D D

R, N

1 2

(B) cardinality rule example.

Fig. 4. Examples of automata representing work regulations.

Fixed cardinality rules bound the number of occurrences of an activity or
a set of activities over a fixed subsequence of time slots. Such a rule can be
modelled within an automaton or using counters. For example, the rule “at
least 1 and at most 3 day shifts each week” can easily be modelled as the DFA
depicted in Figure 4 (B). Taking a look at this automaton, we can see the
initial state has been split into 3 different states that represent the maximum
number of D transitions that can be taken. Such a formulation can be an issue
when the maximum occurrence number increases. In this case, using a counter
is more suitable, as we only need to create a new cost variable zr ∈ [1, 3] with
cr
ij = 1 ⇐⇒ 1 ≤ i ≤ 7 and j = D. More generally, one can also encounter

cardinality rules over patterns. This also can be managed by means of a cost.
One has to isolate the pattern within the automaton describing all the feasible
schedules, then to price transitions entering it to 1.

Sliding constraints can be modelled as a DFA using the reformulation stated
in [6]. However, the width of the sliding sequence should not be too large as the
reformulation requires to explicit all the feasible tuples of the constraint to slide.
This is often the case in PSP or also in car sequencing problems.

4.2 Systematic multicost-regular Generation

A formalism to describe Personnel Scheduling Problems has been proposed
in [14]. The set of predefined XML markups allows to specify a large scope of
PSP. In order to automatically generate a CP model based on multicost-regular

from such specifications, we developed a framework capable of interpreting those
XML files. In a first step, we bounded each markup associated to a work regu-
lation to one of the 3 categories described above. Hence, for each rule of a given
PSP instance, we automatically generate either an automaton or a counter de-
pending on the rule category. For instance, the forbidden pattern “no day shift
just after a night shift” is defined in the xml file as

<Pattern weight="1350"><Shift>N</Shift><Shift>D</Shift></Pattern>

and is automatically turned into its equivalent regular expression (D|N |R) ∗
ND(D|N |R)∗. We use a java library for automata5 in order to create a DFA
from a regular expression and to operate on the set of generated DFA. We
use the opposite, the intersection and the minimization operations to build an
unique DFA. Once the DFA is built, we treat the rules that engender counters,
and generate a multicost-regular instance for each employee. Last, we treat
the transversal constraints and include them in the CP model. For example,
cover requirements are turned into global-cardinality constraints. Note that
we were not able to deal with two kinds of specifications: some rule violation
penalties that the multicost-regular cannot model and the pattern cardinality
rules that we do not yet know how to automatize the reformulation.

5 http://www.brics.dk/automaton/

4.3 Two Personnel Scheduling Cases

We first tackled the GPost [14] problem. This PSP consists in building a valid
schedule of 28 days for eight employees. Each day, an employee has to be assigned
to a Day, Night, or Rest Shift. Each employee is bound to a (Fulltime or Part-
time) contract defining regular pattern and cardinality rules. Regular pattern
rules are: “free days period should last at least two days”, “consecutive working
week-ends are limited” and “given shift sequences are not allowed”. Using the
automatic modelling method we presented earlier, we build a DFA for each kind
of contract. Cardinality rules are: “a maximum number of worked days in the
28 days period is to be worked”, “the amount of certain shifts in a schedule is
limited” and “the number of working days per week is bounded”. Cover require-
ments and employee availabilities are also modelled. The softness specification
on rules has been ignored as well as the first pattern rule to avoid infeasibility.

The second case study is based on the generated benchmark set brought
by Demassey et al. [3]. The work regulations arise from a real-world personnel
scheduling problem. The goal is to build only one schedule for a day consisting
of 96 fifteen minutes time slots. Each slot is assigned either a working activity,
a break, a lunch or a rest. Each possible assignment carries a given cost. The
purpose is to find a schedule of minimum cost meeting all the work regulations.
As for the previous PSP, we can identify regular pattern work regulations: “A
working activity lasts at least 1 hour”, “Different work activities are separated
by a break or a lunch”, “Break, lunch and rest shifts cannot be consecutives”,
“Rest shifts are at the beginning or at the end of the day”, and “A break lasts 15
minutes”. And also fixed cardinality regulations with: “At least 1 and at most 2
breaks a day”, “At most one lunch a day” and “Between 3 and 8 hours of work
activities a day”. In addition to those work regulations, some activities are not
allowed to be performed during some period. These rules are trivial to model
with unary constraints.

5 Experiments

Experimentations were run on an Intel Core 2 Duo 2Ghz processor with 2048MB
of RAM running OS X. The two PSP problems were solved using the Java
constraint library CHOCO with default value selection heuristics – min value.

5.1 On the Size of the Automaton

As explained in Section 2.1, the filtering algorithm complexity of the regular

constraints depends on the size of the specified automaton. Thus it would seem
natural that processing a big automaton is not a good idea. However, practical
results points out two important facts. First of all, the operations we run for
automatically building a DFA from several rules tends to generate partially
unfolded DFA (by intersection) and to reduce the number of redundant states
which lie in the same layers (by minimization). Hence, the unfolded automaton

generated during the forward phase at the initialization of the constraint can
even be smaller than the specified automaton Π. Secondly, pruning during the
backward phase may produce an even smaller automaton Πn as many accepting
states cannot be reached in a given number n of transitions. Table 1 shows the
number of nodes and arcs of the different automata during the construction
of the multicost-regular constraints for the GPost problem: the sum of the
DFAs generated for each rule, the DFA Π after intersection and minimization,
the unfolded DFA after the forward and backward phases.

Contract Count sum of DFAs Π Forward Backward (Πn)

Fulltime
Nodes 5782 682 411 230
Arcs 40402 4768 1191 400

Parttime
Nodes 4401 385 791 421
Arcs 30729 2689 2280 681

Table 1. Illustration of graph reduction during presolving.

5.2 Comparative Experiments

The previous section showed the ease of modelling with multicost-regular.
However, there would be no point in defining such a constraint if the solving was
badly impacted. We then conduct experiments for comparing our algorithm with
a decomposed model consisting of a regular (or cost-regular for optimization)
channeled to a global-cardinality constraint (gcc).

Table 2 presents the computational results on the GPost instance. The mod-
els include 8 multicost-regular or 8 regular and gcc (for each employee)
bound together by 28 transversal gcc (for each day). In the Table, the first row
corresponds to the problem without the sliding rule over the maximum num-
ber of consecutive working week-ends. In the second row, this constraint was
included. We tried various variable selection heuristics but found out assigning
variables along the days gave the best results as it allows the constraint solver
to deal with the transversal gcc more efficiently. Both models lead to the same

multicost-regular regular ∧ gcc

WE regulation Time (s) # Fails Time (s) # Fails

no 1.94 24 12.6 68035

yes 16.0 1576 449.2 2867381
Table 2. GPost problem results

solutions. Actually, the average time spent on each node is much bigger using
multicost-regular. However, due to better filtering capabilities, the size of the
search tree and the runtime to find a feasible solution are significantly decreased.

Our second experiment tested the scalability of multicost-regular (MCR)
against cost-regular∧gcc (CR) on the optimization problem defined in Sec-
tion 4.3. The models do not contain any other constraint. However the decom-
posed model CR requires additional channeling variables. Table 3 presents the
results on a benchmark set made of 110 instances. The number n of working
activities varies between 1 and 50. The assignment costs were randomly gener-
ated. We tested different variable selection heuristics and kept the best one for
each model. Note that the results of the CR model are more impacted by the
heuristic.

The first columns in the table show that with the MCR model, we were able
to solve all instances (Column #) in less than 15 seconds for the biggest ones
(Column t). The average number of backtracks (Column bt) remains stable and
low as n increases. On the contrary the CR model is impacted a lot as shown
in the next columns. Indeed, as the initial underlying graph becomes bigger it
contains more and more paths violating the cardinality constraints. Those paths
are not discarded by cost-regular. Some instances with more than 8 activities
could not be solved within the given 30 minutes (Column #). Considering only
solved instances, the running time (t) and the number of backtracks (bt) are
always much higher than the MCR model based results. Regarding unsolved
instances, the best found solution within 30 minutes is rarely optimal (Column
opt), and the average gap (Column ∆) is up to 6% for 40 activities.

MCR model CR model
Solved Solved Time out

n # t bt # t bt # ∆ # opt

1 10 0.6 49 10 1.1 292 0 - -

2 10 0.8 54 10 2.4 539 0 - -

4 10 1.5 65 10 13.5 1638 0 - -

6 10 1.6 44 10 53.6 4283 0 - -

8 10 2.1 51 9 209.2 5132 1 3.5% 0

10 10 2.4 58 7 283.5 6965 3 4.6% 0

15 10 3.8 59 6 283.9 4026 4 4.7% 1

20 10 4.9 49 6 311.8 4135 4 4.2% 1

30 10 6.9 51 1 313.0 4303 9 3.1% 1

40 10 13.4 68 0 - - 10 6.1% 0

50 10 14.4 51 1 486.0 1406 9 5.0% 1
Table 3. Shift generation results

6 Conclusion

In this paper, we introduce the multicost-regular global constraint and pro-
vide a simple implementation of Lagrangian relaxation-based filtering for it. Ex-
perimentations on benchmark instances of personnel scheduling problems show

the efficiency and the scalability of this constraint compared to a decomposed
model dealing with pattern requirements and cardinality requirements sepa-
rately. Furthermore, we investigate a systematic way to build an instance of
multicost-regular from a given set of standard work regulations. In future
works, we ought to get a fully systematic system linked to the CHOCO solver
for modelling and solving a larger variety of personnel scheduling and rostering
problems.

Acknowledgements

We thank Mats Carlsson for pointing out the example illustrating the propa-
gation issue of the cost-regular algorithm. We also thank Christian Schulte
for its insightful comments on the paper and its numerous ideas to improve the
constraint.

References

1. Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In: Proceedings of CP’2004. (2004) 482–495

2. van Hoeve, W.J., Pesant, G., Rousseau, L.M.: On global warming: Flow-based soft
global constraints. J. Heuristics 12(4-5) (2006) 347–373

3. Demassey, S., Pesant, G., Rousseau, L.M.: A cost-regular based hybrid column
generation approach. Constraints 11(4) (2006) 315–333

4. Sellmann, M.: Theoretical foundations of CP-based lagrangian relaxation. Princi-
ples and Practice of Constraint Programming –CP 2004 (2004) 634–647

5. Beldiceanu, N., Carlsson, M., Debruyne, R., Petit, T.: Reformulation of Global
Constraints Based on Constraint Checkers. Constraints 10(3) (2005)

6. Bessière, C., Hebrard, E., Hnich, B., Kiziltan, Z., Quimper, C.G., Walsh, T.: Refor-
mulating global constraints: The SLIDE and REGULAR constraints. In: SARA.
(2007) 80–92

7. Maher, M., Narodytska, N., Quimper, C.G., Walsh, T.: Flow-Based Propagators
for the sequence and Related Global Constraints. In: Proceedings of CP’2008.
Volume 5202 of LNCS. (2008) 159–174

8. Kadioglu, S., Sellmann, M.: Efficient context-free grammar constraints. In: AAAI.
(2008) 310–316

9. Trick, M.: A dynamic programming approach for consistency and propagation for
knapsack constraints (2001)

10. Régin, J.C., Puget, J.F.: A filtering algorithm for global sequencing constraints.
In: CP. (1997) 32–46

11. Handler, G., Zang, I.: A dual algorithm for the restricted shortest path problem.
Networks 10 (1980) 293–310

12. Shor, N., Kiwiel, K., Ruszcayǹski, A.: Minimization methods for non-differentiable
functions. Springer-Verlag New York, Inc. (1985)

13. Boyd, S., Xiao, L., Mutapcic, A.: Subgradient methods. lecture notes of EE392o,
Stanford University, Autumn Quarter 2004 (2003)

14. Personnel Scheduling Data Sets and Benchmarks:
http://www.cs.nott.ac.uk/~tec/NRP/

