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How to 
hara
terize the dynami
s of 
oldatoms in non dissipative opti
al latti
es?By D. Hennequin and Ph. VerkerkLaboratoire PhLAM, UMR CNRS, CERLA, Université de Lille 1, 59655Villeneuve d'As
q, Fran
eAbstra
t. We examine here the 
lassi
al dynami
s of 
old atoms in square opti
al latti
es,i.e. latti
es obtained with two orthogonal stationary plane waves. Contrary to mu
h of the paststudies in this domain, the potential is here time independent and non dissipative. We show that,as a fun
tion of the experimental parameters, a very di�erent behavior is obtained, both for thedynami
s of atoms trapped inside individual sites, and for atoms travelling between sites: insidethe sites, 
haos may be a main regime or, on the 
ontrary, may be negligible; outside the sites,
haos sometimes 
oexists with other regimes. We dis
uss what are the 
onsequen
es of thesedi�eren
es on the ma
ros
opi
 behavior of the atoms in the latti
e, and we propose experimentalmeasurements able to 
hara
terize these dynami
s and to distinguish between the di�erent 
ases.1. Introdu
tionThe 
ooling of atoms to extremely low temperatures, through the use of magneto-opti
al traps (MOT), opened sin
e the mid eighties fantasti
 possibilities to in
reaseour experimental knowledge of the quantum world. The most spe
ta
ular realizationwas the a
hievement of the Bose-Einstein 
ondensation, and thus of ma
ros
opi
quantum obje
ts. However, even in the 
lassi
al world, the possibility to study thedynami
s of atoms not �blurred� by the Doppler e�e
t is very ex
iting. This requiresto develop tools to manipulate the atoms, for e.g. guiding them or �designing� theirphase spa
e.Opti
al latti
es provide su
h tools: their versatility allows to manipulate atomswith an extreme pre
ision and a relative ease (Guidoni & Verkerk 1999). Be
auseof these qualities, they represent an outstanding toy model, and have re
ently at-tra
ted in
reasing interest in various domains. In statisti
al physi
s, 
old atoms inopti
al latti
es, through their tunability, made possible the observation of the tran-sition between Gaussian and power-law tail distributions, in parti
ular the Tsallisdistributions (Douglas et al. 2006). Condensed matter systems and strongly 
orre-lated 
old atoms in opti
al latti
es o�er deep similarities, as in the super�uid-Mottinsulator quantum phase transition (Greiner et al. 2002), in the Tonks-Girardeauregime (Paredes et al. 2004) or for the observation of Anderson lo
alization (Billyet al. 2008, Chabe et al. 2009). In quantum 
omputing, opti
al latti
es appear to bean e�
ient implementation of a Feynman's universal quantum simulator (Jaks
h &Zoller 2005), and are among the most promising 
andidates for the realization of aquantum 
omputer (Mandel et al. 2003, Vollbre
ht et al. 2004).Cold atoms appear also to be an ideal model system to study the dynami
s of asystem in its 
lassi
al and quantum limits. Indeed, in non dissipative opti
al latti
es,it is possible experimentally to rea
h the two situations, and even to 
hange quasi
ontinuously from a regime to the other (Ste
k et al. 2000). Moreover, the extreme
Article submitted to Royal Society TEX Paper



2 D. Hennequin and Ph. Verkerk�exibility of the opti
al latti
es makes it possible to imagine a pra
ti
ally in�nitenumber of 
on�gurations by varying the 
omplexity of the latti
e and the degreeof 
oupling between the atoms and the latti
e. Many results have been obtainedduring these last years in the �eld of quantum 
haos (Ste
k et al. 2000, Lignier etal. 2005). However, all these works have used very simple potentials, mainly 1D.Chaos is obtained only with a periodi
 (or quasi-periodi
) temporal for
ing of theamplitude or frequen
y of the latti
e (Ste
k et al. 2000, Lignier et al. 2005), andonly the temporal dynami
s of the individual atoms is studied. The introdu
tionof this external 
lo
k and the restri
tion to 1D potentials redu
e 
onsiderably thegenerality of these results and the type of possible dynami
s. In parti
ular, thebehaviors related to the appearan
e of new frequen
ies or to a frequen
y shift(quasi-periodi
 and homo
lini
 bifur
ations, for example) are impossible.If we want to break these limitations, several problems have to be examined:what type of time-independent latti
e will lead to a reasonably 
omplex dynami
s?What are the relevant quantities to 
hara
terize this dynami
s? And what arethose whi
h 
an be implemented experimentally? In this paper, we try to give someanswers to these questions. In se
tion 2, we give some fa
ts about 
old atoms andopti
al latti
es for those who are not familiar with this domain. Se
tion 3 is devotedto the dynami
s of atoms inside the wells, while se
tion 4 deals with the dynami
sof atoms traveling between several wells. Finally, we dis
uss in se
tion 5 of thepossible implementation of experimental measurements.2. Context: 
old atoms and opti
al latti
es.Cold atoms refer here to atoms 
ooled through a magneto-opti
al trap (MOT).The 
ooling is mainly obtained through an ex
hange of the momentum between anatom and a 
ounter-propagating opti
al beam: while the absorption of a photonby the atom leads to a de
eleration of the atom in the dire
tion of the beam,the spontaneous re-emission of the photon arises in a random dire
tion, and sodoes not 
hange, in average, the atom velo
ity. To slow down atoms in 3D, threepairs of 
ounterpropagating laser beams are ne
essary. Obviously, a moving atomis de
elerated by the photons traveling in a dire
tion opposite to its own, but isa

elerated by the photons traveling in the same dire
tion as its own. But thefrequen
y of these trap beams is detuned to the red of the atomi
 transition, sothat, be
ause of Doppler e�e
t, the front photons are 
loser to resonan
e, and thusthe de
eleration pro
ess is more e�
ient than the a

eleration one. This Doppler
ooling pro
ess is 
oupled to an inhomogeneous magneti
 �eld, whi
h enhan
esthe 
ooling pro
ess through the Zeeman levels splitting, and adds a restoring for
eto in
rease the atomi
 density of the 
loud of 
old atoms. MOTs lead typi
ally, forCesium atoms, to a 2 mm diameter 
loud of 108 atoms at 5µK. Su
h a 
loud of 
oldatoms 
an exhibit spatio-temporal instabilities and 
haos (Wilkowski et al. 2000,di Stefano et al. 2003, Hennequin 2004, di Stefano et al. 2004), but an adequate
hoi
e of the experimental parameters leads to a stable 
loud, with atoms whoseresidual motion is the thermal agitation.When atoms are dropped in a stationary wave, they undergo a for
e F , thepotential U of whi
h is proportional to the wave intensity I, and inversely propor-tional to the detuning ∆ between the wave frequen
y and the atomi
 transition
Article submitted to Royal Society
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Figure 1. a) Layout of the laser beams. b) Spatial distribution of the intensity in the (X, Y )spa
e. Bla
k 
orresponds to the minimum value (zero intensity), while white 
orrespondsto the maximum. The dotted square delimits the elementary mesh of the latti
e, and thewhite 
rosses are the saddle points.frequen
y:
F = −∇U (2.1)
U ∝ I

∆
(2.2)Thus, atoms a

umulate in bright (resp. dark) sites for ∆ < 0 (resp. ∆ > 0). Whenthe atoms are 
ooled with the MOT, the atomi
 density in these opti
al latti
esis small enough to negle
t the 
ollisions between atoms, and so the only sour
e ofdissipation is the spontaneous emission. As spontaneous emission is proportional to

I/∆2, it is relatively easy to build 
onservative opti
al latti
es.The atom dynami
s in the latti
e depends on the dimensionality of the latti
e.For example, in a 1D latti
e, atoms have only two dynami
al degrees of freedom,and thus even if the potential is not harmoni
, the dynami
s 
annot be 
omplex. Itis needed to add at least a periodi
 for
ing in su
h a latti
e to observe 
haos. Onthe 
ontrary, a 2D latti
e 
an exhibit 
haos, without external for
ing.But the atom dynami
s also depends on the latti
e geometry, and numerouslatti
e geometries 
an be obtained, as e.g. a verti
al sta
k of ring traps (Courtadeet al. 2006), �ve-fold symmetri
 latti
e (Guidoni & Verkerk 1999) or even quasiperi-odi
 latti
es (Guidoni et al. 1997). In this paper, we will fo
us on the 
ase of twoorthogonal stationary plane waves with the same polarization. The 
on�gurationof the laser beams is shown on Fig. 1a. The total �eld is E = cos kx + eiφ sin ky,where x and y are the two spa
e 
oordinates, φ a phase, k = 2π/λ the wave ve
torand λ the wavelength of the laser beam. The intensity 
an be written as:
I = cos2 kx + cos2 ky + 2α cos kx cos ky (2.3)where α = cosφ. With the adequate normalization, the potential is

U± = ±I (2.4)where the expli
it sign is that of ∆. When α = 0, the 
oupling between x and ydisappears, and the problem be
omes separable. In all the other 
ases, the 
ouplingbetween x and y 
ould indu
e 
omplex dynami
s. It is easy to see that in these
Article submitted to Royal Society



4 D. Hennequin and Ph. Verkerk
ases the elementary mesh of the potential is turned of π/4 as 
ompared to the
(x, y) axes, and thus it is natural to introdu
e the following new 
oordinates:

X = kx + ky (2.5)
Y = ky − kx (2.6)The intensity and the potential 
an now be written:

I = U+ = −U− = 1 + α (cosX + cosY ) + cosX cosY (2.7)Before studying the potential, let us 
on
entrate on the intensity. As an example,Fig. 1b shows the spatial distribution of the intensity for α = 0.5. The elementarymesh is indi
ated through the dotted line. Assuming α > 0, the intensity I has anabsolute maximum 2 (1 + α) at 
oordinates (n2π, m2π), where m and n are integers.It has also a relative maximum 2 (1 − α) in (π + n2π, π + m2π). On
e again, we seethat α = 0 is a spe
ial 
ase be
ause the absolute and relative maxima have thenthe same height. Note that α = 1 is another spe
ial 
ase, where the intensity atthe relative maximum vanishes and, thus, is equal to the minimum value. In thisspe
ial 
ase, we have bla
k lines along X = π + n2π and Y = π + n2π. We willnot 
onsider these 
ases in the following. On the other hand, the intensity goes tozero in (π + n2π, m2π) and (n2π, π + m2π). Two neighboring zeros are separatedby a saddle point where the intensity has the value I = 1 − α2. It is important tonote that these saddle points are on the bisse
tors, 
onne
ting on a straight linean absolute maximum to a relative one and again to the next absolute maximum.On the 
ontrary, the saddle points do not stand on the straight line that 
onne
ttwo neighboring zeros. This will indu
e a huge di�eren
e in the dynami
s of atomsin the latti
e obtained for red detunings (∆ < 0), where the atoms are attra
tedin high intensity regions and the one for blue detunings (∆ > 0), where the atomsare repelled from these same regions. The bisse
tors are 
learly es
ape lines for theatoms when ∆ < 0, while it is not the 
ase for∆ > 0.Opti
al latti
es appear to be an ex
iting tool to study the dynami
s of a 
onser-vative 
omplex system, but how to 
hara
terize this dynami
s in the experiments?What are the experimentally a

essible quantities? The typi
al size of a latti
e meshis λ/2, i.e. 426 nm for Cesium. As the diameter of a 
old atom 
loud is typi
ally2 mm, the 108 atoms are dropped in 22 106 sites for a 2D latti
e, whi
h lead to 5atoms/site. At these s
ales, it is 
lear that there is no way to isolate an atom, andthus no way to follow its traje
tory. Moreover, to see an atom, we need light, andthus the measure introdu
es a dissipation and destroy the atomi
 state. A typi
almeasure 
onsists in illuminating the atoms with a laser �ash, and re
ording the �u-ores
en
e of the atoms through a 
amera. This destru
tive measure gives snapshotsof the atom distribution in the spa
e. We examine in the following if it is possibleto extra
t informations about the atom dynami
s from this type of measurement.3. Dynami
s of atoms inside the wellsBefore we sear
h for signatures of the dynami
s in the experimental measurements,let us investigate in more details what are the relevant parameters and 
hara
ter-isti
s of the atom dynami
s in a latti
e. To illustrate this approa
h, let us 
onsideragain the two latti
es introdu
ed in Se
tion 2. Although these two latti
es di�er
Article submitted to Royal Society



How to 
hara
terize the dynami
s of 
old atoms in non dissipative opti
al latti
es? 5only by the sign of their potential, they are deeply di�erent. U− has its wells wherethe intensity is maximum, while U+ has its wells where the intensity vanishes. Letus denote ET the value of the potential energy at the saddle point of the intensity.Atoms, the energy E of whi
h is smaller than the threshold ET , are trapped intoone site be
ause they 
annot 
limb up to the saddle point. On the 
ontrary, atomswith E > ET 
an travel between sites, if they move in the good dire
tion.Inside a trap site, the energy of the atom plays the role of a sto
hasti
 parameter.Indeed, for low energies, the atoms remain lo
ated 
lose to the bottom of the well,and their dynami
s 
an be approximated by an harmoni
 motion. As the energyin
reases, the potential be
omes more and more anharmoni
, the nonlinearitiesin
rease, and the dynami
s 
an be
ome more and more 
omplex. To be able to
ompare the behavior of atoms in di�erent potentials, we take in the following theorigin of the energy at the bottom of the wells, and normalize the energy so that
ET = 1. The potential energy then takes a di�erent form for red and blue detunings.

U+ =
I

1 − α2
(3.1)

U− =
2 (1 + α) − I

(1 + α)
2

(3.2)Let us now examine in details the dynami
s of the atoms in our two potentials.The most relevant way is to look at the evolution of the Poin
aré se
tions as a fun
-tion of the energy. Our phase spa
e is 4-dimensional, with dire
tions (

X, Y, Ẋ, Ẏ
),but be
ause of the energy 
onservation, the a

essible spa
e redu
es to a 3D sur-fa
e. We 
hoose to 
onsider Poin
aré se
tion at Ẏ = 0 with in
reasing values, andthus, Poin
aré se
tions are in the 3D spa
e (

X, Y, Ẋ
), and they lie on a 2D surfa
e

SP , whi
h has the shape looking like a semi-ellipsoid. To represent the Poin
arése
tions we 
an proje
t them on the (X, Y ) plane or on the more usual (

X, Ẋ
)plane. The latter shows the Poin
aré se
tions viewed from the vertex of the semi-ellipsoid. However here, be
ause of the sti� sides of SP , the proje
tion in this planeleads to a 
onfuse map, as many 
urves are proje
ted at the same lo
ation, andthus are superimposed. On the 
ontrary, the proje
tion on the (X, Y ) plane givesmore details, and thus in the following, we often 
hoose it. However, let's keep inmind that we look at a lateral proje
tion of a �bell�, and thus that we superimposeits front and rear fa
es.As pointed out before, be
ause of the normalization we 
hoose for the energy,the form of the potential energy di�ers in the 
ases of blue or red detuned lasers.We investigate ea
h 
ases separately.In the 
ase of red detuned lasers, the potential energy takes the form :

U− = ω2
0 (1 − cosX) + ω2

0 (1 − cosY ) − (1 − cosX) (1 − cosY )

(1 + α)
2

(3.3)
with ω2

0 = (1 + α)
−1 (3.4)This potential appears to be the sum of two simple pendula 
oupled throughthe third term. The frequen
y for os
illations with small amplitude is the same

Article submitted to Royal Society



6 D. Hennequin and Ph. Verkerkfor the two dire
tions. This degenera
y together with the 
oupling term leads toa strong syn
hronization of the motion in the two dire
tions (Bennet et al. 2002).However, in 
ontrast with the Huygens 
lo
ks, we do not have any dissipation here,so a frequen
y lo
king 
annot o

urs.However, it is interesting to identify the resonan
es of the system. A very simpleapproa
h is to restri
t the problem to the �rst anharmoni
 terms, similar to theundamped Du�ng os
illator. We then look for a periodi
 harmoni
 solution in theform X = X0 cos (ωt) and Y = Y0 cos (ωt + ϕ), with ω 
lose to ω0. We drop termsat other frequen
ies (i.e. 3ω) and we end up with six families of solutions. The�rst two are the trivial ones : motion along the X or the Y dire
tions (Y0 = 0 or
X0 = 0). The other four are obtained for X0 = Y0 and for ϕ = 0, π, ±π/2. For agiven energy E, the relations giving X0 and ω are not simple, and it is beyond theaim of this arti
le to write them expli
itly. For the large amplitudes 
onsidered inthe following, the motion is not any more harmoni
 and we 
annot keep only thelower order terms, but the main result remains: we have six periodi
 traje
tories,leading to points in the Poin
aré se
tion (ex
ept for the traje
tory Y0 = 0, that we
annot 
at
h in a Poin
aré se
tion at Ẏ = 0). In the 3D spa
e, these points havethe 
oordinates (0,−Y0, 0), (±X0,−X0, 0) and (0,−X ′

0,±ωX ′
0).In Fig. 2, we show the dynami
s in the U− potential for di�erent normalizedenergies in the 
ase of α = 0.5. These results have been obtained through numeri
alresolution of the equations of motion whi
h are derived from the potential (3.3),without the addition of any random quantity. All the des
ribed behaviors are thusdeterministi
. For ea
h value of the energy, we proje
t the Poin
aré se
tion onthe (X, Y ) plane (top �gures) and on the (

X, Ẋ
) plane (bottom �gures). For lowenough energies (e.g. E = 0.8 in Fig. 2a and 2b), we see four distin
t domainsseparated by an X-shaped separatrix. In ea
h of these domains, the Poin
aré se
tionis 
y
ling around one of the non-trivial resonan
es found above. As the motionalong X and Y is governed by the same frequen
y, and be
ause of the 
ouplingbetween these two pendula, a syn
hronization between the two dire
tions o

urs,through a phase lo
king between the two motions. The 
orresponding behavior 
anbe des
ribed as mainly a ω periodi
 
y
le perturbed by small sidebands.The dynami
s in U− evolves only slightly when E is in
reased. The Poin
arésurfa
es are always organized around the separatrix delimiting 4 areas. In ea
h area,the nature of the motion is the same, namely phase lo
king between the motions inthe X and Y dire
tions. Chaos appears 
lose to the separatrix for E ≃ 0.88 (Fig.2
 and 2d), but it remains marginal, even when E = 1 (Fig. 2e and 2f). Its verysmall development is probably due to the original degenera
y of the frequen
ies ofthe 
oupled pendula and to the strong 
oupling between them.For blue detunings (∆ > 0), the bottom of the well 
orresponds to I = 0, i.e.

(X = 0, Y = π) sites. For the sake of simpli
ity, we shift the origin in Y by π, inorder to have a trapped motion 
entered at the origin. Thus, we 
an write :
U+ = ω2

0X (1 − cosX) + ω2
0Y (1 − cosY ) − (1 − cosX) (1 − cosY )

(1 − α2)
(3.5)

with ω2
0X = (1 + α)

−1 (3.6)
ω2

0Y = (1 − α)
−1 (3.7)

Article submitted to Royal Society
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Figure 2. (X, Y ) (top) and “

X, Ẋ

” (bottom) Poin
aré se
tions of the atomi
 dynami
sin the U
−

potential. (a) and (b): E = 0.80; (
) and (d): E = 0.88; (e) and (f): E = 1.00.On
e again, this potential appears to be the sum of two 
oupled pendula. But now,the two frequen
ies for os
illations with small amplitudes are di�erent: for the value
α = 0.5 
hosen here, the ratio √

3 of these two frequen
ies is irrational.For very small energies (Fig. 3a), the dynami
s 
onsists essentially in a regularmotion around the bottom of the well, along a quasiperiodi
 traje
tory with fre-quen
ies ωX and ωY 
lose to ω0X and ω0Y . At the top of Fig. 3a, Poin
aré se
tionsare those of atoms, the motion of whi
h is essentially along the X axis. In Y = 0,the traje
tory is a periodi
 
y
le along the X dire
tion (edge of the semi-ellipsoid).At the opposite, the periodi
 
y
le at the bottom of the �gure 
orresponds to thesituation where the atomi
 motion is ex
lusively along the Y axis (vertex of thesemi-ellipsoid). Note that the nature of the motion along these quasiperiodi
 
y
lesis deeply di�erent from those des
ribed with ∆ < 0. Indeed, as ω0X and ω0Y arevery di�erent, no lo
king o

urs. In parti
ular, in the spe
trum of the motion, thetwo main frequen
ies are 
lose to ω0X and ω0Y .As the energy of the atom is in
reased, the atom 
an 
limb more and more inthe well, the frequen
ies ωX and ωY 
hange be
ause of the anharmoni
ity of the
Article submitted to Royal Society



8 D. Hennequin and Ph. Verkerk

Figure 3. (X, Y ) Poin
aré se
tions of the atomi
 dynami
s in the U+ potential. (a)
E = 0.4, (b) E = 0.63, (
) E = 0.80, (d) E = 0.88, (e) E = 0.93 and (f) E = 1.00.potential, but the dynami
s does not 
hange fundamentally until E ≃ 0.6. At thatpoint a new feature appears: a stable periodi
 traje
tory shows up as a 
y
le 
lose tothe bottom of Fig. 3b, obtained for E = 0.63. In fa
t, for amplitudes large enough,the frequen
ies ωX and ωY depart so mu
h from their initial values ω0X and ω0Ythat a new resonan
e appears at ωY = 2ωX .For higher energies, the ωY = 2ωX resonan
e grows and 
omes 
loser to the
entre of the �gure and in�uen
e a non-negligible fra
tion of the traje
tories. InFig. 3
, for E = 0.8, the resonan
e is 
learly visible in Y ≃ −0.74. In the (

X, Y, Ẋ
)spa
e, its Poin
aré se
tion 
onsists in 2 points (superimposed in the proje
tion of�g. 3
), explored alternatively by the traje
tory. Around this point, the Poin
arése
tions are a double 
losed loop. The 
orresponding quasiperiodi
 motion 
onsistsin a perturbed ωY = 2ωX phase lo
ked periodi
 
y
le, where the perturbation
onsists in small sidebands of ωX and ωY in the spe
trum. Thus the separatrixappears here to be the limit between this phase lo
ked and the unlo
ked behaviors.The 
entral domain and the two linked lateral domains (bottom left and right)
orrespond to the phase lo
king. The di�eren
e between these two domains is the

Article submitted to Royal Society



How to 
hara
terize the dynami
s of 
old atoms in non dissipative opti
al latti
es? 9

Figure 4. (X, Y ) plot of the traje
tories of 100 atoms in the (a) U+ and (b) U
−

latti
es.Ea
h atom starts in the 
entral mesh, and move during the time t = 106, whi
h 
orrespondsto more than 105 periods of os
illation at the bottom of a well.relative phase on the motion along X and along Y . In the two other domains (topand bottom), there is no lo
king between the ωX and ωY frequen
ies.In E = 0.8 (Fig. 3
), all the traje
tories are still periodi
 
y
les or quasiperiodi
tori. When the energy is in
reased further, 
haos appears at E ≃ 0.88, starting inthe vi
inity of the separatrix (Fig. 3d). Then, it expands with some quasiperiodi
islands remaining (Fig. 3e), but �nally, for E = 1 (Fig. 3f), the only signi�
antquasiperiodi
 domains are those around the X and Y periodi
 
y
les. Around thelo
ked periodi
 
y
les, a narrow area with tori remains, but 
haos appears really tobe dominant.We have shown in this se
tion that it is relatively easy to �nd two slightly dif-ferent latti
es with fundamentally di�erent dynami
s. These two 
on�gurations areeasy to rea
h experimentally, as they di�er only by the sign of the detuning. Itwould be interesting now to examine how to measure experimentally these di�er-en
es, and if these di�eren
es have an impa
t on the dynami
s of atoms when theyjump between sites of the latti
e. The next se
tion deals with the latter.4. Dynami
s of atoms visiting several wellsTo travel from site to site, an atom needs to have an energy E > 1, but this isnot a su�
ient 
ondition. Only atoms with an adequate traje
tory will e�e
tivelyes
ape from a well. This implies that for a given energy E > 1, at least two 
lassesof atoms 
an exist: trapped atoms remaining in a single well, and traveling atoms,whi
h es
ape the wells. In fa
t, the situation is more 
omplex, as we will see now.Let us �rst examine the dynami
s of traveling atoms in the blue 
ase (∆ > 0).We are here interested by atoms with an energy 1 < E < 4. Indeed, atoms with
E > 4 have an energy larger than the potential maximum, and thus they ��y� abovethe potential, and their traje
tory is purely ballisti
. On the 
ontrary, the dynami
sof the atoms with an intermediate energy 
onsists in 
omplex traje
tories visitinga large number of sites, as in a random walk. As our model is fully deterministi
,it involves in fa
t 
haoti
 traje
tories. Fig. 4a illustrates su
h a 
haoti
 di�usion:it reports the traje
tories followed by 100 atoms. Su
h a traje
tory is in fa
t an
Article submitted to Royal Society



10 D. Hennequin and Ph. Verkerkalternation of os
illations inside wells and of jumps between wells. Here, we knowthat 
haos dominates inside the wells, and thus the 
haoti
 nature of the di�usionis not surprising. However, as we will see below, the existen
e of 
haos inside thewells is not a ne
essary 
ondition to observe a 
haoti
 di�usion.To think of an experimental 
hara
terization of this 
haoti
 di�usion, a simpleway would be to 
hara
terize the di�usion fun
tion, and to evaluate a di�usion
oe�
ient. Fig. 5a reports the distan
e 
overed by atoms as a fun
tion of time.There are 
learly two groups of atoms: trapped atoms remain within a short distan
e(smaller than the mesh, i.e. 2π) of their initial lo
ation, while di�using atoms moveaway to distan
es of the order of 103. Although there is small dependen
e of these
urves as a fun
tion of the energy of the atom, the orders of magnitude remain thesame for all energies 1 < E < 4.In the red detuned situation (∆ < 0), the maximum of the potential is at
E = 1.33. As in the blue 
ase, atoms with an energy E > 1.33 have ballisti
traje
tories, and atoms with 1 < E < 1.33 exhibit a di�usive 
haoti
 behavior (Fig.4b). The origin of 
haos now is 
learly in the jumps between wells, as the dynami
sin the wells is regular. And in fa
t, there is a main di�eren
e as 
ompared to theblue 
ase: the di�usion s
ale is larger by one order of magnitude, on the wholeinterval 1 < E < 1.33. We did not 
he
k if the slower di�usion originates e�e
tivelyin the 
haoti
 traje
tories followed by the atoms inside the wells, but it wouldbe interesting to 
he
k in a future work how these 
haoti
 behavior 
ould slowdown the atoms. However, the di�eren
e of one order of magnitude in the di�usionspeed reveals that the ma
ros
opi
 behavior of atoms 
ould e�e
tively be used to
hara
terize the nature of the dynami
s in opti
al latti
esBut there is another important di�eren
e between the two latti
es: in the red
ase a third regime exists, neither trapping neither di�using. It is illustrated onFig. 4b, where traje
tories appear following the two bisse
tors. These traje
tories
orrespond to atoms traveling along the es
ape lines of the latti
e, as they weredes
ribed in se
tion 2. These atoms follow in fa
t a ballisti
 traje
tory, where theytravel very rapidly along the bisse
tors. For example, in Fig. 4b, the ballisti
 tra-je
tories rea
h 106 in all dire
tions, while the di�usive atoms rea
h only 2 104 ofthe same units in the same time. Note that the ballisti
 traje
tories we dis
uss hereo

ur as soon as the threshold E = 1 is rea
h, and only along the es
ape lines ofthe potential.Fig. 5b shows the distan
e 
overed by the atoms as a fun
tion of time. We havenow 
learly three groups of traje
tories: trapped traje
tories at bottom, di�usivetraje
tories for distan
es of about 104, and ballisti
 traje
tories at the top, fordistan
es larger than 105. The main di�eren
e as 
ompared to the ∆ > 0 
ase isthe 
ohabitation of ballisti
 and di�usive traje
tories, even just above threshold.This put in eviden
e three spe
i�
 time s
ales of the dynami
s of atoms with agiven energy, asso
iated respe
tively with the trapped, the 
haoti
 di�usive andthe ballisti
 traje
tories.In this se
tion, we examined the dynami
s of atoms, whose energy is largeenough to es
ape the potential wells, but remains smaller than the potential max-ima. We fo
used on atoms traveling between wells, and found a di�erent behaviorfor our two latti
es. For the red latti
e, atoms 
an be 
lassi�ed following two typesof dynami
s: the di�usive atoms exhibit a 
haoti
 dynami
s 
arrying them o� theirinitial lo
ation; the ballisti
 atoms move away rapidly from their initial lo
ation.
Article submitted to Royal Society
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Figure 5. Distan
e 
overed by 100 atoms as a fun
tion of time. In (a), U+ and E = 2.66.In (b), U

−
and E = 1.07.These behaviors are asso
iated with two di�erent time s
ale. But is it su�
ient toidentify these di�erent regimes in a real experiment? We have also shown that thedynami
s of atoms in the blue latti
e is quite di�erent, both for the di�usive regimeand the ballisti
 one: the time s
ale of the former is one order of magnitude smaller,while the latter simply does not exist. Can we use these properties to 
hara
terizeand distinguish experimentally the two latti
es? These questions are dis
ussed inthe next se
tion. 5. Ma
ros
opi
 signatures of 
haosOur aim is to 
hara
terize the dynami
s of the 
old atoms in the opti
al latti
e.As we are 
on
erned by 
onservative latti
es, we 
annot hope to ��lm� in realtime the atoms in the latti
e, as it would introdu
e dissipation. Thus we haveto �nd other te
hniques. As the spe
i�
ity of ea
h latti
e 
on
erns the travelingatoms, an experimental measurement aiming at 
hara
terizing these latti
es should
hara
terize these traveling atoms.Experimentally, the latti
e is �nite. So the traveling atoms will rea
h the edge ofthe latti
e, and �nally leave the latti
e. Therefore a simple measure of the lifetime ofthe atoms in the latti
e give informations about the trapped and traveling atoms.However, as there are several types of traveling atoms, the simple measure of alifetime is not su�
ient, and the lifetime 
urve itself, in parti
ular its shape, mustbe analyzed. Thus we will plot now the number of atoms in the latti
e as a fun
tionof the time. The shape of the 
urve and the lifetime itself should give informationsabout the traveling atoms, while the baseline gives the per
entage of trapped atoms.In the experiment, all the atoms have not the same energy, but on the 
ontrary,they exhibit a distribution of energies linked to their temperature. Thus the resultsshown below have been obtained by using a sample of atoms with an appropriatedistribution of energy.Fig. 6a shows the number of atoms in the blue latti
e versus time. To simulatethe �nite size of the latti
e, atoms are removed as soon as they rea
h a distan
e

DL = 1000. The 
urve exhibits a plateau at short times, followed by a exponential-like de
reasing to an asymptote. The plateau 
orresponds to the time needed bythe �rst atoms to rea
h the edge of the latti
e (all the atoms are supposed to beinitially at the 
enter of the latti
e). The de
reasing 
orresponds to the di�usingatoms es
aping the latti
e, and the asymptote to the number of atoms trapped inwells. This behavior does not depend on the latti
e size DL, ex
ept that the lifetime of atoms in
reases. In fa
t, the distan
e DL = 1000, i.e. about 150 latti
e
Article submitted to Royal Society
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Figure 6. Number of atoms versus time in (a) U+ potential and (b) U

−
potential.meshes or 70 µm for a Cs trap, is smaller by one order of magnitude than a typi
alexperimental realization. However, a value of DL = 104 leads, for the data presentedin Fig. 4a and 5a, to an almost �at 
urve, be
ause the time series are not longenough. To rea
h su
h a distan
e, one should in
rease the evolution time by twoorders of magnitude.Fig. 6b shows the number of atoms in the red latti
e versus time, for DL = 104.The shape of the 
urve is qualitatively di�erent from that obtained for the bluelatti
e. At short times, a fast de
reasing appears, 
orresponding to the loss of theballisti
 atoms. At large times, not visible on the �gure, an asymptote is rea
hed,
orresponding to the trapped atoms. The intermediate de
reasing 
orrespond tothe loss of the di�using atoms. Note that the de
reasing appears to be more or lesslinear. In fa
t, the shape of this part of the 
urves is the sum of the di�using lossesof di�erent 
lasses of atoms di�ering by their energy. As a fun
tion of DL, this sum
an exhibit very di�erent shapes, from an exponential-like shape, as in Fig. 6a, toan almost linear shape, as in Fig. 6b.Fig. 6 shows that the measure of the lifetime of atoms in a 
onservative opti
allatti
e provides qualitative and quantitative informations about the nature of thelatti
e and the nature of the dynami
s of the atoms in the latti
e, in parti
ular aboutthe 
haoti
 di�usion. Therefore the measure of the atom lifetime, in parti
ular theexisten
e of several 
hara
teristi
 times in the de
reasing of the atom number,appears to be a signature of the 
haoti
 dynami
s of atoms in the latti
e.6. Con
lusionWe have shown in this paper that opti
al latti
es are a good toy model to studyexperimentally the dynami
s of 
onservative systems, provided that relevant exper-imental measures are found to 
hara
terize this dynami
s. In parti
ular, we showthat 
hanging a simple experimental parameter 
an lead to two deeply di�erentlatti
es, where atoms exhibit very di�erent dynami
al behaviors. We have shownthat these di�eren
es exist both in the lo
al dynami
s of atoms inside a well, and inthe non lo
al dynami
s of atoms traveling between wells. We sear
hed numeri
allyfor signatures of these di�erent dynami
s in the experimentally a

essible quanti-ties, and found that the measure of atom lifetimes in the latti
e gives numerousinformations about the existen
e and the type of 
haoti
 di�usion of the atoms.It would be interesting now to 
hara
terize more pre
isely the di�usion fun
tion,as a fun
tion of the experimental parameters, in parti
ular the atom temperatureand the latti
e size, and obviously to test these results on a real experiment.
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