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Abstract 

 A new approach for vanishing point detection is described. This method is 
based on the theorem of Thales. The main contribution of this paper is the 
automatic and simultaneous detection of all vanishing points of the image 
that consists in detecting circles in a complex cloud of points. This extraction 
is performed without any prior knowledge of the internal calibration. An 
analysis of the error propagation is done in order to give quantitative 
elements on the precision of the detected vanishing points. 

KEYWORDS: vanishing point detection, circles detection, Thales theorem, 
uncertainty propagation 

INTRODUCTION 

AUTOMATIC detection of vanishing point constitutes a problem widely 
studied in computer vision for key applications ranging from robotics to camera 
calibration, or automatic recovery of image orientation. The 3D kind of 
information issued from the vanishing point localisation inside the image can be 
used in almost any natural image or video description. The human vision, or 
photographic images as well, present a characteristic conical geometry, 
transforming real world parallel lines into bundles of lines, in the recorded image, 
that intersect on vanishing points. These points are typical features of images from 
manmade objects, especially buildings, in which almost all the visible or 
detectable lines correspond to strictly horizontal or vertical elements. The goal of 
this paper is the presentation of a new algorithm allowing the automatic detection 
of all vanishing points generated by the segments in a 2D image space. The 
method presented is simple and robust. Its precision is provided by computing the 
standard deviation on the vanishing point localization. The model used is based on 
basic geometric features, working directly in the image space. Section "state of 
art" reviews the classical approaches. All methods start with the segment detection 
in the image, an aspect which is not investigated in this paper. The segment 
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classifier uses either a 3D geometric domain based on the Gaussian sphere (or 
equivalently the Hough transform) or a 2D description from more recent works. 
Section “Algorithm and implementation” describes the various steps of the 
algorithm based on Thales theorem, and the variance analysis. Section 
“Assessments and Results” presents experimental results assessing the method in 
terms of precision and reliability of detection, and a comparison with a method 
that works on the unit Gaussian sphere. 

STATE OF ART 

Barnard (Barnard, 1983) introduced the most popular algorithm for the 
detection of vanishing points based on the construction of the Gaussian sphere. Its 
principle is to embed all vanishing lines of a 2D image inside a 3D projective 
space to explain the under-relationships between the scene and the projection 
point of view of a 2D photo. Each vanishing line intersects with the Gaussian 
sphere. The advantage of this method is to bring back all vanishing points in a 
finite space. Magee and Aggarwal (Magee, 1984) completed the approach by 
accumulating the projections of the intersection of the image segments on the 
Gaussian sphere leading to very heavy computations (in the 3D space) and very 
precise results. Lutton et al. (Lutton 1998) proposed a new adaptation of the 
Hough transform for the detection of vanishing points and sometimes later 
Tuytelaars (Tuytelaars, 1998) introduced an interactive method also based on the 
same finite space of accumulation. Shufelt (Shufelt, 1999) tries to find vanishing 
point on the oblique aerial images using Gaussian sphere. 

 The second class of methods works directly on the image space. Quan and 
Mohr (Quan,1989) and Den Heuvel (Den Heuvel, 1998) introduced a detection 
method based on geometric constraints. In 2003, Almansa (Almansa, 2003) 
developed a new method of vanishing point detection requiring no a priori 
information, but using complex probabilistic models. Brauer and Voss (Brauer, 
2000) detected vanishing points in highly noisy images. F. Schaffalitzky and A. 
Zisserman (Schaffalitzky, 2000) extracted vanishing lines and points by planar 
grouping. 

One can also mention Rother (Rother, 2000) who proposed a very simple 
method based on the intersection of the segments two by two followed by a 
majority vote, simple to implement but very heavy in terms of calculation time. 

Our work is also based on a simple 2D geometry of the image space. It aims 
at a fully automatic detection of vanishing points for city buildings and street 
scenes. The modelling for the 3D scene is not required. Nonetheless, the only a 
priori requirement is to have enough segments in the image that are automatically 
detected. These segments correspond to lines, in urban images, almost totally 
relative to horizontal or vertical features. 

ALGORITHM AND IMPLEMENTATION 

The different steps of the algorithm are presented in the Fig. 1. 
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Fig. 1. The different steps of the algorithm presented in this paper. 

 

 

 

 

 

 

 

 

 
 
 
 

Geometry of the method. 

Let S1, S2, S3, … be parallel lines in the real space, their images after a 
conical projection are converging lines that join on the point (P). This point is 
conventionally known as the vanishing point. Now a new bundle of lines with O 
as center (the origin of the image) is built so that, one by one, the lines of this 
bundle join with a right angle the lines S1, S2, S3, … on the points H1, H2, H3, …. 
According to the theorem of Thales, H1, H2, H3, … and the origin O define a circle 
(Fig. 2).   
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Fig. 2. Geometric configuration based on the Thales theorem 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
In order to determine the point P (the vanishing point) it is enough to 

determine the parameters of the circle, which is a relatively simple operation. 
Therefore there are as many circles on the image as vanishing points, and thus to 
look for the vanishing points that correspond to the intersection of the lines 
carrying the segments in the images is equivalent to detect these circles (Fig. 3). 
The exploitation of the theorem of Thales for the research of the vanishing points 
has already been proposed by Brauer and Voss (Brauer, 2000), but without 
treating the problem put by the extraction of the mixed different circles, and 
without any variance analysis. The present work has therefore been completed in 
this sense.   

 
Fig. 3. Example of a building, and the set of corresponding points H. One notes that the corresponding 

circles of the different perspective families go through the origin of the image 

 

 

 

 

 

Extraction of segments. 

As seen on Fig. 4, the origin O has been chosen in the top left corner of the 
image, the x-axis being horizontal and the y-axis on the left vertical, the reference 
formed is not therefore of direct orientation, but every pixel receives positive 
coordinates.  The angle θ is counted from the x-axis. 
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Fig. 4. Definition of the image reference system 

 

 

 

 

 
An automatic detection of the segments of the image is performed (Deriche, 

1987). At this step, the covariance matrix of each segment is provided (Deriche, 
1992). 

 
Among the main results of this step, there are:   
1. The extraction of all segments of the image 
2. The variance-covariance matrix for each segment.   
 

Fig. 5. Example of segments detection in an urban scene 

 

 
 
 
 
 
 
 

Computation of the points Hi. 

The polar equation of the line, support of each detected segment, is the 
following : 

sin cosx yρ θ θ= − +           (1) 

 
The point Hi is defined by : 
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It is important to be able to propagate the variance-covariance matrix of each 
segment on its corresponding point Hi. Using the general law of the propagation of 
variance for non linear functions, and using the Taylor theorem: 

 

,i

T

i iH J Jθ ρ× ×Σ = Σ                  

(3) 
 
Where J is the Jacobian matrix that contains the derivatives of Hi according 

to ρi and θi. The variance-covariance matrix 
iHΣ   on every point Hi is then:  
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One can classically illustrate the variance covariance matrixes of the points 

Hi by their error ellipses. The Fig. 6 represents the error ellipses obtained from the 
segments found in the Fig. 5 and the corresponding points Hi. 
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Fig. 6. : Error ellipses (at 95% confidence level) showing the error determination of the points H, 
depending of the efficiency of the tool of automatic extraction of the segments (from the image 

presented in Fig. 5). 

 

 

 

 

 

 

 

Circles extraction. 

There are two distinct problems:   
1 - Which model to choose for the best circle fitting a cloud of points?   
2 - How to extract different circles in mixed clouds of points? 
 

Choice of the model of the best circle fitting a cloud of points. 

The different ways of modelling a circle have been reviewed; it is not useful 
to enter into details, as numerous references for this topic exist (Gander, 1994). A 
circle being defined by three points, different obvious ways exist to make a circle 
pass by a set of more than three points, either by minimizing the algebraic distance 
between the circle and the different points, and either by minimizing the geometric 
distance. Of course, each method has its own advantages and drawbacks. 

 

Minimization of the algebraic distance. 

Advantage of this method: it is a linear system, with a reduced calculation 
complexity, and therefore a reduced calculation time. Drawback: this 
minimization doesn't have any geometrical sense, and besides the evaluation of 
the parameters of the circle is not very precise. 

 

Minimization of the geometric distance. 

The advantage of this minimization is that it is more precise than the previous 
one (Gander, 1994). Besides, it possesses a geometrical sense. On the other hand, 
its inconvenience is that it implies the resolution of a non linear system, which 
therefore requires an approached solution. For it, we have used the previously 
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described algebraic minimization. Besides, it is an iterative calculation that 
requires more computation power. 

According to the advantages and drawbacks of each method, thereafter one or 
the other will be used. 

Extraction of the circles in several mixed clouds of points. 

The core of the algorithmic implementation of the method and its proper 
working relies entirely on the efficiency of this step. A method of extraction of the 
different circles has been inspired from the RanSac method (Fischler, 1981). Some 
modifications had to be brought in order to adapt it to the present situation. The 
different steps of the algorithm are the following:   

1 - Choice of two points Hi at random from the whole set of available points 
H, since two points are sufficient to get a circle passing by the origin.   

2 - Calculation of the circle passing by the sampled points and the origin, the 
mathematical model chosen here is the minimization of the algebraic distance.   

3 - Search for all others points Hi that are susceptible to contribute to this 
circle. For that it is necessary to have first fixed a capture threshold, that is to say a 
strip around this circle: if a point Hi fall in this strip of width ε, it is kept for the 
definition of the circle, and otherwise it is discarded. The way of calculation of 
this threshold level, from the variance of the points Hi, is clarified farther.   

4 - Identification of the number of selected points, re-iteration of the steps 1, 
2, 3, and finally conservation during these successive tests of the one that captured 
most points. This operation is reiterated many times in order to insure that the 
number of points captured is really maximal (here, 1000 times). 

5 - At the end of this process, one keeps this set, and the corresponding 
captured points are then withdrawn from the initial set. Thus for the selected 
points, one looks for the best circle by a least squares adjustment, at that time with 
the help of the geometric minimization, with for approached value the parameters 
obtained by the calculation of the algebraic minimization. This calculation is led 
taking in account the uncertainties bound to every point Hi. 

6 - The extraction of the circles is stopped when it remains only, for example, 
5 of the initially detected points Hi. 

 
So an efficient extraction of the circles relies entirely on the good definition 

of the value of the width of the capture strip ε. If this value is too small, a 
considerable number of circles without really different physical senses will be 
found, and on the other hand if this value is too large, one will make contribute to 
a given circle, and therefore to the corresponding vanishing point, points that 
actually should be associated to another circle. 

 
It proves therefore to be fundamental to be able to define the capture 

threshold in an automatic way for a given image, and it would probably not be 
very adapted to use the same threshold for images with for example different 
resolutions. The use of a manual method to define it would cause a heavy loss of 
time and make lose a major interest of the method. In the optics of a complete 
automation of the process we did therefore try to extract parameters independent 
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ǫ

ǫ

from the format of the image, the parameter ε being bound obviously to the 
precision of the determination of the points Hi. In the Fig. 6 it can be seen that the 
error ellipses form a headband around the points Hi, and therefore the median 
value of the main axes of the ellipses (to 39 % of confidence) can be chosen as a 
satisfactory threshold level for this capture using RanSaC. Therefore (i being the 
indication designating every point Hi), ε is the median of the semi-major axes of 
all error ellipses : 

 

2 2 2 2 2 2 2 2

, , , , , , , ,

1

2
( ( ) 4 ( ) )

H H H H H H H Hi x i y i x i y i x i y i x i yimedian σ σ σ σ σ σ σε + + + − −=  (5) 

 
Fig.7 . Points Hi kept for a given circle of width ε represented here by the zone between the two dashed 

curves 

 

 

 

Calculation of the best origin.  

One of the key points in the algorithm is the choice of the origin. In a first 
time, because of simplicity, the origin can be chosen on the top left, i. e. on the 
origin of the image. The choice of the origin has also been discussed in the paper 
of (Brauer, 2000). However it was only for a given circle. The problem here it is 
that several circles exist and that it is necessary to choose an unique origin, 
optimal for all circles. Thus it is suggested to take the origin on the barycentre of 
the circles that have been detected when the origin is on the top left. It requires to 
proceed in two steps: In a first time, to detect the circles with the origin in the top 
left. Then in a second time, to calculate the barycentre of the circles detected and 
re-build the circles in this configuration. The major advantage is that the distances 
between the origin and the other circles are equal, so as to get the best geometric 
intersection between the circles. For example one may see that any fixed arbitrary 
origin, e. g. the middle of the image (Fig. 8), may be inappropriate in some 
specific situations, as it creates strong geometric difficulties to separate the circles. 
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Fig. 8. : Examples of points Hi for different configurations of the origin. Using the barycentre (b), the 
geometric intersection of the circles is optimal. a) origin in the top left. b) origin in the barycentre. c) 

origin in the middle of the image (unfavourable configuration) 

(a)   (b)    (c) 
 

 
 
 
 
 
 
 
 
 
 
 
 

Calculation of the coordinates of the vanishing point. 

Once obtained the parameters of the circle, i. e. its center coordinates (Xc, Yc) 
since the circle passes by the origin, the coordinates of the P vanishing point are 
calculated very easily because P is on the OP diameter (Fig. 2); these coordinates 
are the following   :  

2

2

p c

p c

X X

Y Y

=

=
                  (6)  

 
The segments detection in the images, with the help of operators such as 

Canny-Dériche one, is never reliable to 100%. This does not make any problem as 
long as one knows how to model this rate of confidence. Besides, the final goal is 
to be able to calculate the impact of the imprecision of the segments detected on 
the localization of the vanishing point. This localization will therefore be 
expressed accompanied of its uncertainty matrix. In this section we demonstrate 
how to model its impact on the vanishing point, using the uncertainty on the 
segment. 

 
If we suppose that the error distribution on the segments follows a Gaussian 

law, the different steps of the calculation are the following (Helmert, 1872),  
(Cooper, 1987):   

 
1 - Propagation of the uncertainty of the segment on the coordinates of the 

corresponding point Hi.    
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2 - Choice of a mathematical model and definition of the observations and 
unknowns. The chosen mathematical model is the minimization of the geometric 
distance.     

 

( ) 0),( =−−= cHcHc XXXXXf                             (7) 

 

HX
�����

 is the vector of the points Hi, in other words the vector of the 

observations. In the equation (7) the model is defined for exact values of the 
observations, obviously fictional. For the differentiation in the following, the 

values cX  and HX  will be defined as the exact theoretical values.  

 
3 - To get the exact values of the observations and unknowns, the theorem of 

Taylor is applied:  

).()().()(),(),( 000000
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And if we note  

 
0 0 0 00 0( ) , B ( ) , ( , ), ( ), ( )c H c c H H

c H

f f
A b f X X x X X v X X

X X

∂ ∂= = = = − = −
∂ ∂

   (9)             

 
the formulation may be simplified in : 
 

b = A x + B v                         (10) 
 
In other words, A is the Jacobian matrix related to the unknowns, i. e. the 

coordinates of the center of the circle, B is the Jacobian matrix related to the 
observations, i. e. the coordinates of the points Hi. However, as we have the 
variance covariance matrix of the points H, we inject this information in the 
equation (9). Thus the weight matrix for the observations is created, named W. 
For N observations, the weight matrix has a dimension of N x 2 N. If one supposes 
that the points Hi are statistically independent from each other, the matrix will 
have the following configuration : 
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iHΣ is the variance covariance matrix of the points Hi provided by the 

segment detector, matrix that was previously computed (equation 4). 
The resolution of this system is made by the minimisation of 

T
i i

i

v W v× ×∑  where vi is the vector of observations. The resolution of the 

system uses the Lagrange multiplier in an iterative way. At each iteration the 
vectors x and v are calculated. The convergence is considered as being obtained 
when the resulting values don't evolve anymore. The center of the circle after 
compensation is given by : 

( )
1

1 1 1 1( ) ( )T T T T
cX A B W B A A B W B b

−∧
− − − −=                           (12) 

 
The variance covariance matrix of the coordinates of the center of the circle 

is then equal to: 

( ) 11 1( )T T

cX A B W B A
−− −=Σ                                           (13)

      
 
And the uncertainty on the vanishing point is given by: 

2 2
,

2
,

2 0 2 0
0 2 0 2

c c c

c c c

x x y

p
x y y

X

σ σ
σ σ

    =      

× ×Σ                                       

(14) 
 
The equation 14 allows therefore to calculate the uncertainty on the vanishing 

point P.  
 

ASSESSMENTS AND RESULTS   

Some examples obtained with the method presented here are shown in Fig. 9. 
 



 

Figure 9. Different examples of automatic identification of families of segments corresponding to 
parallels in the real space, with the superimposition of the points

vanishing point) extracted, the segments are presented with the same colour.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A visual validation can be obtained by automatically ortho

facade including the vanishing point corresponding to the vertical and a vanishing 
point corresponding to an horizontal direction, proving that the automatic 
identification of the three vanishing points was correct (cf Fig. 10). This additional 
step can be required to automatically recognize the building facades.

 
Fig. 10. Based on the automatic extraction of various vanishing points, an automatic orthorectification 

of two facades is shown, as a simple and efficient visual test

 
 

13 

Figure 9. Different examples of automatic identification of families of segments corresponding to 
real space, with the superimposition of the points H. For a given direction (and 

vanishing point) extracted, the segments are presented with the same colour. 

 

 

A visual validation can be obtained by automatically ortho-rectifying every 
facade including the vanishing point corresponding to the vertical and a vanishing 

horizontal direction, proving that the automatic 
identification of the three vanishing points was correct (cf Fig. 10). This additional 

n be required to automatically recognize the building facades. 

Fig. 10. Based on the automatic extraction of various vanishing points, an automatic orthorectification 
of two facades is shown, as a simple and efficient visual test (using the image of Fig. 3). 
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Reliability of the detection of the vanishing points. 

The previous algorithms were applied to a set of different urban images, in 
order to identify the limits of the proposed method. To avoid lenient validations, a 
database has been created and is on free access on our web site 
http://mahzad.kalantari.free.fr/pdf.htm 

 
On Fig. 11, some images are presented where the detection functioned 

satisfactorily, whereas Fig. 12 shows images where no vanishing points were 
provided by the algorithm. Here the results are only assessed by visual inspection 
of the correct number of vanishing points that must be found. These results can be 
considered as satisfactory.  

 
Fig. 11.These 8 images are typical of the images where the automatic detection of vanishing points has 

been tested, and for which all expected points have been found 

 

Fig. 12. These 7 images are typical of those where the automatic detection of vanishing points did not 
validate any point 

 

TABLE I. Statistical results on a set of 250 images 

Percentage of correct detection of 
the vertical vanishing point    

100% 

Percentage of correct detection of 
the horizontal vanishing point    

92% 

 
The calculation part of the vanishing points without the error calculation may 

be performed in real time (less than 0·04 second with a processor Xeon Intel, 1·60 
Ghz and 2 Go of Ram, image size 3008 x 2000). Therefore for real time 
applications, where in a first time it is not necessary to have the maximal precision 
on the vanishing point, the algorithm works properly. The error calculation part 
varies, with this not very powerful computer, between 0·5 to 1 minute, according 
to the number of segments of the image, but this part would be obviously skipped 
for real time, where the algorithm based on the circles works quite correctly in 
terms of efficiency and speed. The essential of the calculation time is due to the 
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detection of the segments, as the present algorithm of assignment is comparatively 
extremely fast. For example for 5600 segments detected on an image of 3008 x 
2000 pixels, the algorithm (without the detection of the segments) requires 0·6 
seconds without any optimization in the program. 

 

Experimental validation of the variance analysis of the extracted vanishing points. 

In order to validate the calculations bound to the extraction of the circles and 
the analysis of variance of the vanishing points, this method was applied on sets of 
theoretical segments with known vanishing points coordinates and bundles of 
segments and lines as shown in Fig. 13. Then a Gaussian noise with a known 
standard deviation was applied at the segments extremities. The robustness of the 
algorithm was tested on the two images (cf. Fig.13) with different segment lengths 
so as to estimate the effect of the length on the vanishing point accuracy. The set 
of operations that intervenes downstream to the process of segments extraction 
was then validated.  

 
Figure 13: Theoretical segments used for checking the variance analysis of the automatically extracted 
vanishing points. In (13 a) the length of the segments range from 100 to 150 units (arbitrary units, the 
image of Fig. 13 measures 3000 x 2000 units). In (13 b) the length ranges from 1500 to 2200 units. 

 

 

    
                   (13 a)             (13 b) 

Figure 14: The computed standard deviation on the vanishing point for a few simulations on the image 
of figure 13 a (resp. 13 b) is shown on figure 14 a (resp. 14 b) 

       
    

  (14 a)    (14 b) 
 
Figure 14 shows the computed standard deviation on the vanishing point 

position as a function of the standard deviation of the noise used, for various 
values of this Gaussian noise (arbitrary units, the image size being 3000 x 2000 
units, the unit thus being similar to a pixel size). These experiments demonstrate 
that the main sources of error in the vanishing point detection are related to the 
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imperfections in the segment detection step, as well as the interest of working with 
long segments. 

 

Comparison with other methods of detection of vanishing points.  

It is important to be able to confront the method especially with other 
methods of detection of vanishing points working on the Gauss sphere, as these 
methods are reputed as quite efficient for the extraction of the vanishing points 
close to the infinity. In the examples here under, it is shown that with the method 
of the circles, the determination of such vanishing points is very satisfactory, and 
fully comparable to the methods that work in the space of the Gauss sphere.   

   
A synthetic image was chosen with an optical axis perpendicular to the 

façade, so as to get vanishing points at infinity, which is considered as a quite 
unfavourable situation for a method working in the plane. The detection using the 
circles is compared with an algorithm working on the Gauss sphere (Kalantari, 
2008). As it can be seen on the results, the cases where the vanishing point is at 
infinite create no problem to classify the different families of segments.   
 
 
 
Fig. 15. Comparison of the method of the circles (left) with a method based on the Gauss sphere (right) 

in a case where the vanishing points are at infinity 

 

 

 

 
 

 

 

Here is another comparison on a complex real case, as the image contains 4 
vanishing points, one of them being nearly at infinity (Fig. 16). 
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Figure 16. Comparison of the method of the circles with a method based on the Gauss sphere on a 
complex real image 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Assessment of the impact of the distance of the vanishing point from the image. 

Assessments with the help of synthesized segments have been done, so as 
to demonstrate the efficiency of the method even when the vanishing point is 
extremely far. The size of the image chosen is 3008 x 2000 pixels, and the focal 
distance is 3000 pixels. For each image, about one hundred segments, around 200 
pixels long, are synthesized. The assessments take in account two levels of 
Gaussian noise, one with a standard deviation, judged as realistic, of 0.2 pixel (for 
the points being the extremities of each segment), and the other with a 1 pixel 
standard deviation, in order to value the impact of situations with very high noise. 
The mean values of 30 consecutive results are presented so as to facilitate the 
reading of the results (Fig. 17 and Fig. 18). The reference system is the same as in 
the Fig. 4, with the origin of the system in the top left of the image. The x 
coordinate of the vanishing point is fixed to 1504 pixels. For each new iteration, 
1000 pixels are added to the y coordinate of the artificial vanishing point, that 
varies thus from 0 to 1 000 000 pixels. One can consider that for an image of 3008 
x 2000 pixels, 1 000 000 pixels is an infinite value. The angular error is defined as 
the angle difference between the theoretical direction of the vanishing point and 
the direction of the valued vanishing point. In this simulation the method 
presented in this paper has been confronted to the method of the Gauss sphere 
(Kalantari, 2008).   
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Figure 17.  Results of the assessment, using the method of the circles 

 

 

 

 
 
 
 
 
 
 

Figure 18.  Results of the assessment, using the method of the Gauss sphere 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As one can see in Fig. 17 and Fig. 18, the important result is that the more or 

less distant localization of the vanishing point doesn't have any impact on the 
precision of its direction so determined, whatever the used method. In other words 
the method of the circles, as well as the method using the Gauss sphere (one may 
note that it is clearly less sensitive to the noise of the segments), operate in a 
satisfactory way whatever the localization of the vanishing point. The major factor 
that influences the determination of the localization of the vanishing point is, as 
anticipated, the noise on the segments. In the absence of noise the angular error is 
always null, showing the stability of the calculation method. One notes without 
surprise that for a noise of 0.2 pixel, the error found for the direction of the 
vanishing point is about 5 times weaker than for a noise of 1 pixel. 
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For this reason it is important to have an evaluation of the localization error 
of the vanishing point, with the help of the error propagation presented in the 
section xx. This propagation allows us therefore to know accurately the impact of 
the segments noise on the localization of the vanishing point. 

 
To conclude this part, it is important to note that the method of the circles, 

even working in the image space, doesn't meet the limitations found in methods 
based on the intersection of the segments on an image such as Rother's one. 

 

CONCLUSION 

For images acquired in urban environment, the presented algorithm allows to 
recover vanishing points entirely automatically, and to simultaneously determine 
their variance. One major characteristic of this algorithm is its time efficiency 
when compared to a Gauss sphere method. Its efficiency is comparable, even 
when the vanishing points are at infinity. Besides, its accuracy can still be 
measured. As a result, this gives a simple way to calculate the relative orientation 
of these images as well as a partial ortho-rectification for a real time process. 
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