Molecular containers based on amphiphilic PS-b-PMVE dendrigraft copolymers: Topology, organization, and aqueous solution properties
Résumé
The synthesis, characteristics, and properties of amphipatic, water-soluble dendrigrafts, with a polystyrene core and polystyrene-b-poly(methyl vinyl ether) (PS-b-PMVE) diblock as external branches, are described. The dendrigrafts are observed by AFM and TEM as egglike or long cylindrical objects which can self-organize intramolecularly in segregated subdomains forming flowerlike or strings of flowerlike objects. In organic solvents the dendrigrafts behave as fully soluble isolated macromolecules and show in water a low critical solubility temperature (LCST) at t > 30 degreesC. The ability of the amphiphilic PS-b-PMVE dendrigrafts to complex and transport in water organic (pyrene) and metallo-organic (manganese tetraphenyl porphyrin) molecules is investigated. The possibility to stabilize the high oxidation state of metallo-porphyrin complexes through their encapsulation into the dendrigraft is shown.