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Abstract

This survey (or essay) is the result of reflexions suggested by recent
publications. The topics, which are dealt with, are related to linear
or nonlinear evolution equations, of first or second order in the time-
variable, linear and nonlinear elliptic equations, spectral properties, sin-
gular perturbations, formation of layers, and spaces of functions, in par-
ticular of BMO or Sobolev type. They are presented in the alphabetical
order, so that the article can be used as a dictionary. The aim of this
document is to provide guidance for (young) researchers in mathematics
and applied sciences, biology, chemistry, mechanics and physics.
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Introduction

For convenience, the article is divided into two sections as follows
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1 From Attractor to Hyperbolic secant

1.1 Attractor

1.1.1 Attractor of an iterated function system in fractal geometry

See K. Falconer [42] and [43]. Let X be a closed subset of R
n. An iterated

function system is a family of contractions {F1, ..., Fm} on X,m ≥ 2. Let
(S, d) be the complete metric space of compact subsets of X equipped with the
distance

d(A,B) = inf{δ : A ⊂ Bδ and B ⊂ Aδ}

where Aδ is a δ-neigbourhood of A, and define the map

A ∈ S → F (A) =

m⋃

i=1

Fi(A) ∈ S

Then, F is a contraction, and thanks to the fixed point theorem (cf. L. Schwartz
[88]) there exists a unique compact set E ∈ S such that

F (E) =

m⋃

i=1

Fi(E) = E.

The compacet set E, which is often a fractal set, is called the attractor of the
iterated function system {F1, ..., Fm}. Moreover, for all A ∈ S, F k(A) → E for
the metric d, as k → ∞, and

F (E) =

∞⋂

k=1

F k(A)

for all A ∈ S, such that Fi(A) ⊂ A for all i . The sets Ek = F k(A) are called
pre-fractals for E.

Example 1:

X = [0, 1], F1(x) =
1

3
x, F2(x) =

1

3
x +

2

3
. Then, the attractor of the system

{F1, F2} is the Cantor set (cf. E.C. Titchmarsh [95] and Figure 1)

Figure 1. The Cantor set

1.1.2 Global attractor for an autonomous evolution equation

Definition 1. Let
∂tu(x, t) = A(u(x, t)), (1)
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be the abstract form of an autonomous evolution equation. It is assumed that
the Cauchy problem (1) has a unique solution. Here uo and u(x, t), ∀t ≥ 0,
belong , for example, to a Banach or metric space E. Let {S(t)} = {S(t),∀t ≥ 0}
be the corresponding (nonlinear) semigroup of operators such that u(x, t) =
S(t)uo(x),∀t ≥ 0. A set A ⊂ E is a global attractor of (1) or of {S(t)} if A is
compact, S(t)A = A,∀t ≥ 0, and for each bounded set B ⊂ E, A attracts B,
i.e. distE(S(t)B,A) → 0 as t → ∞, where distE denotes the Hausdorff semi-
distance (cf. section 1.9). In fact, A attracts the solutions u(x, t) = S(t)uo(x)
to (1) as t → ∞, uniformly with respect to bounded initial data uo(x). The
global attractor of equation (1) describes all the possible limits of its solutions
(cf. V.V. Chepyzhov, M.I. Vishik [23])

Example 2
In [7], S. Amraoui and H. Labani study the following reaction-diffusion system:

∂ui

∂t
− di∆ui = fi(u) in Ω×]O, T [, 1 ≤ i ≤ 3 (2)

associated with the boundarycondition

(1−λ)ui(t, x)+λ
∂ui

∂ν
(x, t) = αi(x), x ∈ γ, t ∈]O, T [, 1 ≤ i ≤ 3, 0 ≤ λ < 1, (3)

and the initial condition

u(x, 0) = uo(x) x ∈ Ω, (4)

where Ω is a bounded subset of R
n, n ≥ 1, with a smooth boundary γ, T > 0,

ui ≥ 0, di > 0, f1(u) = f2(u) = −f3(u) = u3 − u1u2, αi(x) > 0. Under suitable
hypotheses on the data, they construct a global attractor M ⊂ E of the system
(2)-(4),where E = {v = (v1, v2, v3) ∈ (L∞(Ω))3, vi ≥ 0, 1 ≤ i ≤ 3)} equipped

with the norm
3∑

i=1

||vi||∞

1.1.3 Exponential attractors

1.1.3.1 The Hilbert space case

Definition 2. Let H be a Hilbert space , and A be the global attractor
of a semigroup of operators S(t) in H. Let χ ⊂ H be a compact invariant set
containing A. A compact set E ⊂ χ is called an exponential attractor for
S(t) restricted to χ if: i)E is invariant for S(t) , ii)The fractal dimension (cf.
section 1.7) of E in H is finite, iii)There exist Kχ ≥ 0 and εχ > 0 such that
distH(S(t)χ, E) ≤ Kχe−εχt, t ≥ 0. The set χ is called the basin of attraction of
E (see S. Gatti, M. Grasselli, V. Pata [47]).
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Example 3
In [25], M. Conti, V. Pata and M. Squassina are interested in the convergence,
in an appropriate sense, as ε → 0, of the solution uε(x, t), x ∈ Ω, t ∈ R to
problem (pε):

ut − ω∆u − (1 − ω)

∫ ∞

0

kε(s)∆u(t − s)ds + ϕ(u) = f, t > 0,

with Dirichlet boundary conditions on the boundary of the smooth bounded
domain Ω in R

3, ω > 0, ϕ is a suitable nonlinearity, f is a time independent
source term , and the memory kernel kε converges to the Dirac distribution at
the origin (see section 2.4), u(x, t) is supposed to be a given datum for t ≤ 0. Let
A = −∆ on L2(Ω) with domain D(A) = H1

o (Ω)∩H2(Ω), Hr = D(A
r
2 ), r ∈ R.

Following C. Dafermos [29] and M. Grasselli and V. Pata [51], they introduce,
under additional assumptions on k, ϕ, f, (ϕ(x) = x3−x is allowed), the auxiliary
variable ηt(x, s) =

∫ s

o
u(x, t− y)dy, the functions µ(s) = −(1−ω)k′(s), µε(s) =

1

ε2
µ(

s

ε
), the Hilbert spaces Mr

ε = L2
µε

(R+,Hr+1) and Hr
ε = Hr×Mr

ε for ε > 0,

Hr
o = Hr. The correct reformulation of pε, in the frame work of dynamical

systems, is( Pε) : find (uε, ηε) ∈ C([0,∞),Ho
ε ) solution to

ut + ωAu +

∫ ∞

o

µε(s)Aη(s)ds + ϕ(u) = f, ∂tη = −∂sη + u

for t > 0, associated with the initial condition (uo, ηo) ∈ Ho
ε . The existence,

for ε > 0, of a strongly continuous semi-group Sε(t) on Ho
ε corresponding to Pε

and of an exponential attractor Eε for Sε(t) are proved. The convergence of Eε

is also studied.

1.1.3.2 The metric space case

Definition 3. Let E be a metric space, X be a compact subset of E
and {S(t)}t≥0 be a continuous semi-group on E. A compact set M is called an
exponential attractor for S(t) for the topology of E if S(t)M ⊂ M,∀t ≥ 0, the
fractal dimension of M is finite , and there exists a constant c > 0 such that,
for every bounded set B ⊂ X there exists a constant c1(B) such that:

distE(S(t)B,M) ≤ c1e
−ct ∀t ≥ 0

(see A. Bonfoh, M. Grasselli, A. Miranville [18]).

Example 4: The Cahn-Hilliard-Gurtin equation
In [18], the authors study the Cahn-Hilliard-Gurtin type problem

Aρ =
∂ρ

∂t
− d.∇

∂ρ

∂t
− div

(
B̃∇

∂ρ

∂t
− αB∇∆ρ + B∇f ′(ρ)

)
= 0 (5)
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on Ω =
∏n

i=1(0, Li), Li > 0, n ≤ 3, [resp. its singular perturbed problem

ε
∂2ρ

∂t2
+ Aρ = 0] (6)

associated with the conditions : ρ is Ω- periodic and

ρ|t=0 = ρo, (7)

[resp (7) and
∂ρ

∂t
= ρ1] . Here d∈ R

n, α > 0, B, B̃, are two positive definite n×n

matrices with constant coefficients and f is a double-well-like potential. They
prove the existence of a family of exponential attractors Mε in the Banach
space Hε = H1

per × (H1
per)

′ equipped with a norm which depends on ε, for the
semigroup Sε(t) associated to the perturbed problem and study the convergence
of Mε to an exponential attractor associated to the unperturbed problem (5)-
(7). See, also, the examples in section 1.6

1.2 Aubry-type sets

1.2.1 History

Aubry-type sets are a part of the Aubry-Mather theory. A good introduction
to the theory can be found in O. Knill [64]. An historic of the theory, which
started in 1924 with M. Morse [77], and perspectives of new developments in
different domains of mathematics and physics are presented in the review , by
V. Bangert [12], of the lecture notes [64].

1.2.2 Applications to elliptic perturbations of Hamilton-Jacobi equa-
tions

In [22], F. Camilli and A. Cesaroni consider the singular perturbation problem

{
−ε∆vε + H(x,∇vε) − εc(x) = 0 in D
vε = g(x) on ∂D

(8)

under the following assumptions: D is a bounded set with Lipschitz boundary
in R

n, H(x, p) is a continuous, Lipschitz continuous in x, convex and coercive
in p Hamiltonian, H(x, 0) ≤ 0 and the critical value of H is 0, c : D → R is a
continuous nonnegative function, g is a continuous function on ∂Ω. The limit
problem i.e. the Hamilton-Jacobi problem:

{
H(x,∇v) = 0 in D,
v(x) = g(x) on ∂D

(9)

has, in general, many viscosity solutions (cf. P.L. Lions [70]). As in several pre-
vious papers, in particular A. Eizenberg [37], A. Siconolfi [90], and A. Fathi, A.
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Siconolfi [44], the authors introduce the convex set Z(x) = {p ∈ R
n|H(x, p) ≤

0}, x ∈ D, the support fuction σ(x, .) of Z(x) and the distance

S(x, y) = inf {

∫ 1

0

σ(Φ(s),
.

Φ(s))ds, Φ ∈ Cx,y},

where Cx,y is the set of W 1,∞([0, 1], D) curves such that Φ(0) = x,Φ(1) = y.
They give the following definition of the Aubry-type set A associated
to problem (9): a point x ∈ A, if there exists a sequence Φn ∈ Cx,x whose
Euclidean length l satisfies l(Φn) ≥ δ > 0 and whose length with respect to

σ vanishes i.e. inf
n
{
∫ 1

0
σ(φn(s),

.

Φn(s))ds} = 0. In fact, A behaves as an

hidden boundary on which a datum must be fixed to have existence
and uniqueness for problem (9). Namely if g is a real function, defined and
continuous on ∂D ∪ A, such that −S(y, x) ≤ g(x) − g(y) ≤ S(y, x) for x, y ∈
∂D ∪A, there exists a unique viscosity solution u to (9) such that u(x) = g(x)
on ∂D∪A. Moreover, if A satisfies additional conditions, and if ∇vε is bounded
by a constant independent of ε, then vε, solution to (8), converges uniformly to
the maximal viscosity solution G(x) = min

y∈∂D
{g(y) + S(y, x)} to (9), as ε → 0.

Examples of hamiltonians of the forms H(x, p) =
|p|2

2
− b(x).p,H(x, p) =

−b(x).p + K(x, p), and the Eikonal Hamiltonian H(x, p) = F (p) − f(x), for
which the above results hold, are investigated.

1.3 Birman-Schwinger operator

Definition 4. Consider the Schrödinger operator

Hγ = Ho + γV (x),Ho = (−∆)l (10)

acting on L2(Rd), 2l ≥ d, where x → V (x) is a real-valued continuous function
defined on R

d which is non-negative, and tends to zero sufficiently fast as
|x| → ∞, γ is a small negative coupling constant. The operator Ho is self
adjoint and its spectrum is σo = [0, +∞). The Birman-Schwinger operator
associated to (10) is the operator

XV (λ) = V
1
2 Rλ(Ho)V

1
2 ,

where Rλ(Ho) is the resolvent of Ho in (−∞, 0). For each λ ∈ (−∞, 0), XV (λ)
is self adjoint and compact (cf. J. Arazy, L. Zelenko [8]).

1.3.1 Application

In [8] , the authors consider the decomposition XV (λ) = Φ(λ) + T (λ), where
Φ(λ) is a finite rank operator and T (λ) an Hilbert-Schmidt operator whose
norm is uniformly bounded with respect to λ ∈ (−δ, 0) for some δ > 0. An
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asymptotic expansion of the bottom virtual eigenvalue λo(γ) of Hγ , as γ < 0
tends to zero, is deduced from this decomposition: if d is odd, it is of power
type, while, when d is even , it involves the log function. Asymptotic esti-
mates are obtained, as γ ↑ 0, for the non-bottom virtual eigenvalues of Hγ ,
{λk(γ),k ∈ Z

d
+; 0 < |k| ≤ m}, where m = l − d+1

2 if d is odd and m = l − d
2

if d is even. If d is odd, Φ(−t2l) is a meromorphic operator function, and the
leading terms of the asymptotic estimates of λk(γ) are of power type. An al-
gorithm, based on the Puiseux-Newton diagram (cf. H. Baumgärtel [14]), is
proposed for an evaluation of the leading coefficients of these estimates. If d is
even, two-sided estimates are obtained for eigenvalues with an exponential rate
of decay; the rest of the eigenvalues have a power rate of decay. Estimates of
Lieb-Thirring type are obtained for groups of eigenvalues which have the same
rate of decay, when d is odd or even.

1.4 BMO and related spaces

1.4.1 Definitions

The definitions of the following spaces are recalled in J. Xiao [100].

1.4.1.1 BMO space Let sup
I

be the supremum over all cubes I ⊂ R
n with

edges parallel to the coordinate axes, �l(I) be the sidelength of I and fI the mean
value of f over I. The square form of John-Nirenberg’s BMO = BMO(Rn)
space (cf. F. John, L. Nirenberg [60]) is the space of localy integrable complex-
valued functions f defined on R

n, n ≥ 2, such that

||f ||BMO =

(
sup

I

(�l(I))−n

∫

I

|f(x) − f(I |
2dx

) 1
2

< ∞.

1.4.1.2 Qα spaces For α ∈ (−∞,∞) , Qα(Rn) is the Banach space of all
measurable complex-valued functions on R

n, modulo constants, such that

||f ||Qα
= sup

I

(
(�l(I))2α−n

∫

I

∫

I

|f(x) − f(y)|2

|x − y|n+2α
dxdy

) 1
2

< ∞.

(cf. M. Essen, S. Janson, L. Peng, J. Xiao [40]).

1.4.1.3
.

L
2

α, α ∈ (0, 1) The homogeneous Sobolev space
.

L
2

α(Rn) is the space
of complex-valued functions f such that

||f || .

L
2

α

=

(∫

Rn

∫

Rn

|f(x) − f(y)|2

|x − y|n+2α
dxdy

) 1
2

< ∞
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1.4.1.4 L2,n−2α, α ∈ (0, 1). It is the space of measurable complex-valued
functions f on R

n such that

||f ||L2,n−2α
= sup

I

(
�l(I))2α−n

∫

I

|f(x) − f(I |
2dx

) 1
2

< ∞

1.4.1.5 Space Q−1
α;T , α ∈ (0, 1), T ∈ (0,∞) A temperated distribution f on

R
n belongs to this space provided

||f ||Q−1

α;T
= sup

x∈Rn,r∈(0,T )

(
r2α−n

∫ r2

0

∫

|y−x|<r

|et∆f(y)|2t−αdydt

) 1
2

< ∞

where et∆(x, y) is the heat kernel.

1.4.2 Relations between these spaces

For α ∈ R, f ∈ S ′(Rn), modulo polynomials, (−∆)−
α
2 f = F−1(

∣∣∣ξ|−αf̂(ξ)
)

=

Iαf (cf. R. Strichartz [93]). In [100], when α ∈ (0, 1), it is proved that 1)

Qα = (−∆)−
α
2 L2,n−2α, 2)

.

L
2

α = (−∆)−
α
2 L2, 3) Q−1

α;∞ = ∇.(Qα)n and sharp

estimates for the norms of the embeddings Qα →֒ BMO, and
.

L
2

α →֒ L
2n

n−2α ,
are obtained . We point out that 3) means that f ∈ Q−1

α;∞ if and only if there
are fj ∈ Qα such that f =

∑n
j=1 ∂jfj .

1.5 Bounded variation (functions of)

Several equivalent definitions of functions of bounded variation are well known
(see e.g. E.C. Titchmarsh [95] and H. Brezis [19]). Let Ω ⊂ R

d be an open set
with a smooth boundary.

1.5.1 Space BV (Ω, Rq)

A function f ∈ L1
loc(Ω, Rq) has a bounded variation i.e. f ∈ BV (Ω, Rq), if ∇f

is a Radon measure of finite total mass. Let |f |BV =
∫
Ω
|∇f | be a BV-semi-

norm. In J. Davila [31], the following property of |f |BV is proved: there exists
a positive constant K, which depends on d, such that, for every family of non
negative radial mollifiers ρε ∈ L1

loc((0,∞), R+) satisfying
∫ ∞

0

ρε(r)r
d−1dr = 1 and lim

ε→0

∫ ∞

δ

ρε(r)r
d−1dr = 0 ∀δ > 0,
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we have

lim
ε→0

∫

Ω2

|f(x) − f(y)|

|x − y|
ρε(|x − y|)dxdy = K|f |BV , ∀f ∈ BV (Ω, Rq).

1.5.2 Application

In [75], B. Merlet shows, by means of the above property of |f |BV , that, if u ∈
BV (Ω, S1), there exists a lifting ϕ ∈ BV (Ω, R) of u (i.e. u(x) = eiϕ(x),∀x ∈ Ω)
such that |ϕ|BV ≤ 2|u|BV .

1.6 Cahn-Hilliard-Gurtin equation

After the initial Cahn-Hilliard equation:

∂ρ

∂t
= κ∆[f ′(ρ) − α∆ρ],

α > 0, κ > 0, which governs the evolution of the order parameter ρ(x, t), where
f(ρ) is the coarse-grain free energy. (cf. J.W. Cahn [20]), generalized in M.E.
Gurtin [52], several generalizations have been studied , mostly in relation with
attractors and singular perturbations.

Example 5
In [32], A. Debussche, studies the Cahn-Hilliard problem (P)

Au =
∂u

∂t
+ ν∆2u − ∆f(u) = 0 in Ω × R

+

where u(x, t) is a real- valued function, Ω = [0, L] and f is a polynomial of
even order whose leading coefficient is positive, supplemented with an initial
condition uo and Neumann or periodic boundary conditions . He considers the
perturbed problem (Pε):

ε
∂2u

∂t2
+ Au = 0

associated with the same boundary conditions, the initial condition uo and
∂u

∂t
= u1(x). He studies the existence of a global attractor Aε for (Pε) and its

convergence to the global attractor of (P), in suitable functional spaces.

Example 6
In [48], S. Gatti, M. Grasselli, A. Miranville and V. Pata study the following
initial and boundary value problem :

ωutt + ut − ∆(−∆u + φ(u) + δu) = 0, in Ω × R
+ (11)
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associated with the initial conditions

u(0) = uo, ωut(0) = ωu1 (12)

and the boundary condition

u|∂Ω = ∆u|∂Ω = 0 (13)

where Ω is a bounded domain in R
3, with a smooth boundary ∂Ω, ω, δ ∈

[0, 1], δ ≥ µω with µ ∈ (0, 1], and φ is a smooth function with cubic controlled
growth. If ω = δ = 0, equation (11) is the Cahn-Hilliard equation, if ω = 0
and δ > 0, it is known as the viscous Cahn-Hilliard equation. The authors con-
struct a family of exponential attractors Eω,δ for problem (11)-(13) which is a
robust perturbation of an exponential attractor E0,0 of the usual Cahn-Hilliard
equation .They show the existence of constants C > 0 and τ ∈ (0, 1) such that
dist-sym (Eω,δ, E0,0) ≤ C(ω + δ)τ in a suitable functional space.

Example 7
See Example 4, in section 1.1

1.7 Dimensions in a metric space

1.7.1 Definitions

Let K be a compact set in a metric space E.
The Kolmogorov ε-entropy
For ε > 0, Nε(K, E) denotes the minimum number of open balls in E, with
radius ε, necessary to cover K. The number

Hε(K, E) = ln(Nε(K, E)

is called the ε-entropy of K in E.
The fractal dimension of K in E is

dimF (K, E) = lim sup
ε→0

Hε(K,E)

ln 1/ε
.

The Hausdorff dimension of K in E
Given d ∈ R

+ and ε > 0 set

µ(K, d, ε) = inf
∑

rd
i

where the infimum is taken over all the coverings {Bri
(xi)} of K by balls in E

with radius ri ≤ ε. The Hausdorff dimension of H in E is the number

dimH(K, E) = inf
d∈R+

[lim
ε→0

µ(K, d, ε)]

11



1.7.2 Remarks and examples

1.7.2.1 Remarks (cf. V.V. Chepyzhov, M.I. Vishik [23] p.52) In general,
the following inequality holds:

dimH(K, E) ≤ dimF (K, E)

If K is a smooth m-dimensional compact submanifold in E, then

dimH(K,E) = dimF (K,E) = m

Every countable set has Hausdorff dimension 0 while the fractal dimension

can be arbitrarily large. For example, if K = {0} ∪ {an =
1

log n
}n∈N then

dimF (K, R) = 1. If E is a Hilbert space, {en} is an orthonormal basis in E,

and K = {0} ∪ {
en

log n
}n≥2, then dimF (K,E) = ∞.

1.7.2.2 Fractals (cf. K. Falconer [42] and [43])
A self similar set in R

n is a set which is invariant under a collection of
similarities. It is the union of a number of smaller similar copies of itself (cf.
[42] p.117 and [43] p.35). The following examples are self similar sets whose
fractal and Hausdorff dimensions are equal.

In R the dimensions of the Cantor set ( [95] and [42] p.43) are
log 2

log 3
.

In R
2, the Sierpinski triangle, Figure 2, also called the Sierpinski gasket, has

dimensions
log 3

log 2
( [42] p.120), whereas the Sierpinski carpet (Figure 3) has

dimensions
log 8

log 3
( [43] p.36). In Figures 2 and 3, pre-fractals E4 (cf. section

1.1) , for the Sierpinski triangle and carpet respectively, are the union of closed
blue sets.

1.8 Dirac operator

The One dimensional periodic Dirac operator has the form:

Ly(x) = i

[
1 0
0 −1

]
dy

dx
+

[
0 P (x)

Q(x) 0

]
y, x ∈ R, y =

[
y1

y2

]

where P and Q are periodic of period 1 and are in L2(0, 1).
In [34], P. Djakov, B. Mityagin suppose Q(x) = P (x). Then, L, considered with
periodic or antiperiodic boundary conditions, is self-adjoint. If λ−

n , λ+
n , n ∈ Z

are its eigenvalues close to nπ as |n| is large, and γn = λ+
n − λ−

n , the relation-
ship between the decay rate of γn as |n| → ∞, and the smoothness of P is
investigated.

12



Figure 2. The Sierpinski gasket

Figure 3. The Sierpinski carpet
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1.9 Distances

1.9.1 Distances in a metric space

Let (E, d) be a metric space and X,Y ⊆ E.
The Hausdorff non-symmetric- (or semi-) distance between sets X,Y
in E is

distE(X, Y ) = sup
x∈X

inf
y∈Y

d(x, y)

The Hausdorff symmetric distance between sets X, Y in E is

dist-symE(X, Y ) = max(distE(X, Y ), distE(Y, X)).

1.9.2 Quasi-distance, doubling quasi metric space

On a set Y , a function d : Y × Y → [0,∞) is called a quasi distance if it is
symmetric, strictly positive away from {x = y} and such that for some constant
K ≥ 1

d(x, y) ≤ K(d(x, z) + d(z, y))

for all x, y ∈ Y . The pair (Y, d) is called a quasi metric space. A positive
measure µ on a σ-algebra of subsets of Y containing the d-balls is said to have
the doubling property if there exists a positive constant C such that

0 < µ(B(x, 2r)) ≤ Cµ(B(x, r))

for all x ∈ Y and r > 0. Then (Y, d, µ) is called a doubling quasi metric
space (cf. G. Di Fazio, C.E. Gutierrez, E. Lanconelli [33]).

1.10 Equal- area condition

Equal-area type conditions appear, as sufficient or necessary conditions, in the
formation of layers (internal or superficial) in stationary solutions to various
singularly perturbed reaction-diffusion systems. In the recent works A.S. do
Nascimento [82], J. Crema, A.S. do Nascimento [28] and R.J. de Moura, A.S.
do Nascimento [79], the authors prove the necessity of suitable equal-area con-
dition for the formation of internal or (and) superficial transition layers in this
type of problems.

Example 8

A simple particular case of problems studied in [82] is the elliptic boundary
value problem {

εdiv(h(x)∇u) + f(u) = 0 x ∈ Ω
∂u

∂n
= 0 on ∂Ω

(14)
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where Ω is a smooth domain in R
N , N ≥ 1, f : R → R is such that there exist

α, β, α > β,with f(α) = f(β) = 0. Let Γ ⊂ Ω be a smooth (N-1) dimensional
compact manifold without boundary. It is proved that, if (14) has a family
{uε} of solutions which develop an internal transition layer with interface Γ
connecting the states α to β, then, necessarily, the simple equal-area condi-
tion ∫ β

α

f(s)ds = 0

is satisfied.

Example 9
In [28], the following stationary system is considered:





εdiv(h(x)∇u) + f(x, u,v) = 0 x ∈ Ω
div(k(x)∇v) + g(x, u,v) = 0 x ∈ Ω
∂v

∂n
= 0 (or v = 0) on ∂Ω.

(15)

where Ω is a smooth domain in R
N , N ≥ 1, v,k,g are sufficiently smooth

R
n-valued functions, and k∇v = (k1∇v1, ...kn∇vn). Let U be an open con-

nected set in Ω, Γ ⊂ U be an (N-1)-dimensional compact connected orientable
manifold whose boundary ∂Γ is such that ∂Γ∩∂Ω is an (N-2)-dimensional sub-
manifold of ∂Ω. A definition of a family of internal transition layer solutions
{(uε,vε)}, 0 < ε < εo} to (15) in U with interface Γ, depending on two func-
tions α, β ∈ Co(U), α(x) < β(x) on Γ is given. For such a family, there exists
uo [resp.vo] such that uε → uo [resp.vε → vo] on compact sets of U \ Γ [resp.
in U ]. It is proved that, if a family of internal transition layer solutions to (15)
exists, then f(x, uo(x),vo(x)) = 0 on U \ Γ and necessarily the equal-area
condition ∫

Γ

(

∫ β(x)

α(x)

f(x, s,vo(x)) ds) dS = 0

is satisfied. Several concrete applications of these results are presented in the
paper.

Example 10
In [79], Ω is a bounded domain in R

N , N ≥ 1 with C2 boundary ∂Ω, S is a
C2 (N-1)-dimensional surface with a boundary Σ which is assumed to be a
C2 (N-2)-dimensional compact surface without boundary with Σ = S ∩ ∂Ω,
and S intersects ∂Ω transversally The authors define a family of solutions
{uε}, 0 < ε < εo to the elliptic boundary value problem:





εdiv(a(x)∇vε) + f(x, vε) = 0, x ∈ Ω

εa(x)
∂vε

∂n̂
= g(x, vε), x ∈ ∂Ω

(16)
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which develops internal and superficial transition layers, depending on some
smooth functions α, β, α(x) < β(x), x ∈ Ω, with interfaces S and Σ respectively.
Here a ∈ C1(Ω), a > 0, f : Ω× R → R and g : ∂Ω× R → R are of class C1 and
n̂ is the exterior normal vector field on ∂Ω. It is proved that the equal-area
conditions:

∫ β(x)

α(x)

f(x, t)dt = 0 ∀x ∈ S and

∫ β(y)

α(y)

g(y, t)dt = 0 ∀y ∈ Σ

are necessary for the existence of such solutions.

1.11 Fokker-Planck equation

1.11.1 Forward Kolmogorov equation

Let p(s, x, t, y) be a transition density of a Markov process,with a drift coeffi-
cient α(t, x) and a diffusion coefficient σ2(t, x). Under suitable assumptions on
p, α, σ2, p is a fundamental solution of the forward Kolmogorov equation:

∂p

∂t
= −

∂

∂y
(α(t, y)p) +

1

2

∂2

∂y2
(σ2(t, y)p)

known as the Fokker-Planck equation (cf. Encyclopaedia of Mathematics,
Springer Online reference Works, [39])

1.11.2 The Kuramoto model

In [66], Y.Kuramoto studies a large set of coupled oscillators Q1, ..., QN with
natural frequencies wi. He considers the simple possible case of purely sinu-
soidal coupling, for which the governing equations are

∂θi

∂t
= ωi +

K

N

N∑

j=1

sin(θj − θi), i = 1, ..., N (17)

where K ≥ 0 is the coupling strength. The example of a Lorentzian distribution
of the native frequency is studied. Setting

reiψ =
1

N

N∑

j=1

eiθj (18)

called the complex parameter, where r(t) measures the phase coherence and
ψ(t) the average phase, (17) becomes

∂θj

∂t
= ωj + Kr sin(ψ − θj) j = 1, ..., N (19)

(cf. Y. Kuramoto [67])
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1.11.3 From Kuramoto to Crawford

In [94], S. H. Strogatz tells the story of coupled oscillators, from Y. Kuramoto’s
work to J.D. Crawford’s contributions.

1.11.3.1 The infinite-N version of (17) The frequencies ω are distributed
according to the probability density g(ω). Let ρ(θ, t, ω) denote the fraction of
oscillators with natural frequency ω and phase in [θ, θ + dθ], at time t. Then,
ρ is non-negative, 2π- periodic in θ, and satisfies the normalization condition∫ 2π

0
ρ(θ, t, ω)dθ = 1, for all t, ω. The evolution of ρ is governed by the continuity

condition
∂ρ

∂t
= −

∂

∂θ
(ρv) (20)

which expresses the conservation of oscillators with frequency ω. The infinite-N
version of (18) and (19) are respectively

reiψ =

∫ 2π

0

∫ +∞

−∞

eiθρ(θ, t, ω)g(ω)dωdθ (21)

and

v(θ, t, ω) = ω + K

∫ 2π

0

∫ +∞

−∞

sin(θ′ − θ)ρ(θ′, t, ω′)g(ω′)dθ′dω′ (22)

Finally,the governing equation for ρ becomes

∂ρ

∂t
= −

∂

∂θ
(ρ[ω + K

∫ 2π

0

∫ +∞

−∞

sin(θ′ − θ)ρ(θ′, t, ω′)g(ω′)dθ′dω′]) (23)

1.11.3.2 Introduction of noise processes In [85], H.Sakaguchi considers
the Fokker-Planck equation

∂ρ

∂t
= D

∂2ρ

∂θ2
−

∂

∂θ
(ρv) (24)

where D ≥ 0 is a noise strength. Equation (24) reduces to (23) for D = 0.

1.11.3.3 Crawford’s work J.D. Crawford worked on Kuramoto-Sakaguchi’
s model (24) (cf. [27]). Later on, he considered a more general model where
sin(θ′ − θ) is replaced by f(θ′ − θ)
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1.11.4 The Acebron-Spigler model

In [1], J.A. Acebron, R. Spigler, are intersted in self-synchronization among the
coupled oscillators, both in phase and in frequency. They point out that the
Kuramoto-Sakaguchi model with noise terms does not allow for simultaneous
synchronization in both phase and frequency. They propose a new model in
which frequencies of the oscillators vary in time along with their phase. The
governing equations, when N À 1 and noise effects are included, are a set
of Langevin equations, which lead, when N → ∞, to a Fokker-Planck type
equation of the form (with normalized parameters)

∂ρ

∂t
=

∂2ρ

∂ω2
− ω

∂ρ

∂θ
+

∂

∂ω
[(ω − Ω − KK(t, θ))ρ] (25)

where

K(t, θ) =

∫ +∞

−∞

∫ +∞

−∞

∫ 2π

0

g(Ω)sin(ϕ − θ)ρ(ϕ, ω, t, Ω)dϕdωdΩ

associated with the conditions ρ|θ=0 = ρ|θ=2π, ρ|t=0 = ρo(θ, ω, Ω), ρ(θ, ω, t, Ω) >

0 and
∫ 2π

0

∫ +∞

−∞
ρ(θ, ω, t, Ω)dωdθ = 1 for all t, Ω. Here θ(t) is the phase and

ω(t) =
dθ

dt
(t) the frequency, at time t, and g(Ω) represents a natural frequency

distribution.

1.11.6 The Fokker-Planck type ultraparabolic integro-differential equa-
tion

In [3] and [4], D.R. Akhmetov, M.M. Lavrentiev JR. and R. Spigler study
existence and uniqueness of solutions to (25), in QT = {(θ, ω, , t, Ω) ∈ [0, 2π]×
R×[0, T ]×[−G, +G]}, when g ∈ L1(R) is bounded and compactly supported in
[−G, +G] and the initial condition ρo has an exponential decay in ω at infinity,
namely

sup
θ∈R,Ω∈[−G,+G]

|Dl1,l2,l3
θ,ω,Ω ρo(θ, ω, Ω)| ≤ Ce−Mω2

for all ω ∈ R, l1 + l2 + l3 ≤ lo. Equation (25) may be interpreted as an ultra-
parabolic (integro-differential) equation with t1 = θ, t2 = t or as a parabolic
equation in (ω, θ), degenerate with respect to θ (cf. section 2.18). In [3] and [4]]
existence and uniqueness of a solution ρ to problem (25), either in anisotropic
Sobolev and Hölder spaces or in suitable classes of decaying functions, are
considered. Optimal decay estimates for ρ were obtained in D.R. Akhmetov,
R. Spigler [6]. The proofs are based on suitable parabolic regularization of (25).
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Conclusion In this entry, I was mostly interested in the successive forms of
the Fokker-Planck type equation, from the Kuramoto model to the recently
studied ultraparabolic equations. The analysis of these equations and their
innumerable applications will be found in the references .

1.12 Gierer-Meinhardt system

1–The Gierer-Meinhardt model
The Gierer-Meinhardt model is a system of two coupled nonlinear parabolic
equations:

At = d∆A − A +
A2

H
, Ht = D∆H − H + A2, x ∈ Ω, t > 0

associated with the boundary conditions

∂A

∂n
=

∂H

∂n
= 0, x ∈ ∂Ω, t ≥ 0,

where Ω is a bounded Lipschitzian domain, in R or R
2, A = A(x, t) and

H = H(x, t) are the concentrations of an activator substance and an inhibator
substance, respectively, in cell biology and physiology, (cf. Y. You [102]).

Exemple 11
In [102], the author considers the ground state solutions of the Gierer-Meinhard-
type system in R i.e. the solutions of the system of ordinary differential equa-
tions:

u” − u +
u2

v
= 0, v” − σ2v + u2 = 0, x ∈ R (26)

associated with the conditions u, v > 0 and u, v → 0 as |x| → ∞, where

σ2 =
d

D
¿ 1. The author is interested in an approximation of the number k(σ)

of spikes of the solutions to (26) one can expect to occur, as σ → 0. He shows
that, for σ small enough, there exists a solution (u, v) of (26) such that u has
k =const σ−β spikes where β can be arbitrarily close to 1

2 .

1.13 Gray-Scott systems

The Gray–Scott model

This reaction-diffusion system models an irreversible reaction involving two
reactants in a gel reactor, where the reactor is maintained in contact with a
reservoir of one of the two chemicals in the reaction. In dimensionless units it
can be written as





Vt = b∆V − (F + k)V + UV 2, in Ω
Ut = a∆U + F (1 − U) − UV 2, in Ω
∂U

∂ν
=

∂V

∂ν
= 0, on ∂Ω

,
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where the unknowns U(x, t) and V (x, t) represent the concentrations of the
two biochemicals at a point x ∈ Ω ⊂ R

N, N ≤ 3 at the time t; Ω is a bounded
smooth domain, a, b are the diffusion coefficients of U and V respectively, F
denotes the rate at which U is fed from the reservoir into the reactor, and k is
a reaction-time constant. Various Gray-Scott problems have been intensively
studied in the recent years, with different values of the parameters N, a, b, F,
k and different choices for Ω, (cf. T. Kolokolnikov, J. Wei [65])

Example 12
In [35] and [36], A. Doelman, R.A. Gardner, T.J. Kaper consider the following
system :

∂u

∂t
=

∂2u

∂x2
− uv2 + δ2a(1 − u)

∂v

∂t
= δ2 ∂2v

∂x2
+ uv2 − δβbv,

where x ∈ R, a, b = O(1) with respect to δ and 0 ≤ β < 1

Example 13
In [76], D.S. Morgan and T.J. Kaper study, in R2, stationary ring solutions,
for r ∈ [0, rmax], of the system

∂2U

∂r2
+

1

r

∂U

∂r
= UV 2 − A + AU

D(
∂2V

∂r2
+

1

r

∂V

∂r
) = −UV 2 + BV,

with boundary conditions Ur(0) = Urmax
(0) = Vr(0) = Vrmax

(0) = 0 where
A,B, D, are constants with D ¿ 1.

Example 14 In [65], the following Gray-Scott systems and the associated
stationary system in a bounded smooth domain Ω ⊂ R

N are considered

∂v

∂t
= ε2∆v − v + Auv2

τ
∂u

∂t
= ∆u − (6ε)−1uv2 + (1 − u),

u > 0, v > 0

associated with the boundary condition
∂u

∂ν
=

∂v

∂ν
= 0 on ∂Ω, mostly when

N=2, 3 and Ω is a ball BR of center 0 and radius R; the cases Ω = R
N , or

R
N \ BR, or BR2

\ BR1
are also discussed.

1.14 Hyperbolic secant

Definition 5.

sech(
t

2
) =

2e
t
2

et + 1
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(cf. Z.X. Wang, D.R. Guo [99])
Application

The fisher function

w(y) =
3

2
sech2(

y

2
)

is a solution to the problem:

w” − w + w2 = 0, w(0) = Max
y∈R

w(y) and w(y) → 0 as |y| → ∞.

which appears in the resolution of Gray-Scott problems (see section 1.13, [65]
p.204 and W. Chen, M.J. Ward [21] p.191)

2 From Kirchoff-type equations to Wavefront
sets

2.1 Kirchoff-type equations

2.1.1 The Kirchhoff model

In [63], G. Kirchhoff studies the integro-differntial equation:

utt −


ε2 +

1

2�l
∫ �l

0

u2
sds


 . uss = 0 (27)

which appears in transversal vibrations of an elastic string of length �l. This
Kirchhof model is briefly described in S. Spagnolo [91]. Since then, Kirchhoff-
type equations have been intensively studied in different situations.

2.1.2 The Cauchy problem for a Kirchhoff- type equation

. Let Ω be an open subset of R
n. We note that equation (27) is a particular

case of

utt − ϕ(

∫

Ω

|∇u|2dx)∆u = 0 (28)

where ϕ is a regular function satisfying ϕ(s) ≥ λo > 0,∀s > 0, (In (27) ϕ(s) =

ε2 +
1

2�ls). More generaly, in [91] a Kirchhoff-type equation is defined as:

utt −
n∑

i,j,=1

ϕij

(
||Dβ1u||L2(Ω), ..., ||D

βpu||L2(Ω)

)
uxixj

= 0 (29)
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where the ϕij(s1, ..., sp) are regular functions satisfying

n∑

i,j=1

ϕij(s1, ..., sp)ξiξj ≥ λo|ξ|
2, λo ≥ 0 (30)

and βj ∈ N
n. Being inspired by S.Bernstein’s paper [16], the author investi-

gates, in suitable functional spaces, local in t and global existence, uniqueness
of solutions u to equation (29) associated with initial conditions u(0, x) =
uo(x), ut(0, x) = u1(x), x ∈ Ω, when Ω is an interval of R and u(t, .) is
Ω−periodic, or Ω = R

n.

2.1.3 Pseudo-differential operators of Kirchhoff-type

In [30], P. D’Ancona and S. Spagnolo show the existence of a unique solution,
in a suitable functional space, to the pseudo-differential equation

utt + F
(
||a1(−iDx)u||2L2 , ..., ||ap(−iDx)u||2L2 ;−iDx

)
u = 0 (31)

associated with initial conditions of the form

u(0, x) = εuo(x), ut(0, x) = εu1(x) (32)

where aj(ξ) are smooth functions on R
n\0 satisfying growth conditions, F (s1, ...sp; ξ1, ...ξn)

is a C2 real function defined on R
p × R

n, with |s| ≤ 1, |ξ| 6= 0, and satisfying
for some real numbers ν > 0,m ≥ 1:

F (s; λξ) = λ2mF (s, ξ) ∀λ ≥ 0,

ν2|ξ|2m ≤ F (s, ξ) ≤ ν−2|ξ|2m, |∇ξF (s, ξ)| ≤ ν−1|ξ|2m−1

and ε small enough. A particular case of (31) is the equation:

utt + (−1)m
∑

|α|=2m

fα

(
||Dβ1

x u||2L2 , ..., ||Dβp
x u||2L2

)
Dα

x u = 0 (33)

where fα(s1, ..., sp) are C2 real functions on R
p, satisfying the strict hyperbol-

icity condition

∑

|α|=2m

fα(s1, ..., sp)ξ
α ≥ ν2|ξ|2m, ν > 0 (34)

The simplest example of equation (33) is equation (28), where Ω = R
n.
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2.1.4 Abstract setting of Kirchhoff-type equation

. Let H be a Hilbert space, A a selfadjoint non-negative operator on H, with
dense domain D(A). Then there exists a unique self-adjoint positive operator

A
1
2 such that (A

1
2 )2 = A. (For the definition and properties of Aα, 0 < α < 1,

see, for instance, D. Huet [57], T. Kato [61] or M. Schechter [86]). If H =
L2(Ω), A = −∆, D(A) = H2(Ω) ∩ H1

o (Ω), the equation

utt + ϕ(|A
1
2 u|2)Au = O (35)

becomes equation (28) (| | denotes the norm in H). The abstract Cauchy
problem

u′′(t) + δu′(t) + m(|A
1
2 u(t)|2)Au(t) = 0, t ≥ 0, u(0) = uo, u′(0) = u1 (36)

is investigated in M. Ghisi, M. Gobino [49], where δ > 0 and m : [0, +∞[→
[0,+∞[ is a locally Lipschitz continuous function. When (uo, u1) ∈ D(A) ×

D(A
1
2 ) and under the nondegeneracy condition m(|A

1
2 uo|

2) > 0, existence,
uniqueness, in suitable functional spaces, of u solution to (36), and the asymp-

totic behavior of (u(t), u′(t), u′′(t)), in D(A) × D(A
1
2
) × H, as t → ∞, are

studied.

2.1.5 Singular perturbations in Kirchhoff type equations.

In M. Ghisi, M. Gobino [50], time-decay estimates, as t → ∞, are obtained for
the singularly perturbed Cauchy problem

εu′′
ε + u′

ε + m(|A
1
2 uε|

2)Auε = 0, uε(0) = uo, u′
ε(0) = u1 (37)

and for the first order limit problem

u′ + m(|A
1
2 u|2)Au = O, u(0) = uo (38)

where ε > 0, (uo, u1) ∈ D(A)×D(A
1
2 ) and m is of class C1. Decay estimates are

stated for equation (38) under the nondegeneracy condition |A
1
2 uo|

2m(|A
1
2 uo|

2) >

0, and, for equation (37), under a weaker condition m(|A
1
2 uo|

2) > 0. In this last
case, most of the constants which appear in decay estimates are independent
of ε. A clear comparison with similar previous estimates, obtained by several
authors, is presented

2.2 Lyusternik-Schnirelman category

This category is defined in L.A. Lyusternik, L. Schnirelman [71], (see also
Encyclopaedia of Mathematics [38]). It arises in T. Bartsch, T. Weth [13],
where the number of nodal solutions to a nonlinear elliptic Dirichlet problem
can be expressed as the category of a suitable inclusion between two spaces
which involve the shape of ∂Ω (cf. section 2.8 example 20).
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Figure 4. The α − β plane

2.3 Mathieu-Hill type equations

2.3.1 Mathieu and Hill Equations

The real Mathieu [resp. Hill] equation has the form

y” + (a + b cos 2πx)y = 0

where a and b are constants, [resp.

y” + (a + bq(x))y = 0]

where q is any smooth periodic function of period 1 with mean 0 (see E.A. Cod-
dington, N. Levinson [24] and Z.X. Wang, D.R. Guo [99]). Physical problems
leading to Mathieu or Hill equations often require solutions with periodicity,
called oscillatory solutions . Therefore, to find conditions on the data for which
the above equations have a fundamental system of periodic solutions is a central
problem.

2.3.2 Its Equation

In [59], A.R. Its considers the Schrödinger equation on the positive semi-axis

y” − [xβp(x1+α) + cx−2]y = 0 (39)

where p is a smooth periodic function, with period 1 and mean 0, c is a real
number and the parameters α, β satisfy the relations β−α ≥ −1 and 2α−β > 0
(cf. Figure 4.). He proves that equation (39) has oscillatory solutions when
β > α − 1. If β = α − 1, the solutions are oscillatory or not. In all cases,
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asymptotic formulas for the solutions are stated, as x → ∞. His method is
based on a transformation which leads to a Hill-type equation and Floquet
functions.

2.3.3 Method of diagonalisation

In [17], S. Bodine and D.A. Lutz investigate equation (39) by a general method
of diagonalization with a L1-regularity for p. Set

t = x1+α, ρ(t) =

∫ t

0

p(s)

1 + α
ds, µ =

∫ 1

0

ρ(t)dt, ν =

∫ 1

0

(ρ(t))2dt, (µ2 < ν).

Let

λ1,2 = (
1

2
±

√
c + µ2 − ν +

1

4
)/(1 + α)

be the eigenvalues of a suitable matrix which depends on α, c, µ, ν, and Λ be
the crucial diagonal matrix diag{λ1, λ2}. When β = α − 1, three cases are
studied separately according to λ1 −λ2 belongs to N, does not belong to N0 or
is equal to 0. In each case, very sharp asymptotic formulas are obtained for a
fundamental system of solutions to (39). In particular, when λ1 − λ2 ∈ No, a
logarithmic term appears in the formulas. For instance, when λ1 − λ2 ∈ N the
following formulas are obtained:

y1(x) = xλ1(1+α)[1 +

N−1∑

r=1

p1
r(x

1+α)

xr(1+α)
+ O(

1

xN(1+α)
)] + η(lnx)y2(x)

y2(x) = xλ2(1+α[1 +

N−1∑

r=1

p2
r(x

(1+α)

xr(1+α)
+ O(

1

xN(1+α)
)]

where p1,2
r are scalar valued , bounded, continuous, periodic functions with

period 1 which are recursively calculated. This logarithmic term is missing in
Its formulas.

2.4 Memory (equations with)

In [25], M. Conti, V. Pata and M. Squassina consider the family of equations:

ut − ω∆u − (1 − ω)

∫ ∞

0

kε(s)∆u(t − s)ds + ϕ(u) = f, t > 0

where u : (x, t) ∈ Ω×R → R, the memory kernel k : [0,∞) → R is a continuous

nonnegative function, satisfying the relation
∫ ∞

0
k(s)ds = 1 and kε(s) =

1

ε
k(

s

ε
);

Ω is a smooth bounded domain in R
3, ω ∈ [0, 1), ϕ is a suitable nonlinearity,

and f is a time independent source term, u(x, t) is supposd to be a given datum
for t ≤ 0.
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2.5 Moser-Trudinger inequality

2.5.1 The Moser-Trudinger inequality

The Moser-Trudinger inequality states that:

C(Ω) = sup
u∈H1

o(Ω);||∇u||2=1

∫

Ω

e4πu2

dx < ∞

where Ω is a smooth bounded domain in R
2 (see N.S. Trudinger [98] and J.

Moser [78]).

2.5.2 A sharp form of the Moser-Trudinger inequality

Let λ1(Ω) > 0 be the first eigenvalue of the Laplacian with Dirichlet boundary
conditions in Ω, and

Cα(Ω) = sup
u∈H1

o(Ω),||∇u||2=1

∫

Ω

e4πu2(1+α||u||22)dx (40)

In [2], Adimurthi and O. Druet proved that

Cα(Ω) < +∞ if 0 ≤ α < λ1(Ω)

and
Cα(Ω) = +∞ if α ≥ λ1(Ω)

.
In [101], Y. Yang, shows the existence of an extremal function for which the
supremum, in (40), is attained in the case 0 ≤ α < λ1(Ω).

2.6 Moving planes andd sliding methods

2.6.1 The classical method

The classical method of moving planes is described in J. Serrin [89], and used
to prove the following result: if Ω is a bounded open connected domain in R

n,
whose boundary is of class C2, and if there exists u ∈ C(Ω̄) satisfying ∆u = −1

in Ω ,u = 0 and
∂u

∂n
= constant on ∂Ω, then Ω is a ball.

Example 15
In [15], H. Berestycki and L. Nirenberg used the moving plane and sliding
methods in proving monotonicity or symmetry in the x1 direction for solu-
tions to nonlinear elliptic equations F (x, u, Du,D2u) = 0 in a bounded domain
Ω ⊂ R

n, which is convex in the x1 direction. “Both methods compare values
of the solution of the equation at two different points. In the moving plane
method, one point is the reflection of the other in a hyperplane x1 = λ and
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then, the plane is moved up to a critical position. In the sliding method, the
second point is obtained from the first by sliding the domain in the x1 direction
and the domain is slid up to a critical position ”. Many forms of the maximum
principle are crucial in this paper.

2.6.2 Technique of the domain reflection

A different form of the classical moving plane analysis is used in E.M. Harrell,
P. Kröger, K. Kurata [55]. Let Ω be a bounded open domain in R

n, and P
a hyperplane of dimension n − 1 which intersects Ω. For any connected set S
which does not intersect P , SP denotes its reflection through P . If there exists
a connected component Ωs of Ω\P such that ΩP

s is a proper subset of the other
connected component Ωb of Ω \P, P is called a hyperplane of interior re-
flection for Ω. Moreover Ωs [resp. Ωb] is called the small [resp. big] side of Ω,
and Ω is said to have the interior reflection property with respect to P .

Example 16
Using the technique of the domain reflection, the authors study how to place,
inside Ω, an obstacle or a well in order to minimize or maximize the principal
eigenvalue of the Laplacian operator in Ω with zero Dirichlet boundary con-
dition on the boundary ∂Ω. The obstacle B may be hard (i.e. zero Dirichlet
conditions are additionally imposed on B) or replaced by a central non-negative
[resp. non-positive] function supported by B, i.e. the investigated operator has
the form

−∆ + αχB(x)

where χB is the indicator function of B, and α > 0 [resp. < 0]. Several exam-
ples with very clear figures are presented. Similar problems are studied for the
stationnary Schrödinger operator in Ω.

Example 17
A similar problem is investigated, with the same technique of domain reflection,
in P. Exner, A. Mantile [41]. Here B is replaced by a single point interaction
xo ∈ Ω. The domain Ω is an open set in R

d, d = 2, 3, bounded and connected,
with a piecewise C1 boundary. Let α ∈ R, λ ∈ C \ R. The authors consider a
family of operarors Hα, whose domain is

D(Hα) =
{
ψ ∈ L2(Ω), ψ = Φλ + qGλ

o (., xo), φλ ∈ H2 ∩ H1
o (Ω)

}

and defined by
Hαψ = −∆φλ − λqGλ

o (., xo),

associated with a suitable condition for Φλ(xo), where Gλ
o denotes the green

function of −∆ + λ in Ω, corresponding with homogeneous Dirichlet boundary
conditions on ∂Ω. How to place the point interaction center xo to minimize
the principal eigenvalue of Hα is discussed.
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2.7 N-mode solution

In [81], K. Nakashima, M. Urano and Y. Yamada, consider the following ordi-
nary differential problem :

ε2u”(x) + f(x, u(x)) = 0 x ∈]0, 1[; u′(0) = u′(1) = 0 (41)

where f(x, u) = u(1−u)(u−a(x)); a is a C2[0, 1] function such that 0 < a(x) <
1, a′(0) = a′(1) = 0, and the subsets Σ and Λ of (0, 1) where a(x) = 1

2 and
a′(x) = 0, respectively, are finite sets and a′(x) 6= 0 for any x ∈ Σ. The authors
study the asymptotic behavior, as ε → 0, of n-mode solutions uε of (41) i.e.
solutions such that vε = uε − a has exactly n zero-points in (0, 1), and show
that any transition layer [resp.spike] is located in a neighborhood of a point of
Σ [resp. Λ].

2.8 Nodal

2.8.1 Nodal points, curves, surfaces.

Definition 6. In R. Courant, D. Hilbert [26], they are defined as points
[resp. curves, surfaces], on which some eigenfunctions of a differential problem,
in a domain G ∈ R

N , N = 1 [resp. N = 2, 3], vanishes.

Example 18
In the 1970 edition of [26], p.452, a second order Sturm-Liouville problem is
considered. It is proved that the nodes of the nth eigenfunction un divide the
domain into no more than n subdomains.

2.8.2 Nodal solutions, nodal domains

Example 19
In [56], M. and T. Hoffman-Ostenhof and N. Nadirashvili study the Dirichlet
eigenvalue problem

−∆ui = λiui, i = 1, 2, ... u ∈ H1
o (D),

where D is a bounded domain in R
n, . The nodal set of ui is defined as

N (ui) = {x ∈ D : ui = 0}

The nodal domains of ui are the connected components of D \ N (ui).The
authors construct a domain D ⊂ R

2 on which the second eigenvalue has a
nodal set disjoint from the boundary, whereas the nodal line conjecture, first
mentioned by L.E. Payne [83], stated that

N (u2) ∩ ∂D 6= ∅.
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Example 20
In [13], T. Bartsch and T.Weth consider the nonlinear elliptic Dirichlet problem:

−ε2∆u + au = f(u) in Ω, u ∈ H1
o (Ω) (42)

where Ω is a bounded domain in R
N , N ≥ 2, a > 0, ε is a small positive

parameter, and f grows superlinearly and subcritically. They study the number
of nodal solutions i.e. sign-changing solutions of (42) and their nodal domains
(cf. section 2.2).

2.9 Nonlocal eigenvalue problem

This type of problem arises in the study of the stability of solutions of Gray-
Scott problems under small perturbations of the form eλt(U(x, t), V (x, t)). It
appears in the following form:

y” + f(t)y = Cg(t)

∫ +∞

−∞

h(t)y(t)dt (43)

where f, g, h, are known functions. It is called nonlocal because of the presence,
in the right member of (43), of the nonlocal term

∫ +∞

−∞
h(t)y(t)dt.

Exemple 21
In [35],

f(t) = (
12

cosh2 t
− P ), g(t) =

1

cosh4 t
, h(t) =

1

cosh2 t

Exemple 22
In [76],

f(t) = (12 sinh2 t − P ), g(t) = sech4t, h(t) = sech2t.

(see section 1.13).

2.10 Quasi-periodic Schrödinger operator

In their papers [45] and [46], A. Fedotov and F. Klop study the spectrum of
quasi periodic schrödinger operators of the form

Hz,ε = −
d2

dx2
+ V (x − z) + α cos(εx) (44)

where, α > 0, V ∈ L2
loc(R) is periodic with period 1, z is a real parameter

indexing the equations of the family; ε > 0 is such that 2π
ε

is irrational. Let

Ho = −
d2

dx2
+ V (x)
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Figure 5. Spectral band

be the periodic Schrödinger unperturbed operator. Its spectrum, on L2(R),
consists of the union of intervals [E2n−1, E2n], n ≥ 1, such that En → ∞,
as n → ∞. It is assumed that all the spectral gaps (E2n, E2n+1) are open.
The spectrum of (44), at an energy E, depends on the relative position of the
spectral window F(E) = [E − α,E + α] with respect to the spectrum of Ho.
In [45] four cases are distinguished according as F(E) lies inside or completely
covers a spectral band of Ho (Figure 5 (a) and Figure 5 (b) respectively) or
contains exactly one edge (Figure 5 (c)) or two edges (Figure 5 (d)) of a spectral
band. In each case, under specific additional assumptions, the authors describe
the nature of the spectrum of (44), and state asymptotic formulas, as ε → 0.
In [46], they are interested in the spectrum of (44), in intervals J such that
for all E ∈ J , F(E) covers the edges of two neighboring spectral bands of Ho

and the spectral gap located between them (Figure 5 (d))). Let ΓR be the real
iso-energy curve associated to (44) and γ0, γπ, be the connected components
of ΓR in a periodicity cell. To each of these loops, one associates a sequence
of energies in J, En

a , a = {0, π}, and, near each En
a , an exponentally small

interval In
a such that the spectrum of (44) , in J, is contained in the union

of these intervals. The location and the nature of the spectrum of (44) are
investigated in the union In

0 ∪ Im
π , in the resonant case, i.e. when In

0 and Im
π

intersect each other.

2.11 Resonances

2.11.1 Resonances for a semi-classical Schrödinger operator.

In [11], H. Baklouti and M. Mnif consider the Schrödinger operator

P = h2D2 + V, D = −i
d

dx
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where the potential V satisfies the following assumptions: there exist 0 < θ0 <
π

2
, δ > 0, C > 0, α > 0 such that V is real on R, analytic on S = {x ∈

C; {|Im(x)| < |Re(x)| tan(θo)} ∪ {|Im(x)| < δ}}, |V (x)| ≤ C(1 + |x|)−1−α for
x ∈ S , V has a degenerate maximum Vo > 0 at x = 0, and V (x) = Vo−(k(x))4

where k is analytic in S, with k(0) = 0 and k′(0) 6= 0. The resonances for P
are defined as the complex numbers E 6= 0 for which there exist 0 < θ < θo

and u ∈ L2(Reiθ) such that Pu = Eu and −2θ < argE ≤ 0. The location
and the asymptotic behavior , as h → 0, of the resonances of P are studied.
Asymptotic expansions which involve the eigenvalues of the quartic oscillator

K = −
d2

dx2
+ (k′(0)x)4 are obtained.

2.11.2 Resonant case, in the spectrum of a quasi-periodic Schrödinger
operator

See section 2.10

2.12 Scattering metric

The following definitions are given in R.B. Melrose [74]:

2.12.1 Euclidean metric space

Let Sn
+ = {t = (t1, ..., tn+1) ∈ R

n+1, tn+1 ≥ 0} and SP be the stéréographique
projection

z ∈ R
n → (

z√
1 + |z|2

,
1√

1 + |z|2
) ∈ Sn

+

The image of R
n under this map is the interior of Sn

+. The function x =
1

|z|
=

tn+1√
1 − t2n+1

is a defining function for the boundary of Sn
+, which is defined on

tn+1 < 1 and can be smoothly extented across z = 0. If we identify the collar
neighborhood {0 ≤ tn+1 < 1} of ∂Sn

+ with (0, +∞) × Sn−1 by the mapping

t → (
t′√

1 − t2n+1

,
tn+1√

1 − t2n+1

) = (ω, x),

the euclidian metric becomes

dx2

x4
+

dω2

x2

where dω2 is the standard round metric on Sn−1. Thus, if R
n is replaced by

its compactification, the Euclidian metric becomes a scattering metric.
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2.12.2 The compact manifold case

More generaly, let M be a compact manifold with boundary, and x be a bound-
ary defining function for M i.e. x is a smooth positive function on M such
that x = 0 exactly on ∂M and dx 6= 0 on ∂M. A scattering metric g on M is
a Riemannian metric on the interior of M, which has, near the boundary, an
expression

g =
dx2

x4
+

h

x2

where h is a smooth symmetric 2-tensor on M ,whose restriction to ∂M is a
metric

Applications

See Wavefront sets, section 2.20, Application.

2.13 Sobolev-type spaces M1,p on metric-measure spaces

2.13.1 Definition of a doubling measure

Let (X, d, µ) be a metric space equipped with a Borel regular outer measure
µ. Moreover µ is assumed to be doubling i.e. there exists a constant Cµ > 0
such that 0 < µ(2B) ≤ Cµ µ(B) < ∞ for all ball B ⊂ X. Then, there exists a
constant Co such that

µ(B)

µ(Bo)
≥ Co(

r

ro

)s (45)

whenever Bo = B(xo, ro), B = B(x, r), x ∈ Bo, 0 < r ≤ ro, s = log2(Cµ) The
smallest constant s for which (45) holds is called the doubling dimension of µ.

2.13.2 Space M1,p(X), definition, properties

The space M1,p(X), 0 ≤ p < ∞ is the space of u ∈ Lp(X) such that there
exists a generalized gradient g ∈ Lp(X), g ≥ 0 with

|u(x) − u(y)| ≤ d(x, y)(g(x) + g(y)),

µ-almost every where in X. Equipped with the norm

||u||1,p = (||u||pLp + inf
g
||g||pLp

)

1

p ,

M1,p(X)is a Banach space if p ≥ 1. These spaces were defined by P. Hajlasz
[53]. A good introduction to these spaces and other Sobolev type spaces on
metric measure spaces, and applications such as geometric analysis, quasi con-
formal mappings, non-linear subelliptic equations, differential geometry, anal-
ysis of graphs, are presented in P. Hajlasz [54]. Pointwise behavior such as
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Lebesgue points, Hölder continuity, for M1,p functions have been studied by
P.Hajlasz and others. In particular, the case p = 1 was studied recently by
J. Kinunen, H. Tuominen [62]. We recall that M1,p(Rn) coincide with the
usual Sobolev space W 1,p(Rn) if p > 1. This is not true for p = 1. And the
Hardy-Littlewood maximal operator M defined by:

Mh(x) = sup
r>0

1

µ(B(x, r))

∫

B(x,r)

|h|dµ

is bounded in Lp(X) for p > 1, but is not bounded in L1(X).

2.14 Steklov eigenproblems

2.14.1 Steklov and membrane eigenvalues

See J.R. Kuttler, V.G. Sigillito [68]. Steklov eigenvalues are interpreted physi-
cally as the natural frequencies of a vibrating membrane with its mass concen-
trared around the edge. Three Steklov eigenvalue problems:

∆u = 0 on D,
∂u

∂n
= pu on ∂D

∆2u = 0 on D,
∂u

∂n
=

∂∆u

∂n
+ ξu = 0 on ∂D

∆2u = 0 on D, u = ∆u − q
∂u

∂n
= O on ∂D

and two membrane eigenvalue problems:

∆u + λu = 0 on D, u = 0 on ∂D (fixed membrane)

∆u + µu = 0 on D,
∂u

∂n
= 0 on ∂D (free membrane)

are considered on a bounded, smooth domain D ⊂ R
2. The authors obtain

sharp relationships connecting the first non-zero eigenvalues p2, ξ2, q1 of Steklov
problems and membrane sigenvalues.

2.14.2 The harmonic Steklov eigenproblem

A function s ∈ H1(Ω) is said to be a harmonic Steklov eigenfunction on Ω
corresponding to the Steklov eigenvalue δ, if s satisfies:

∫

Ω

∇s.∇v dx = δ|∂Ω|−1

∫

∂Ω

sv dσ, ∀v ∈ H1(Ω).

Here Ω is a smooth bounded domain in R
n, cf. G. Auchmuty [9]. This problem

arises, in particular, as a model for the sloshing of a perfect fluid in a tank.
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2.14.3 Applications

. In [10], G. Auchmuty uses harmonic Steklov eigenfunction expansion to
characterize the trace spaces Hs(∂Ω), under quite general conditions on Ω and
its boundary, see section 2.16.

2.15 Strichartz-type inequality

2.15.1 Strichartz’s inequality

In [92], R.Strichartz considers the solution u(x, t) of

iut + ∆u = g(x, t), (x, t) ∈ R
n × R, u(x, 0) = f(x)

where f ∈ L2(Rn), g ∈ Lp(Rn+1) with p = 2(n+2)
n+4 . He shows that u ∈ Lq(Rn+1)

for q = 2(n+2)
n

and satisfies the inequality

‖u‖q ≤ C(‖f‖2 + ‖g‖p)

2.15.2 Strichartz-type inequalities

Since then, Strichartz-type inequalities have been proved by several authors
in different situations. In [84], L. Robbiano, C. Zuily study the initial value
problem:

ı
∂u

∂t
− Pu = 0 , u(., 0) = uo ∈ L2(Rn)

where

P =

n∑

j,k=1

D(g
jk(x)Dk) +

n∑

=1

(Djbj(x) + bj(x)Dj) + V (x), Dj =
1

ı

∂

∂xj

The assumptions are: the coefficients gjk = gkj , bj and V are real valued, bj

and gjk − δjk belong to the space Bσo of symbols which decay like 〈x〉−1−σo ,

δjk is the kronecker symbol, 〈x〉 = (1+ |x|2)
1
2 ), V ∈ L∞(Rn), there exists ν > 0

such that, for every (x, ξ) ∈ R
n ×R

n, the principal symbol p(x, ξ) of P satisfies
p(x, ξ) ≥ ν|ξ|2; moreover, the bicharacteristic flow associated to p(x, ξ) is not
trapped backward not forward. Let T > 0 and (q > 2, r) be a couple of real
numbers verifying 2

q
= n

2 − n
r
, then the existence of a constant C > 0 such that

‖e−itP uo‖(Lq [−T+T ],Lr(Rn)) ≤ C‖uo‖L2(Rn)

for all uo ∈ L2(Rn), is proved.
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2.16 Trace space Hs(∂Ω): an intrinsic Steklov eigenfunc-
tion expansion definition

The following result is proved in [10] (cf.section 2.14). Let Ω be a bounded,
connected, open subset of R

n, whose boundary ∂Ω satisfies quite general con-
ditions; in particular, ∂Ω may be the union of a finite number of disjoint closed
Lipschitz surfaces, each surface having finite area. The usual real sobolev
space H1(Ω) is equipped with the inner product (u, v)∂ =

∫
∂Ω

∇u.∇v dx +
|∂Ω|−1

∫
∂Ω

uv dσ. Denote by Γ the trace map H1(Ω) → L2(Ω). Let 0 = δo <
δ1 ≤ ... ≤ δj ≤ ... [resp. sj , j ≥ 0] be the harmonic Steklov eigenvalues [resp.
the correponding ∂−orthonormal eigenfunctions], and ŝj =

√
1 + δjΓsj . The

following definition is given, for s ≥ 0:

Hs(∂Ω) = {g ∈ L2(∂Ω);

∞∑

j=0

(1 + δj)
2s|gj |

2 < ∞},

where gj = |∂Ω|−1
∫

∂Ω
gŝj dσ, equipped with the natural inner product. These

spaces satisfy the same properties as the usual trace spaces (see J-L. Lions, E.
Magenes [69]). For s < 0, Hs(∂Ω) is defined by duality.

2.17 Trudinger condition

Characterisation of a class of potentials

Let H = −∆ + Q be the Schrödinger operator in L2(Rn), where the potential
Q belongs to the L. Schwartz’s space of distributions D′(Rn) (cf. L. Schwartz
[87]). In [73], V. G. Mazya and I. E. Verbisky give a characterization of the
Trudinger condition (see N.S. trudinger [97]) (Pβ , β > 0), for Q i.e. there exists
εo > 0 and c > 0 such that , for every ε ∈ (0, εo), we have:

|〈Q, |u|2〉| ≤ ε‖∇u‖2
L2(Rn) + cε−β‖u‖2

L2(Rn) ∀u ∈ D(Rn)

Let Bδ(xo) be the ball of radius δ centered at xo, They prove that potentials
Q which satisfy (Pβ) are characterized by the decomposition:

(1) Q = div ~Γ + γ, ~Γ ∈ [L2
loc(R

n)]n, γ ∈ L1
loc(R

n),

with the condition: there exists δo > o such that, for δ ∈ (0, δo),

∫

Bδ(xo)

|~Γ(x) − ~m(~Γ)|2dx ≤ cδn−2 β−1

β+1 and

∫

Bδ(xo)

|γ(x)|dx ≤ cδn− 2β
β+1 ,

where ~m(~Γ) denotes the mean value of ~Γ on Bδ(xo) and c is independent of xo

and δo.
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2.18 Ultraparabolic equations

Definition 7. A linear ultraparabolic equation is an equation of the form

m∑

1

ki(x, t)vti
=

n∑

i,j=1

aij(x, t)vxi,xj
+

n∑

i=1

bi(x, t)vxi
+ c(x, t)v + f(x, t)

where x = (x1, ...xn) ∈ R
n, t = (t1, ...tm) ∈ R

m, m ≥ 2 and

n∑

i,j=1

aij(x, t)ξiξj ≥ ao

n∑

i=1

ξ2
i

with ao > 0, for every ξ ∈ R
n and for all values (x, t) in some domain QT .

2.18.1 Singularly perturbed Regularized parabolic problem

The following problem

Lv = vt + k(x, y, t)vy − a(x, y, t)vxx − b(x, y, t)vx − c(x, y, t)v = f(x, y, t) (46)

has been, recently, studied by D. R. Akhmetov, M.M. Lavrentiev and R.
Spigler with the condition of periodicity v|y=0 = v|y=1 and the initial condition
v(x, y, 0) = ϕ(x, y), on different domains. Equation (46) is an ultraparabolique
equation with y = t1, t = t2. The coefficients in L and f [resp.ϕ] are defined
on R × R × [0, T ] [resp. R

2], are smooth enough and y periodic with period
1. In D.R. Akhmetov, R.Spigler [6], QT = R × [0, 1] × [0, T ]. The singularly
perturbed regularized parabolic problem

Luε − εuε
yy = f(x, y, t) in QT

(uε, uε
y)|y=0 = (uε, uε

y)|y=1, uε(x, y, 0) = ϕ(x, y)

is introduced and it is proved that it does not have any boundary layer, as ε → 0.
Then ε-uniform estimates of uε are obtained in suitable functional spaces, ac-
cording to the regularity and decay assumptions on f , ϕ, and the coefficients in
L. The limit of uε as ε → 0, leads to a solution v of problem (46), which belongs
to the anisotropic Sobolev space W 3,2,1(QT ), and the anisotropic Hölder space

Cλ,λ, 1
12 (QT ∩ {x ∈ [−K, K]} for λ ∈ (0, 1) and K > 0. Moreover, estimates

of the form |v(x, y, t)| ≤ Cpe
−p|x|,∀p > 0 or |v(x, y, t)| ≤

Cm

1 + |x|m
,m = 0, 1...

hold in QT . Similar results were obtained previously, for problem (46), by
D.R. Akhmetov, M.M. Lavrentiev, R.Spigler [5], where QT = [0, 1]2 × [0, T ]
with additional boundary conditions on v. Other examples and applications to
Markov processess, atomic physics, transport theory, chemistry, hydrodynam-
ics, are mentioned in loc.cit. and references there.
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2.18.2 A Fokker-Plank type equation

(See section 1.11). In [6], the authors consider the non linear equation

∂ρ

∂t
=

∂2ρ

∂ω2
+

∂

∂ω
[(ω − Ω −K(θ, t))ρ] − ω

∂ρ

∂θ
,

in the unbounded domain QT = {(θ, ω, t, Ω) ∈ [0, 2π]×R×[O, T ]×[−G, G]}, as-
sociated with the boundary and initial data ρ|θ=0 = ρ|θ=2π, ρ|t=0 = ρo(θ, ω, Ω).
Here

K(θ, t) = K

∫ +G

−G

∫ +∞

−∞

∫ 2π

0

g(Ω) sin(ϕ − θ)ρ(ϕ, ω, t, Ω)dϕdωdΩ.

The authors prove that the solution obtained in [3] satisfies the estimate |ρ(θ, ω, t, Ω) ≤

Ce−Mω2

.

2.19 Virtual eigenvalue

In [8], J. Arazy and L. Zelenko consider the high order Schrödinger operator
in L2(Rd):

Hγ = (−∆)l + γV (x)

where 2l ≥ d, x → V (x) is a real-valued, non negative, continuous function
which tends to 0 sufficiently fast, as |x| → ∞, and γ is a small negative coupling
constant. They study the virtual eigenvalues of Hγ i.e. the negative eigenvalues
which are born at the moment γ = 0 from the end point λ = 0 of the gap
(−∞, 0) of the spectrum of −(∆)l (cf. section 1.3).

2.20 Wavefront sets

2.20.1 The wavefront set of a distribution

(See F. Treves [96]). Let Ω be an open set in R
n. A distribution u ∈ D′(Ω) (cf.

L. Schwartz [87]) is said to be C∞ in a neighborhood of (xo, ξo) ∈ Ω×(Rn\{0}),
if there exits a function g ∈ D(Ω), g ≡ 1 in a neigborhood U of xo and an open
cone Γo in R

n containing ξo such that:

∀M ≥ 0, ∃CM ≥ 0 such that |(̂gu)(ξ)| ≤ CM (1 + |ξ|)−M , ∀ξ ∈ Γo.

Here (̂gu)(ξ) is the Fourier transform of gu ∈ E ′(Ω), and a cone is a subset of
R

n, stable under the dilatations ξ → ρξ, ρ > 0.
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2.20.2 Wavefront set and the Weyl quantization

For the change of quantization see A. Martinez [72]. For a(x, ξ) ∈ C∞(Rd×R
d),

its Weyl quantization, for u ∈ S(Rd), is denoted by

aw(x, Dx)u(x) = (2π)−d

∫ ∫
ei(x−y).ξa(

x + y

2
, ξ)u(y)dydξ

Let u ∈ S ′(Rd), then, (x, ξ) /∈ WF (u), ξ 6= 0 if and only if there exists ϕ ∈
D(R2d) such that ϕ(x, ξ) 6= 0 and

||ϕw(x, hDx)u|| ≤ CNhN , h ∈ (0, 1]

for any N ∈ Z+, where ||.|| denotes the L2 norm.

2.20.3 Homogeneous wavefront set

The notion of homogeneous wavefront set was introduced by S. Nakamura [80].
Let u ∈ S ′(Rd), then (x, ξ) ∈ R

2d \ 0 is not in the homogeneous wavefront set
of u, denoted by HWF(u), if and only if there exists ϕ ∈ D(R2d) such that
ϕ(x, ξ) 6= 0 and

||ϕw(hx, hDx)u|| ≤ CNhN , h ∈ (0, 1]

for any N ∈ Z+

2.20.4 Application

In [58], K. Ito studies the propagation of singularities, in terms of wavefront
sets, for the solution ut = e−itHuo to the time-dependent Schrödinger equation

i
du

dt
= Hu, H =

1

2
∆ + V, u(0) = uo ∈ L2(Rn)

where ∆ is the Laplace-Beltrami operator with respect to a scattering met-
ric g given on Sn

+ (cf. section 2.12), and V is a smooth subquadratic po-
tential. Suppose (zo, ζo) ∈ T ∗(Rn) is backward nontrapping and let ω− =

− lim
t→−∞

z(t; zo, ζo)

|z(t; zo, ζo)|
, where z(t; zo, ζo) is solution of the Hamilton equations. It

is proved that, if there exists to > 0 such that (−toω−, ω−) /∈ HWF (uo), then
(zo, ζo) /∈ WF (uto).
I mention the notion of quadratic scattering wavefrontset introduced in
R.B. Melrose [74] and also used in [58].
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Figure captions
Figure 1. The Cantor set p. 3
Figure 2. The Sierpinski gasket p. 13
Figure 3. The Sierpinski carpet p. 13
Figure 4. The α − β plane p.24
Figure 5. Spectral band p.30
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