Denise Huet 
email: denise.huet@iecn.u-nancy.fr
  
Institut Elie 
  
Cartan Nancy 
  
A survey of topics in analysis and differential equations

Keywords: AMS Subject Classification: 3502, 4602, 4702 Attractors, Fractals, Evolution equations and systems, Elliptic equations, Schrödinger operator, Spectral theory, Singular perturbations, Internal and boundary layers, Spaces of functions

This survey (or essay) is the result of reflexions suggested by recent publications. The topics, which are dealt with, are related to linear or nonlinear evolution equations, of first or second order in the timevariable, linear and nonlinear elliptic equations, spectral properties, singular perturbations, formation of layers, and spaces of functions, in particular of BMO or Sobolev type. They are presented in the alphabetical order, so that the article can be used as a dictionary. The aim of this document is to provide guidance for (young) researchers in mathematics and applied sciences, biology, chemistry, mechanics and physics.

Introduction

For convenience, the article is divided into two sections as follows 1 From Attractor to Hyperbolic secant 1.1 Attractor 1.1.1 Attractor of an iterated function system in fractal geometry See K. Falconer [START_REF] Falconer | Fractal geometry, Mathematical foundations and applications[END_REF] and [START_REF] Falconer | Techniques in fractal geometry[END_REF]. Let X be a closed subset of R n . An iterated function system is a family of contractions {F 1 , ..., F m } on X, m ≥ 2. Let (S, d) be the complete metric space of compact subsets of X equipped with the distance d(A, B) = inf{δ : A ⊂ B δ and B ⊂ A δ }

where A δ is a δ-neigbourhood of A, and define the map

A ∈ S → F (A) = m i=1 F i (A) ∈ S
Then, F is a contraction, and thanks to the fixed point theorem (cf. L. Schwartz [START_REF] Schwartz | Analyse, Topologie Générale and analyse fonctionnelle[END_REF]) there exists a unique compact set E ∈ S such that

F (E) = m i=1 F i (E) = E.
The compacet set E, which is often a fractal set, is called the attractor of the iterated function system {F 1 , ..., F m }. Moreover, for all A ∈ S, F k (A) → E for the metric d, as k → ∞, and

F (E) = ∞ k=1 F k (A)
for all A ∈ S, such that F i (A) ⊂ A for all i . The sets E k = F k (A) are called pre-fractals for E.

Example 1:

X = [0, 1], F 1 (x) = 1 3 x, F 2 (x) = 1 3 x + 2 3
. Then, the attractor of the system {F 1 , F 2 } is the Cantor set (cf. E.C. Titchmarsh [START_REF] Titchmarsh | The Theory of Functions[END_REF] and Figure 1) 

be the abstract form of an autonomous evolution equation. It is assumed that the Cauchy problem (1) has a unique solution. Here u o and u(x, t), ∀t ≥ 0, belong , for example, to a Banach or metric space E. Let {S(t)} = {S(t), ∀t ≥ 0} be the corresponding (nonlinear) semigroup of operators such that u(x, t) = S(t)u o (x), ∀t ≥ 0. A set A ⊂ E is a global attractor of (1) or of {S(t)} if A is compact, S(t)A = A, ∀t ≥ 0, and for each bounded set B ⊂ E, A attracts B, i.e. dist E (S(t)B, A) → 0 as t → ∞, where dist E denotes the Hausdorff semidistance (cf. section 1.9). In fact, A attracts the solutions u(x, t) = S(t)u o (x) to (1) as t → ∞, uniformly with respect to bounded initial data u o (x). The global attractor of equation ( 1) describes all the possible limits of its solutions (cf. V.V. Chepyzhov, M.I. Vishik [START_REF] Chepyzhov | Attractors for Equations of Mathematical Physics[END_REF])

Example 2 In [START_REF] Amroui | Global existence and maximal attractor of facilitated diffusion model[END_REF], S. Amraoui and H. Labani study the following reaction-diffusion system:

∂u i ∂t -d i ∆u i = f i (u) in Ω×]O, T [, 1 ≤ i ≤ 3 (2) 
associated with the boundarycondition

(1-λ)u i (t, x)+λ ∂u i ∂ν (x, t) = α i (x), x ∈ γ, t ∈]O, T [, 1 ≤ i ≤ 3, 0 ≤ λ < 1, (3) 
and the initial condition

u(x, 0) = u o (x) x ∈ Ω, (4) 
where Ω is a bounded subset of R n , n ≥ 1, with a smooth boundary γ, T > 0,

u i ≥ 0, d i > 0, f 1 (u) = f 2 (u) = -f 3 (u) = u 3 -u 1 u 2 , α i (x) > 0.
Under suitable hypotheses on the data, they construct a global attractor M ⊂ E of the system (2)- [START_REF] Akhmetov | Existence and uniqueness of classical solutions to certain nonlinear integro-differential Fokker-Planck type equations[END_REF],where

E = {v = (v 1 , v 2 , v 3 ) ∈ (L ∞ (Ω)) 3 , v i ≥ 0, 1 ≤ i ≤ 3)} equipped
with the norm 

S(t) in H. Let χ ⊂ H be a compact invariant set containing A. A compact set E ⊂ χ is called an exponential attractor for S(t) restricted to χ if: i)E is invariant for S(t) , ii)The fractal dimension (cf. section 1.7) of E in H is finite, iii)There exist K χ ≥ 0 and χ > 0 such that dist H (S(t)χ, E) ≤ K χ e -χt , t ≥ 0.
The set χ is called the basin of attraction of E (see S. Gatti, M. Grasselli, V. Pata [START_REF] Gatti | Exponential attractors for a phasefield model with memory and quadratic nonlinearities[END_REF]).

Example 3

In [START_REF] Conti | Singular limit of differential systems with memory[END_REF], M. Conti, V. Pata and M. Squassina are interested in the convergence, in an appropriate sense, as → 0, of the solution u (x, t), x ∈ Ω, t ∈ R to problem (p ):

u t -ω∆u -(1 -ω) ∞ 0 k (s)∆u(t -s)ds + ϕ(u) = f, t > 0,
with Dirichlet boundary conditions on the boundary of the smooth bounded domain Ω in R 3 , ω > 0, ϕ is a suitable nonlinearity, f is a time independent source term , and the memory kernel k converges to the Dirac distribution at the origin (see section 2.4), u(x, t) is supposed to be a given datum for t ≤ 0. Let

A = -∆ on L 2 (Ω) with domain D(A) = H 1 o (Ω) ∩ H 2 (Ω), H r = D(A r 
2 ), r ∈ R. Following C. Dafermos [START_REF] Dafermos | Asymptotic stability in viscoelasticity[END_REF] and M. Grasselli and V. Pata [START_REF] Grasselli | Uniform attractors of nonautonomous dynamical systems with memory[END_REF], they introduce, under additional assumptions on k, ϕ, f, (ϕ(x) = x 3 -x is allowed), the auxiliary variable

η t (x, s) = s o u(x, t -y)dy, the functions µ(s) = -(1 -ω)k ′ (s), µ (s) = 1 2 µ( s ), the Hilbert spaces M r = L 2 µ (R + , H r+1 ) and H r = H r ×M r for > 0, H r o = H r .
The correct reformulation of p , in the frame work of dynamical systems, is( P

) : find (u , η ) ∈ C([0, ∞), H o ) solution to u t + ωAu + ∞ o µ (s)Aη(s)ds + ϕ(u) = f, ∂ t η = -∂ s η + u for t > 0, associated with the initial condition (u o , η o ) ∈ H o .
The existence, for > 0, of a strongly continuous semi-group S (t) on H o corresponding to P and of an exponential attractor E for S (t) are proved. The convergence of E is also studied.

1.1.3.2

The metric space case Definition 3. Let E be a metric space, X be a compact subset of E and {S(t)} t≥0 be a continuous semi-group on E. A compact set M is called an exponential attractor for S(t) for the topology of E if S(t)M ⊂ M, ∀t ≥ 0, the fractal dimension of M is finite , and there exists a constant c > 0 such that, for every bounded set B ⊂ X there exists a constant c 1 (B) such that: dist E (S(t)B, M) ≤ c 1 e -ct ∀t ≥ 0 (see A. Bonfoh, M. Grasselli, A. Miranville [START_REF] Bonfoh | Long-time behavior of a singular perturbation of the viscous Cahn-Hilliard-Gurtin equation[END_REF]).

Example 4: The Cahn-Hilliard-Gurtin equation In [START_REF] Bonfoh | Long-time behavior of a singular perturbation of the viscous Cahn-Hilliard-Gurtin equation[END_REF], the authors study the Cahn-Hilliard-Gurtin type problem

Aρ = ∂ρ ∂t -d . ∇ ∂ρ ∂t -div B∇ ∂ρ ∂t -αB∇∆ρ + B∇f ′ (ρ) = 0 (5) on Ω = n i=1 (0, L i ), L i > 0, n ≤ 3, [resp. its singular perturbed problem ∂ 2 ρ ∂t 2 + Aρ = 0] (6) 
associated with the conditions : ρ is Ω-periodic and

ρ| t=0 = ρ o , (7) 
[resp [START_REF] Amroui | Global existence and maximal attractor of facilitated diffusion model[END_REF] and

∂ρ ∂t = ρ 1 ] .
Here d∈ R n , α > 0, B, B, are two positive definite n×n matrices with constant coefficients and f is a double-well-like potential. They prove the existence of a family of exponential attractors M in the Banach space H = H 1 per × (H 1 per ) ′ equipped with a norm which depends on , for the semigroup S (t) associated to the perturbed problem and study the convergence of M to an exponential attractor associated to the unperturbed problem ( 5)- [START_REF] Amroui | Global existence and maximal attractor of facilitated diffusion model[END_REF]. See, also, the examples in section 1.6

1.2 Aubry-type sets

History

Aubry-type sets are a part of the Aubry-Mather theory. A good introduction to the theory can be found in O. Knill [START_REF] Knill | Jürgen moser, selected chapters in the calculus of variations[END_REF]. An historic of the theory, which started in 1924 with M. Morse [START_REF] Morse | A fundamental class of geodesics on any closed surface of genus greater than one[END_REF], and perspectives of new developments in different domains of mathematics and physics are presented in the review , by V. Bangert [12], of the lecture notes [START_REF] Knill | Jürgen moser, selected chapters in the calculus of variations[END_REF].

Applications to elliptic perturbations of Hamilton-Jacobi equations

In [START_REF] Camilli | A note on singular perturbation problems via Aubry-Mather theory[END_REF], F. Camilli and A. Cesaroni consider the singular perturbation problem

-∆v + H(x, ∇v ) -c(x) = 0 in D v = g(x) on ∂D (8) 
under the following assumptions: D is a bounded set with Lipschitz boundary in R n , H(x, p) is a continuous, Lipschitz continuous in x, convex and coercive in p Hamiltonian, H(x, 0) ≤ 0 and the critical value of H is 0, c : D → R is a continuous nonnegative function, g is a continuous function on ∂Ω. The limit problem i.e. the Hamilton-Jacobi problem:

H(x, ∇v) = 0 in D, v(x) = g(x) on ∂D (9) 
has, in general, many viscosity solutions (cf. P.L. Lions [START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations[END_REF]). As in several previous papers, in particular A. Eizenberg [START_REF] Eizenberg | Elliptic perturbations for a class of hamilton-Jacobi equations[END_REF], A. Siconolfi [START_REF] Siconolfi | Metric character of Hamilton-Jacobi equations[END_REF], and A. Fathi, A.

Siconolfi [START_REF] Fathi | PDE aspects of Aubry-mather theory for quasiconvex Hamiltonians[END_REF], the authors introduce the convex set Z(x) = {p ∈ R n |H(x, p) ≤ 0}, x ∈ D, the support fuction σ(x, . ) of Z(x) and the distance

S(x, y) = inf { 1 0 σ(Φ(s), . Φ(s))ds, Φ ∈ C x,y },
where C x,y is the set of W Φ n (s))ds} = 0. In fact, A behaves as an hidden boundary on which a datum must be fixed to have existence and uniqueness for problem [START_REF] Auchmuty | Steklov eigenproblems and the representation of solutions of elliptic boundary value problems[END_REF]. Namely if g is a real function, defined and continuous on ∂D ∪ A, such that -S(y, x) ≤ g(x)g(y) ≤ S(y, x) for x, y ∈ ∂D ∪ A, there exists a unique viscosity solution u to (9) such that u(x) = g(x) on ∂D∪A. Moreover, if A satisfies additional conditions, and if ∇v is bounded by a constant independent of , then v , solution to [START_REF] Arazy | Virtual eigenvalues of high order Schrödinger operator[END_REF], converges uniformly to the maximal viscosity solution G(x) = min y∈∂D {g(y) + S(y, x)} to (9), as → 0.

Examples of hamiltonians of the forms

H(x, p) = |p| 2 2 -b(x) . p, H(x, p) = -b(x) . p + K(x, p)
, and the Eikonal Hamiltonian H(x, p) = F (p)f (x), for which the above results hold, are investigated.

Birman-Schwinger operator

Definition 4. Consider the Schrödinger operator

H γ = H o + γV (x), H o = (-∆) l (10) 
acting on L 2 (R d ), 2l ≥ d, where x → V (x) is a real-valued continuous function defined on R d which is non-negative, and tends to zero sufficiently fast as |x| → ∞, γ is a small negative coupling constant. The operator H o is self adjoint and its spectrum is σ o = [0, +∞). The Birman-Schwinger operator associated to [START_REF] Auchmuty | Spectral characterization of the trace spaces[END_REF] is the operator

X V (λ) = V 1 2 R λ (H o )V 1 2 , where R λ (H o ) is the resolvent of H o in (-∞, 0). For each λ ∈ (-∞, 0), X V (λ)
is self adjoint and compact (cf. J. Arazy, L. Zelenko [START_REF] Arazy | Virtual eigenvalues of high order Schrödinger operator[END_REF]).

Application

In [START_REF] Arazy | Virtual eigenvalues of high order Schrödinger operator[END_REF] , the authors consider the decomposition X V (λ) = Φ(λ) + T (λ), where Φ(λ) is a finite rank operator and T (λ) an Hilbert-Schmidt operator whose norm is uniformly bounded with respect to λ ∈ (-δ, 0) for some δ > 0. An asymptotic expansion of the bottom virtual eigenvalue λ o (γ) of H γ , as γ < 0 tends to zero, is deduced from this decomposition: if d is odd, it is of power type, while, when d is even , it involves the log function. Asymptotic estimates are obtained, as γ ↑ 0, for the non-bottom virtual eigenvalues of

H γ , {λ k (γ), k ∈ Z d + ; 0 < |k| ≤ m}, where m = l -d+1 2 if d is odd and m = l -d 2 if d is even. If d is odd, Φ(-t 2l
) is a meromorphic operator function, and the leading terms of the asymptotic estimates of λ k (γ) are of power type. An algorithm, based on the Puiseux-Newton diagram (cf. H. Baumgärtel [START_REF] Baumgärtel | Analytic perturbation theory for matrices and operators, Operator Theory[END_REF]), is proposed for an evaluation of the leading coefficients of these estimates. If d is even, two-sided estimates are obtained for eigenvalues with an exponential rate of decay; the rest of the eigenvalues have a power rate of decay. Estimates of Lieb-Thirring type are obtained for groups of eigenvalues which have the same rate of decay, when d is odd or even.

1.4 BMO and related spaces

1.4.

Definitions

The definitions of the following spaces are recalled in J. Xiao [START_REF] Xiao | Homothetic variant of fractional Sobolev space with application to Navier-Stokes system[END_REF]. space (cf. F. John, L. Nirenberg [START_REF] John | On functions of bounded mean oscillation[END_REF]) is the space of localy integrable complexvalued functions f defined on R n , n ≥ 2, such that

||f || BM O = sup I ( l(I )) -n I |f (x) -f ( I | 2 dx 1 2 < ∞. 1.4.1.2 Q α spaces For α ∈ (-∞, ∞) , Q α (R n )
is the Banach space of all measurable complex-valued functions on R n , modulo constants, such that

||f || Qα = sup I ( l(I )) 2α-n I I |f (x) -f (y)| 2 |x -y| n+2α dxdy 1 2 < ∞.
(cf. M. Essen, S. Janson, L. Peng, J. Xiao [START_REF] Essen | Q spaces of several real variables[END_REF]).

1.4.1.3 . L 2 α , α ∈ (0, 1) The homogeneous Sobolev space . L 2 α (R n ) is the space of complex-valued functions f such that ||f || . L 2 α = R n R n |f (x) -f (y)| 2 |x -y| n+2α dxdy 1 2 < ∞ 1.4.1.4 L 2,n-2α , α ∈ (0, 1). It is the space of measurable complex-valued functions f on R n such that ||f || L2,n-2α = sup I l(I )) 2α-n I |f (x) -f ( I | 2 dx 1 2 < ∞ 1.4.1.5 Space Q -1 α;T , α ∈ (0, 1), T ∈ (0, ∞) A temperated distribution f on R n belongs to this space provided ||f || Q -1 α;T = sup x∈R n ,r∈(0,T ) r 2α-n r 2 0 |y-x|<r |e t∆ f (y)| 2 t -α dydt 1 2 < ∞
where e t∆ (x, y) is the heat kernel. [START_REF] Strichartz | Bounded mean oscillation and Sobolev space[END_REF]). In [START_REF] Xiao | Homothetic variant of fractional Sobolev space with application to Navier-Stokes system[END_REF], when α ∈ (0, 1), it is proved that 1) α;∞ if and only if there are f j ∈ Q α such that f = n j=1 ∂ j f j .

Relations between these spaces

For α ∈ R, f ∈ S ′ (R n ), modulo polynomials, (-∆) -α 2 f = F -1 ( ξ| -α f (ξ) = I αf (cf. R. Strichartz
Q α = (-∆) -α 2 L 2,n-2α , 2) . L 2 α = (-∆) -α 2 L 2 , 3) Q -1 α;∞ = ∇ . (Q α ) n

Bounded variation (functions of )

Several equivalent definitions of functions of bounded variation are well known (see e.g. E.C. Titchmarsh [START_REF] Titchmarsh | The Theory of Functions[END_REF] and H. Brezis [START_REF] Brezis | Analyse Functionnelle, Théorie et Applications[END_REF]). Let Ω ⊂ R d be an open set with a smooth boundary. [START_REF] Davil | On an open question about functions of bounded variation, Calculus of Variations and Partial Differential Equations[END_REF], the following property of |f | BV is proved: there exists a positive constant K, which depends on d, such that, for every family of non negative radial mollifiers

1.5.1 Space BV (Ω, R q ) A function f ∈ L 1 loc (Ω, R q ) has a bounded variation i.e. f ∈ BV (Ω, R q ), if ∇f is a Radon measure of finite total mass. Let |f | BV = Ω |∇f | be a BV-semi- norm. In J. Davila
ρ ∈ L 1 loc ((0, ∞), R + ) satisfying ∞ 0 ρ (r)r d-1 dr = 1 and lim →0 ∞ δ ρ (r)r d-1 dr = 0 ∀δ > 0, we have lim →0 Ω 2 |f (x) -f (y)| |x -y| ρ (|x -y|)dxdy = K|f | BV , ∀f ∈ BV (Ω, R q ).

Application

In [START_REF] Merlet | Two remarks on liftings of maps with values into S 1[END_REF], B. Merlet shows, by means of the above property

of |f | BV , that, if u ∈ BV (Ω, S 1 ), there exists a lifting ϕ ∈ BV (Ω, R) of u (i.e. u(x) = e iϕ(x) , ∀x ∈ Ω) such that |ϕ| BV ≤ 2|u| BV .

Cahn-Hilliard-Gurtin equation

After the initial Cahn-Hilliard equation:

∂ρ ∂t = κ∆[f ′ (ρ) -α∆ρ],
α > 0, κ > 0, which governs the evolution of the order parameter ρ(x, t), where f (ρ) is the coarse-grain free energy. (cf. J.W. Cahn [START_REF] Cahn | On spinodal decomposition[END_REF]), generalized in M.E. Gurtin [START_REF] Gurtin | Generalized Ginsburg-Landau and Cahn-Hilliard equations based on a microforce balance[END_REF], several generalizations have been studied , mostly in relation with attractors and singular perturbations.

Example 5

In [START_REF] Debussche | A singular perturbation of the Cahn-Hilliard equation[END_REF], A. Debussche, studies the Cahn-Hilliard problem (P)

Au = ∂u ∂t + ν∆ 2 u -∆f (u) = 0 in Ω × R +
where u(x, t) is a real-valued function, Ω = [0, L] and f is a polynomial of even order whose leading coefficient is positive, supplemented with an initial condition u o and Neumann or periodic boundary conditions . He considers the perturbed problem (P ): ∂ 2 u ∂t 2 + Au = 0 associated with the same boundary conditions, the initial condition u o and ∂u ∂t = u 1 (x). He studies the existence of a global attractor A for (P ) and its convergence to the global attractor of (P), in suitable functional spaces.

Example 6

In [START_REF] Gatti | Hyperbolic relaxation of the viscous Cahn-Hilliard equation in 3-D[END_REF], S. Gatti, M. Grasselli, A. Miranville and V. Pata study the following initial and boundary value problem :

ωu tt + u t -∆(-∆u + φ(u) + δu) = 0, in Ω × R + (11) 
associated with the initial conditions

u(0) = u o , ωu t (0) = ωu 1 (12) 
and the boundary condition

u| ∂Ω = ∆u| ∂Ω = 0 ( 13 
)
where Ω is a bounded domain in R 3 , with a smooth boundary ∂Ω, ω, δ ∈ [0, 1], δ ≥ µω with µ ∈ (0, 1], and φ is a smooth function with cubic controlled growth. If ω = δ = 0, equation ( 11) is the Cahn-Hilliard equation, if ω = 0 and δ > 0, it is known as the viscous Cahn-Hilliard equation. The authors construct a family of exponential attractors E ω,δ for problem (11)-( 13) which is a robust perturbation of an exponential attractor E 0,0 of the usual Cahn-Hilliard equation .They show the existence of constants C > 0 and τ ∈ (0, 1) such that dist-sym (E ω,δ , E 0,0 ) ≤ C(ω + δ) τ in a suitable functional space.

Example 7 See Example 4, in section 1.1 1.7 Dimensions in a metric space

Definitions

Let K be a compact set in a metric space E. The Kolmogorov -entropy For > 0, N (K, E) denotes the minimum number of open balls in E, with radius , necessary to cover K. The number

H (K, E) = ln(N (K, E) is called the -entropy of K in E. The fractal dimension of K in E is dim F (K, E) = lim sup →0 H (K,E) ln 1/ . The Hausdorff dimension of K in E Given d ∈ R + and > 0 set µ(K, d, ) = inf r d i
where the infimum is taken over all the coverings 

{B ri (x i )} of K by balls in E with radius r i ≤ . The Hausdorff dimension of H in E is the number dim H (K, E) = inf d∈R + [lim →0 µ(K, d, )]
dim H (K, E) ≤ dim F (K, E) If K is a smooth m-dimensional compact submanifold in E, then dim H (K, E) = dim F (K, E) = m
Every countable set has Hausdorff dimension 0 while the fractal dimension can be arbitrarily large. For example, if

K = {0} ∪ {a n = 1 log n } n∈N then dim F (K, R) = 1. If E is a Hilbert space, {e n } is an orthonormal basis in E, and K = {0} ∪ { e n log n } n≥2 , then dim F (K, E) = ∞.
1.7.2.2 Fractals (cf. K. Falconer [START_REF] Falconer | Fractal geometry, Mathematical foundations and applications[END_REF] and [START_REF] Falconer | Techniques in fractal geometry[END_REF]) A self similar set in R n is a set which is invariant under a collection of similarities. It is the union of a number of smaller similar copies of itself (cf.

[42] p.117 and [START_REF] Falconer | Techniques in fractal geometry[END_REF] 

Dirac operator

The One dimensional periodic Dirac operator has the form:

Ly(x) = i 1 0 0 -1 dy dx + 0 P (x) Q(x) 0 y, x ∈ R, y = y 1 y 2
where P and Q are periodic of period 1 and are in L 2 (0, 1). In [START_REF] Djakov | Instability zones of a periodic 1D Dirac operator and smoothness of its potential[END_REF], P. Djakov, B. Mityagin suppose Q(x) = P (x). Then, L, considered with periodic or antiperiodic boundary conditions, is self-adjoint. If λ - n , λ + n , n ∈ Z are its eigenvalues close to nπ as |n| is large, and γ n = λ + nλ - n , the relationship between the decay rate of γ n as |n| → ∞, and the smoothness of P is investigated. 

) distance between sets X, Y in E is dist E (X, Y ) = sup x∈X inf y∈Y d(x, y) The Hausdorff symmetric distance between sets X, Y in E is dist-sym E (X, Y ) = max(dist E (X, Y ), dist E (Y, X)).
1.9.2 Quasi-distance, doubling quasi metric space

On a set Y , a function d : Y × Y → [0, ∞) is called a quasi distance if it is
symmetric, strictly positive away from {x = y} and such that for some constant

K ≥ 1 d(x, y) ≤ K(d(x, z) + d(z, y))
for all x, y ∈ Y . The pair (Y, d) is called a quasi metric space. A positive measure µ on a σ-algebra of subsets of Y containing the d-balls is said to have the doubling property if there exists a positive constant C such that

0 < µ(B(x, 2r)) ≤ Cµ(B(x, r))
for all x ∈ Y and r > 0. Then (Y, d, µ) is called a doubling quasi metric space (cf. G. Di Fazio, C.E. Gutierrez, E. Lanconelli [START_REF] Di Fazio | Covering theorems, inequalities on metric spaces and applications to PDE's[END_REF]).

Equal-area condition

Equal-area type conditions appear, as sufficient or necessary conditions, in the formation of layers (internal or superficial) in stationary solutions to various singularly perturbed reaction-diffusion systems. In the recent works A.S. do Nascimento [START_REF] Nascimento | Inner transition layers in an elliptic boundary value problem: a necessary condition[END_REF], J. Crema, A.S. do Nascimento [START_REF] Crema | On the role of the equal-area condition in internal layer stationary solutions to a class of reaction-diffusion systems[END_REF] and R.J. de Moura, A.S. do Nascimento [START_REF] De Moura | The role of the equal-area condition in internal and superficial layered solutions to some nonlinear boundary value elliptic problems[END_REF], the authors prove the necessity of suitable equal-area condition for the formation of internal or (and) superficial transition layers in this type of problems.

Example 8

A simple particular case of problems studied in [START_REF] Nascimento | Inner transition layers in an elliptic boundary value problem: a necessary condition[END_REF] is the elliptic boundary value problem div

(h(x)∇u) + f (u) = 0 x ∈ Ω ∂u ∂n = 0 on ∂Ω ( 14 
)
where Ω is a smooth domain in R N , N ≥ 1, f : R → R is such that there exist α, β, α > β,with f (α) = f (β) = 0. Let Γ ⊂ Ω be a smooth (N-1) dimensional compact manifold without boundary. It is proved that, if ( 14) has a family {u } of solutions which develop an internal transition layer with interface Γ connecting the states α to β, then, necessarily, the simple equal-area condition

β α f (s)ds = 0 is satisfied.
Example 9 In [START_REF] Crema | On the role of the equal-area condition in internal layer stationary solutions to a class of reaction-diffusion systems[END_REF], the following stationary system is considered:

     div(h(x)∇u) + f (x, u, v) = 0 x ∈ Ω div(k(x)∇v) + g(x, u, v) = 0 x ∈ Ω ∂v ∂n = 0 (or v = 0) on ∂Ω. ( 15 
)
where Ω is a smooth domain in R N , N ≥ 1, v,k,g are sufficiently smooth R n -valued functions, and k∇v = (k 1 ∇v 1 , ...k n ∇v n ). Let U be an open connected set in Ω, Γ ⊂ U be an (N-1)-dimensional compact connected orientable manifold whose boundary ∂Γ is such that ∂Γ ∩ ∂Ω is an (N-2)-dimensional submanifold of ∂Ω. A definition of a family of internal transition layer solutions

{(u , v )}, 0 < < o } to (15) in U with interface Γ, depending on two func- tions α, β ∈ C o (U), α(x) < β(x) on Γ is given. For such a family, there exists u o [resp.v o ] such that u → u o [resp.v → v o ] on compact sets of U \ Γ [resp. in U].
It is proved that, if a family of internal transition layer solutions to [START_REF] Berestycki | On the method of moving planes and sliding method[END_REF] exists, then f (x, u o (x), v o (x)) = 0 on U \ Γ and necessarily the equal-area condition

Γ ( β(x) α(x) f (x, s, v o (x)) ds) dS = 0
is satisfied. Several concrete applications of these results are presented in the paper.

Example 10

In [START_REF] De Moura | The role of the equal-area condition in internal and superficial layered solutions to some nonlinear boundary value elliptic problems[END_REF], Ω is a bounded domain in R N , N ≥ 1 with C 2 boundary ∂Ω, S is a C 2 (N-1)-dimensional surface with a boundary Σ which is assumed to be a C 2 (N-2)-dimensional compact surface without boundary with Σ = S ∩ ∂Ω, and S intersects ∂Ω transversally The authors define a family of solutions {u }, 0 < < o to the elliptic boundary value problem:

   div(a(x)∇v ) + f (x, v ) = 0, x ∈ Ω a(x) ∂v ∂ n = g(x, v ), x ∈ ∂Ω (16) 
which develops internal and superficial transition layers, depending on some smooth functions α, β, α(x) < β(x), x ∈ Ω, with interfaces S and Σ respectively.

Here a ∈ C 1 (Ω), a > 0, f : Ω × R → R and g : ∂Ω × R → R are of class C 1 and n is the exterior normal vector field on ∂Ω. It is proved that the equal-area conditions:

β(x) α(x)
f (x, t)dt = 0 ∀x ∈ S and

β(y) α(y)
g(y, t)dt = 0 ∀y ∈ Σ are necessary for the existence of such solutions.

1.11 Fokker-Planck equation 

∂θ i ∂t = ω i + K N N j=1 sin(θ j -θ i ), i = 1, ..., N (17) 
where K ≥ 0 is the coupling strength. The example of a Lorentzian distribution of the native frequency is studied. Setting

re iψ = 1 N N j=1 e iθj (18) 
called the complex parameter, where r(t) measures the phase coherence and ψ(t) the average phase, [START_REF] Bodine | Asymptotic Analysis of solutions of a radial Schrödinger equation with oscillating potential[END_REF] becomes

∂θ j ∂t = ω j + Kr sin(ψ -θ j ) j = 1, ..., N (19) 
(cf. Y. Kuramoto [START_REF] Kuramoto | Chemical oscillations, waves, and turbulence[END_REF]) 

which expresses the conservation of oscillators with frequency ω. The infinite-N version of ( 18) and ( 19) are respectively

re iψ = 2π 0 +∞ -∞ e iθ ρ(θ, t, ω)g(ω)dωdθ (21) 
and

v(θ, t, ω) = ω + K 2π 0 +∞ -∞ sin(θ ′ -θ)ρ(θ ′ , t, ω ′ )g(ω ′ )dθ ′ dω ′ (22) 
Finally,the governing equation for ρ becomes 

∂ρ ∂t = - ∂ ∂θ (ρ[ω + K 2π 0 +∞ -∞ sin(θ ′ -θ)ρ(θ ′ , t, ω ′ )g(ω ′ )dθ ′ dω ′ ]) (23 
∂ρ ∂t = D ∂ 2 ρ ∂θ 2 - ∂ ∂θ (ρv) (24) 
where D ≥ 0 is a noise strength. Equation [START_REF] Coddington | Theory of Ordinary Differential Equations[END_REF] reduces to [START_REF] Chepyzhov | Attractors for Equations of Mathematical Physics[END_REF] for D = 0. 

∂ρ ∂t = ∂ 2 ρ ∂ω 2 -ω ∂ρ ∂θ + ∂ ∂ω [(ω -Ω -KK(t, θ))ρ] (25) 
where

K(t, θ) = +∞ -∞ +∞ -∞ 2π 0 g(Ω)sin(ϕ -θ)ρ(ϕ, ω, t, Ω)dϕdωdΩ
associated with the conditions ρ| θ=0 = ρ| θ=2π , ρ| t=0 = ρ o (θ, ω, Ω), ρ(θ, ω, t, Ω) > 0 and 2π 0 +∞ -∞ ρ(θ, ω, t, Ω)dωdθ = 1 for all t, Ω. Here θ(t) is the phase and ω(t) = dθ dt (t) the frequency, at time t, and g(Ω) represents a natural frequency distribution.

The Fokker-Planck type ultraparabolic integro-differential equation

In [START_REF] Akhmetov | Regularizing a nonlinear integroparabolic Fokker-plank equation with space periodic solutions, existence of strong solutions[END_REF] and [START_REF] Akhmetov | Existence and uniqueness of classical solutions to certain nonlinear integro-differential Fokker-Planck type equations[END_REF], D.R. Akhmetov, M.M. Lavrentiev JR. and R. Spigler study existence and uniqueness of solutions to [START_REF] Conti | Singular limit of differential systems with memory[END_REF], in 

Q T = {(θ, ω, , t, Ω) ∈ [0, 2π] × R×[0, T ]×[-G, +G]}, when g ∈ L 1 (R)
|D l1,l2,l3 θ,ω,Ω ρ o (θ, ω, Ω)| ≤ Ce -M ω 2
for all ω ∈ R, l 1 + l 2 + l 3 ≤ l o . Equation ( 25) may be interpreted as an ultraparabolic (integro-differential) equation with t 1 = θ, t 2 = t or as a parabolic equation in (ω, θ), degenerate with respect to θ (cf. section 2.18). In [START_REF] Akhmetov | Regularizing a nonlinear integroparabolic Fokker-plank equation with space periodic solutions, existence of strong solutions[END_REF] and [START_REF] Akhmetov | Existence and uniqueness of classical solutions to certain nonlinear integro-differential Fokker-Planck type equations[END_REF]] existence and uniqueness of a solution ρ to problem [START_REF] Conti | Singular limit of differential systems with memory[END_REF], either in anisotropic Sobolev and Hölder spaces or in suitable classes of decaying functions, are considered. Optimal decay estimates for ρ were obtained in D.R. Akhmetov, R. Spigler [START_REF] Akhmetov | Uniform and optimal estimates for solutions to singularly perturbed parabolic equations[END_REF]. The proofs are based on suitable parabolic regularization of [START_REF] Conti | Singular limit of differential systems with memory[END_REF].

Conclusion

In this entry, I was mostly interested in the successive forms of the Fokker-Planck type equation, from the Kuramoto model to the recently studied ultraparabolic equations. The analysis of these equations and their innumerable applications will be found in the references .

1.12 Gierer-Meinhardt system

1-The Gierer-Meinhardt model

The Gierer-Meinhardt model is a system of two coupled nonlinear parabolic equations:

A t = d∆A -A + A 2 H , H t = D∆H -H + A 2 , x ∈ Ω, t > 0
associated with the boundary conditions

∂A ∂n = ∂H ∂n = 0, x ∈ ∂Ω, t ≥ 0,
where Ω is a bounded Lipschitzian domain, in R or R 2 , A = A(x, t) and H = H(x, t) are the concentrations of an activator substance and an inhibator substance, respectively, in cell biology and physiology, (cf. Y. You [START_REF] You | Mutiple-spike ground state solutions of the Gierer-Meinhardt equations for biological activator-inhibitor systems[END_REF]). Exemple 11 In [START_REF] You | Mutiple-spike ground state solutions of the Gierer-Meinhardt equations for biological activator-inhibitor systems[END_REF], the author considers the ground state solutions of the Gierer-Meinhardtype system in R i.e. the solutions of the system of ordinary differential equations:

u" -u + u 2 v = 0, v" -σ 2 v + u 2 = 0, x ∈ R (26) 
associated with the conditions u, v > 0 and u, v → 0 as |x| → ∞, where

σ 2 = d D 1.
The author is interested in an approximation of the number k(σ)

of spikes of the solutions to [START_REF] Courant | Hilbert Method of mathematical Physics[END_REF] one can expect to occur, as σ → 0. He shows that, for σ small enough, there exists a solution (u, v) of ( 26) such that u has k =const σ -β spikes where β can be arbitrarily close to 1 2 .

Gray-Scott systems

The Gray-Scott model This reaction-diffusion system models an irreversible reaction involving two reactants in a gel reactor, where the reactor is maintained in contact with a reservoir of one of the two chemicals in the reaction. In dimensionless units it can be written as

     V t = b∆V -(F + k)V + U V 2 , in Ω U t = a∆U + F (1 -U ) -U V 2 , in Ω ∂U ∂ν = ∂V ∂ν = 0, on ∂Ω ,
where the unknowns U (x, t) and V (x, t) represent the concentrations of the two biochemicals at a point x ∈ Ω ⊂ R N , N ≤ 3 at the time t; Ω is a bounded smooth domain, a, b are the diffusion coefficients of U and V respectively, F denotes the rate at which U is fed from the reservoir into the reactor, and k is a reaction-time constant. Various Gray-Scott problems have been intensively studied in the recent years, with different values of the parameters N, a, b, F, k and different choices for Ω, (cf. T. Kolokolnikov, J. Wei [START_REF] Kolokolnikov | On ring-like solutions for the Gray-Scott model: existence, instability and self-replicating rings[END_REF]) Example 12 In [START_REF] Doelman | Stability analysis of singular patterns in the 1D Gray-Scott model: a matched asymptotics approach[END_REF] and [START_REF] Doelman | A stability index analysis of 1-D patterns of the Gray-Scott model[END_REF], A. Doelman, R.A. Gardner, T.J. Kaper consider the following system : 1) with respect to δ and 0 ≤ β < 1

∂u ∂t = ∂ 2 u ∂x 2 -uv 2 + δ 2 a(1 -u) ∂v ∂t = δ 2 ∂ 2 v ∂x 2 + uv 2 -δ β bv, where x ∈ R, a, b = O(

Example 13

In [START_REF] Morgan | Axisymmetric ring solutions of the 2D Gray-Scott model and their destabilization into spots[END_REF], D.S. Morgan and T.J. Kaper study, in R 2 , stationary ring solutions, for r ∈ [0, r max ], of the system is a solution to the problem:

∂ 2 U ∂r 2 + 1 r ∂U ∂r = U V 2 -A + AU D( ∂ 2 V ∂r 2 + 1 r ∂V ∂r ) = -U V 2 + BV, with boundary conditions U r (0) = U rmax (0) = V r (0) = V rmax (0) =
w"w + w 2 = 0, w(0) = M ax y∈R w(y) and w(y) → 0 as |y| → ∞.

which appears in the resolution of Gray-Scott problems (see section 1.13, [START_REF] Kolokolnikov | On ring-like solutions for the Gray-Scott model: existence, instability and self-replicating rings[END_REF] p.204 and W. Chen, M.J. Ward [START_REF] Chen | Oscillatory instabilities and dynamics of multi-spike pztterns for the one-dimensional Gray-Scott model[END_REF] p.191)

2 From Kirchoff-type equations to Wavefront sets 2.1 Kirchoff-type equations

The Kirchhoff model

In [START_REF] Kirchhoff | Vorlesungen uber Mechanick[END_REF], G. Kirchhoff studies the integro-differntial equation:

u tt -   2 + 1 2 l l 0 u 2 s ds   . u ss = 0 (27) 
which appears in transversal vibrations of an elastic string of length l. This Kirchhof model is briefly described in S. Spagnolo [START_REF] Spagnolo | The cauchy problem for Kirchhoff equations[END_REF]. Since then, Kirchhofftype equations have been intensively studied in different situations.

The Cauchy problem for a Kirchhoff-type equation

. Let Ω be an open subset of R n . We note that equation ( 27) is a particular case of u ttϕ(

Ω |∇u| 2 dx)∆u = 0 ( 28 
)
where ϕ is a regular function satisfying ϕ(s) ≥ λ o > 0, ∀s > 0, (In (27) ϕ(s) =

2 + 1 2 l s). More generaly, in [START_REF] Spagnolo | The cauchy problem for Kirchhoff equations[END_REF] a Kirchhoff-type equation is defined as:

u tt - n i,j,=1 ϕ ij ||D β1 u|| L 2 (Ω) , ..., ||D βp u|| L 2 (Ω) u xixj = 0 ( 29 
)
where the ϕ ij (s 1 , ..., s p ) are regular functions satisfying n i,j=1

ϕ ij (s 1 , ..., s p )ξ i ξ j ≥ λ o |ξ| 2 , λ o ≥ 0 ( 30 
)
and β j ∈ N n . Being inspired by S.Bernstein's paper [START_REF] Berstein | Sur une classe d'équations fonctionnelles aux dérivées partielles[END_REF], the author investigates, in suitable functional spaces, local in t and global existence, uniqueness of solutions u to equation ( 29) associated with initial conditions u(0, x) = u o (x), u t (0, x) = u 1 (x), x ∈ Ω, when Ω is an interval of R and u(t, . ) is Ω-periodic, or Ω = R n .

Pseudo-differential operators of Kirchhoff-type

In [START_REF] Spagnolo | A class of nonlinear hyperbolic problems with global solutions[END_REF], P. D'Ancona and S. Spagnolo show the existence of a unique solution, in a suitable functional space, to the pseudo-differential equation

u tt + F ||a 1 (-iD x )u|| 2 L 2 , ..., ||a p (-iD x )u|| 2 L 2 ; -iD x u = 0 (31) 
associated with initial conditions of the form

u(0, x) = u o (x), u t (0, x) = u 1 (x) (32) 
where a j (ξ) are smooth functions on R n \0 satisfying growth conditions, F (s 1 , ...s p ; ξ 1 , ...ξ n ) is a C 2 real function defined on R p × R n , with |s| ≤ 1, |ξ| = 0, and satisfying for some real numbers ν > 0, m ≥ 1:

F (s; λξ) = λ 2m F (s, ξ) ∀λ ≥ 0, ν 2 |ξ| 2m ≤ F (s, ξ) ≤ ν -2 |ξ| 2m , |∇ ξ F (s, ξ)| ≤ ν -1 |ξ| 2m-1
and small enough. A particular case of (31) is the equation:

u tt + (-1) m |α|=2m f α ||D β1 x u|| 2 L 2 , ..., ||D βp x u|| 2 L 2 D α x u = 0 (33) 
where f α (s 1 , ..., s p ) are C 2 real functions on R p , satisfying the strict hyperbolicity condition

|α|=2m f α (s 1 , ..., s p )ξ α ≥ ν 2 |ξ| 2m , ν > 0 ( 34 
)
The simplest example of equation ( 33) is equation [START_REF] Crema | On the role of the equal-area condition in internal layer stationary solutions to a class of reaction-diffusion systems[END_REF], where Ω = R n .

β=α-1 where q is any smooth periodic function of period 1 with mean 0 (see E.A. Coddington, N. Levinson [START_REF] Coddington | Theory of Ordinary Differential Equations[END_REF] and Z.X. Wang, D.R. Guo [START_REF] Wang | Special functions[END_REF]). Physical problems leading to Mathieu or Hill equations often require solutions with periodicity, called oscillatory solutions . Therefore, to find conditions on the data for which the above equations have a fundamental system of periodic solutions is a central problem.

-2 -1 1 α β β=2α

Its Equation

In [START_REF] Its | Asymptotic behavior of the solutions of the radial Schrödinger equation with oscillating potential for the zero value of the energy[END_REF], A.R. Its considers the Schrödinger equation on the positive semi-axis

y" -[x β p(x 1+α ) + cx -2 ]y = 0 ( 39 
)
where p is a smooth periodic function, with period 1 and mean 0, c is a real number and the parameters α, β satisfy the relations β -α ≥ -1 and 2α-β > 0 (cf. Figure 4.). He proves that equation ( 39) has oscillatory solutions when β > α -1. If β = α -1, the solutions are oscillatory or not. In all cases, asymptotic formulas for the solutions are stated, as x → ∞. His method is based on a transformation which leads to a Hill-type equation and Floquet functions.

Method of diagonalisation

In [START_REF] Bodine | Asymptotic Analysis of solutions of a radial Schrödinger equation with oscillating potential[END_REF], S. Bodine and D.A. Lutz investigate equation ( 39) by a general method of diagonalization with a L 1 -regularity for p. Set

t = x 1+α , ρ(t) = t 0 p(s) 1 + α ds, µ = 1 0 ρ(t)dt, ν = 1 0 (ρ(t)) 2 dt, (µ 2 < ν).
Let

λ 1,2 = ( 1 2 ± c + µ 2 -ν + 1 4 )/(1 + α)
be the eigenvalues of a suitable matrix which depends on α, c, µ, ν, and Λ be the crucial diagonal matrix diag{λ 1 , λ 2 }. When β = α -1, three cases are studied separately according to λ 1λ 2 belongs to N, does not belong to N 0 or is equal to 0. In each case, very sharp asymptotic formulas are obtained for a fundamental system of solutions to [START_REF]Encyclopaedia of Mathematics, Springer Online Reference Works, Diffusion process, Langevin equation, and Kolmogorov equation[END_REF]. In particular, when λ 1λ 2 ∈ N o , a logarithmic term appears in the formulas. For instance, when λ 1λ 2 ∈ N the following formulas are obtained:

y 1 (x) = x λ1(1+α) [1 + N -1 r=1 p 1 r (x 1+α ) x r(1+α) + O( 1 x N (1+α) )] + η(lnx)y 2 (x) y 2 (x) = x λ2(1+α [1 + N -1 r=1 p 2 r (x (1+α) x r(1+α ) + O( 1 x N (1+α) )]
where p 1,2 r are scalar valued , bounded, continuous, periodic functions with period 1 which are recursively calculated. This logarithmic term is missing in Its formulas.

Memory (equations with)

In [START_REF] Conti | Singular limit of differential systems with memory[END_REF], M. Conti, V. Pata and M. Squassina consider the family of equations: ), ϕ is a suitable nonlinearity, and f is a time independent source term, u(x, t) is supposd to be a given datum for t ≤ 0.

u t -ω∆u -(1 -ω) ∞ 0 k (s)∆u(t -s)ds + ϕ(u) = f, t > 0 where u : (x, t) ∈ Ω×R → R, the memory kernel k : [0, ∞) → R is a continuous nonnegative function, satisfying the relation ∞ 0 k(s)ds = 1 and k (s) = 1 k( s ); Ω is a smooth bounded domain in R 3 , ω ∈ [0, 1

Moser-Trudinger inequality

The Moser-Trudinger inequality

The Moser-Trudinger inequality states that:

C(Ω) = sup u∈H 1 o (Ω);||∇u||2=1 Ω e 4πu 2 dx < ∞
where Ω is a smooth bounded domain in R 2 (see N.S. Trudinger [START_REF] Trudinger | On imbedding into Orlicz spaces and some applications[END_REF] and J.

Moser [START_REF] Moser | A sharp form of an inequality by N. Trudinger[END_REF]).

A sharp form of the Moser-Trudinger inequality

Let λ 1 (Ω) > 0 be the first eigenvalue of the Laplacian with Dirichlet boundary conditions in Ω, and

C α (Ω) = sup u∈H 1 o (Ω),||∇u||2=1 Ω e 4πu 2 (1+α||u|| 2 2 ) dx (40) 
In [START_REF] Adimurthi | Blow-up analysis in dimension 2 and a sharp form of the Moser-Trudinger inequality[END_REF], Adimurthi and O. Druet proved that

C α (Ω) < +∞ if 0 ≤ α < λ 1 (Ω) and C α (Ω) = +∞ if α ≥ λ 1 (Ω)
.

In [START_REF] Yang | Extremal functions for a sharp Moser-Trudinger inequality[END_REF], Y. Yang, shows the existence of an extremal function for which the supremum, in [START_REF] Essen | Q spaces of several real variables[END_REF], is attained in the case 0 ≤ α < λ 1 (Ω).

Moving planes andd sliding methods

The classical method

The classical method of moving planes is described in J. Serrin [START_REF] Serrin | A symmetry problem in potential theory[END_REF], and used to prove the following result: if Ω is a bounded open connected domain in R n , whose boundary is of class C 2 , and if there exists u ∈ C ( Ω) satisfying ∆u = -1

in Ω ,u = 0 and ∂u ∂n = constant on ∂Ω, then Ω is a ball.

Example 15

In [START_REF] Berestycki | On the method of moving planes and sliding method[END_REF], H. Berestycki and L. Nirenberg used the moving plane and sliding methods in proving monotonicity or symmetry in the x 1 direction for solutions to nonlinear elliptic equations F (x, u, Du, D 2 u) = 0 in a bounded domain Ω ⊂ R n , which is convex in the x 1 direction. "Both methods compare values of the solution of the equation at two different points. In the moving plane method, one point is the reflection of the other in a hyperplane x 1 = λ and then, the plane is moved up to a critical position. In the sliding method, the second point is obtained from the first by sliding the domain in the x 1 direction and the domain is slid up to a critical position ". Many forms of the maximum principle are crucial in this paper.

Technique of the domain reflection

A different form of the classical moving plane analysis is used in E.M. Harrell, P. Kröger, K. Kurata [START_REF] Harrell | On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue[END_REF]. Let Ω be a bounded open domain in R n , and P a hyperplane of dimension n -1 which intersects Ω. For any connected set S which does not intersect P , S P denotes its reflection through P . If there exists a connected component Ω s of Ω\P such that Ω P s is a proper subset of the other connected component Ω b of Ω \ P, P is called a hyperplane of interior reflection for Ω. Moreover Ω s [resp. Ω b ] is called the small [resp. big] side of Ω, and Ω is said to have the interior reflection property with respect to P .

Example 16

Using the technique of the domain reflection, the authors study how to place, inside Ω, an obstacle or a well in order to minimize or maximize the principal eigenvalue of the Laplacian operator in Ω with zero Dirichlet boundary condition on the boundary ∂Ω. Example 17 A similar problem is investigated, with the same technique of domain reflection, in P. Exner, A. Mantile [START_REF] Exner | On the optimization of the principal eigenvalue for single-center point-interaction operators in a bounded region[END_REF]. Here B is replaced by a single point interaction x o ∈ Ω. The domain Ω is an open set in R d , d = 2, 3, bounded and connected, with a piecewise C 1 boundary. Let α ∈ R, λ ∈ C \ R. The authors consider a family of operarors H α , whose domain is

D(H α ) = ψ ∈ L 2 (Ω), ψ = Φ λ + qG λ o (., x o ), φ λ ∈ H 2 ∩ H 1 o (Ω) and defined by H α ψ = -∆φ λ -λqG λ o ( . , x o )
, associated with a suitable condition for Φ λ (x o ), where G λ o denotes the green function of -∆ + λ in Ω, corresponding with homogeneous Dirichlet boundary conditions on ∂Ω. How to place the point interaction center x o to minimize the principal eigenvalue of H α is discussed.

N-mode solution

In [START_REF] Nakashima | Transitions layers and spikes for a bistable reaction-diffusion equation[END_REF], K. Nakashima, M. Urano and Y. Yamada, consider the following ordinary differential problem :

2 u"(x) + f (x, u(x)) = 0 x ∈]0, 1[; u ′ (0) = u ′ (1) = 0 (41) 
where

f (x, u) = u(1-u)(u-a(x)); a is a C 2 [0, 1] function such that 0 < a(x) < 1, a ′ (0) = a ′ (1) 
= 0, and the subsets Σ and Λ of (0, 1) where a(x) = 1 2 and a ′ (x) = 0, respectively, are finite sets and a ′ (x) = 0 for any x ∈ Σ. The authors study the asymptotic behavior, as → 0, of n-mode solutions u of (41) i.e. solutions such that v = ua has exactly n zero-points in (0, 1), and show that any transition layer [resp.spike] is located in a neighborhood of a point of Σ [resp. Λ].

Nodal

2.8.1 Nodal points, curves, surfaces. Definition 6. In R. Courant, D. Hilbert [START_REF] Courant | Hilbert Method of mathematical Physics[END_REF], they are defined as points [resp. curves, surfaces], on which some eigenfunctions of a differential problem, in a domain G ∈ R N , N = 1 [resp. N = 2, 3], vanishes.

Example 18

In the 1970 edition of [START_REF] Courant | Hilbert Method of mathematical Physics[END_REF], p.452, a second order Sturm-Liouville problem is considered. It is proved that the nodes of the n th eigenfunction u n divide the domain into no more than n subdomains.

Nodal solutions, nodal domains Example 19

In [START_REF] Hoffman-Ostenhof | On the nodal line conjecture[END_REF], M. and T. Hoffman-Ostenhof and N. Nadirashvili study the Dirichlet eigenvalue problem

-∆u i = λ i u i , i = 1, 2, ... u ∈ H 1 o (D),
where D is a bounded domain in R n , . The nodal set of u i is defined as

N (u i ) = {x ∈ D : u i = 0}
The nodal domains of u i are the connected components of D \ N (u i ).The authors construct a domain D ⊂ R 2 on which the second eigenvalue has a nodal set disjoint from the boundary, whereas the nodal line conjecture, first mentioned by L.E. Payne [START_REF] Payne | Isoperimetric inequalities and their applications[END_REF], stated that

N (u 2 ) ∩ ∂D = ∅.
Example 20 In [START_REF] Bartsch | The effect of the domain's configuration ofnodal solutions of singularly perturbed elliptic equations[END_REF], T. Bartsch and T.Weth consider the nonlinear elliptic Dirichlet problem:

-2 ∆u + au = f (u) in Ω, u ∈ H 1 o (Ω) ( 42 
)
where Ω is a bounded domain in R N , N ≥ 2, a > 0, is a small positive parameter, and f grows superlinearly and subcritically. They study the number of nodal solutions i.e. sign-changing solutions of ( 42) and their nodal domains (cf. section 2.2).

Nonlocal eigenvalue problem

This type of problem arises in the study of the stability of solutions of Gray-Scott problems under small perturbations of the form e λt (U (x, t), V (x, t)). It appears in the following form:

y" + f (t)y = Cg(t) +∞ -∞ h(t)y(t)dt (43) 
where f, g, h, are known functions. It is called nonlocal because of the presence, in the right member of ( 43), of the nonlocal term

+∞ -∞ h(t)y(t)dt.

Exemple 21

In [START_REF] Doelman | Stability analysis of singular patterns in the 1D Gray-Scott model: a matched asymptotics approach[END_REF],

f (t) = ( 12 cosh 2 t -P ), g(t) = 1 cosh 4 t , h(t) = 1 cosh 2 t

Exemple 22

In [START_REF] Morgan | Axisymmetric ring solutions of the 2D Gray-Scott model and their destabilization into spots[END_REF], f (t) = (12 sinh 2 t -P ), g(t) = sech 4 t, h(t) = sech 2 t.

(see section 1.13).

Quasi-periodic Schrödinger operator

In their papers [START_REF] Fedotov | The spectral theory of adiabatic quasi-periodic operators on the real line[END_REF] and [START_REF] Fedotov | Level repulsion and spectral type for one-dimensional adiabatic quasi-periodic Schrödinger operators[END_REF], A. Fedotov and F. Klop study the spectrum of quasi periodic schrödinger operators of the form

H z, = - d 2 dx 2 + V (x -z) + α cos( x) (44) 
where, α > 0, V ∈ L 2 loc (R) is periodic with period 1, z is a real parameter indexing the equations of the family; > 0 is such that 2π is irrational. Let In each case, under specific additional assumptions, the authors describe the nature of the spectrum of ( 44), and state asymptotic formulas, as → 0.

H o = - d 2 dx 2 + V (x) E E-α E+α (a) E E-α E+α (b) E E-α E+α (c) E E-α E+α (d)
In [START_REF] Fedotov | Level repulsion and spectral type for one-dimensional adiabatic quasi-periodic Schrödinger operators[END_REF], they are interested in the spectrum of [START_REF] Fathi | PDE aspects of Aubry-mather theory for quasiconvex Hamiltonians[END_REF], in intervals J such that for all E ∈ J, F(E) covers the edges of two neighboring spectral bands of H o and the spectral gap located between them (Figure 5 (d))). Let Γ R be the real iso-energy curve associated to [START_REF] Fathi | PDE aspects of Aubry-mather theory for quasiconvex Hamiltonians[END_REF] and γ 0 , γ π , be the connected components of Γ R in a periodicity cell. To each of these loops, one associates a sequence of energies in J, E n a , a = {0, π}, and, near each E n a , an exponentally small interval I n a such that the spectrum of (44) , in J, is contained in the union of these intervals. The location and the nature of the spectrum of [START_REF] Fathi | PDE aspects of Aubry-mather theory for quasiconvex Hamiltonians[END_REF] are investigated in the union I n 0 ∪ I m π , in the resonant case, i.e. when I n 0 and I m π intersect each other. In [START_REF] Baklouti | Asymptotique des résonances pour une barrière de potential dégénérée[END_REF], H. Baklouti and M. Mnif consider the Schrödinger operator

Resonances

P = h 2 D 2 + V, D = -i d dx
where the potential V satisfies the following assumptions: there exist 0

< θ 0 < π 2 , δ > 0, C > 0, α > 0 such that V is real on R, analytic on S = {x ∈ C; {|Im(x)| < |Re(x)| tan(θ o )} ∪ {|Im(x)| < δ}}, |V (x)| ≤ C(1 + |x|) -1-α for x ∈ S , V has a degenerate maximum V o > 0 at x = 0, and V (x) = V o -(k(x)) 4
where k is analytic in S, with k(0) = 0 and k ′ (0) = 0. The resonances for P are defined as the complex numbers E = 0 for which there exist 0 < θ < θ o and u ∈ L 2 (Re iθ ) such that P u = Eu and -2θ < argE ≤ 0. The location and the asymptotic behavior , as h → 0, of the resonances of P are studied. Asymptotic expansions which involve the eigenvalues of the quartic oscillator 4 are obtained.

K = - d 2 dx 2 + (k ′ (0)x)
2.11.2 Resonant case, in the spectrum of a quasi-periodic Schrödinger operator See section 2.10

Scattering metric

The following definitions are given in R.B. Melrose [START_REF] Melrose | Spectral and scattering theory on asymptotically Euclidean spaces[END_REF]:

Euclidean metric space

Let S n + = {t = (t 1 , ..., t n+1) ∈ R n+1 , t n+1 ≥ 0} and SP be the stéréographique projection

z ∈ R n → ( z 1 + |z| 2 , 1 1 + |z| 2 ) ∈ S n

+

The image of R n under this map is the interior of S n + . The function x =

1 |z| = t n+1 1 -t 2 n+1
is a defining function for the boundary of S n + , which is defined on t n+1 < 1 and can be smoothly extented across z = 0. If we identify the collar neighborhood {0 ≤ t n+1 < 1} of ∂S n + with (0, +∞) × S n-1 by the mapping

t → ( t ′ 1 -t 2 n+1 , t n+1 1 -t 2 n+1 ) = (ω, x),
the euclidian metric becomes

dx 2 x 4 + dω 2 x 2
where dω 2 is the standard round metric on S n-1 . Thus, if R n is replaced by its compactification, the Euclidian metric becomes a scattering metric.

The compact manifold case

More generaly, let M be a compact manifold with boundary, and x be a boundary defining function for M i.e. x is a smooth positive function on M such that x = 0 exactly on ∂M and dx = 0 on ∂M. A scattering metric g on M is a Riemannian metric on the interior of M, which has, near the boundary, an expression

g = dx 2 x 4 + h x 2
where h is a smooth symmetric 2-tensor on M ,whose restriction to ∂M is a metric Applications See Wavefront sets, section 2.20, Application.

2.13 Sobolev-type spaces M 1,p on metric-measure spaces 2.13.1 Definition of a doubling measure Let (X, d, µ) be a metric space equipped with a Borel regular outer measure µ. Moreover µ is assumed to be doubling i.e. there exists a constant C µ > 0 such that 0 < µ(2B) ≤ C µ µ(B) < ∞ for all ball B ⊂ X. Then, there exists a constant

C o such that µ(B) µ(B o ) ≥ C o ( r r o ) s (45) 
whenever

B o = B(x o , r o ), B = B(x, r), x ∈ B o , 0 < r ≤ r o , s = log 2 (C µ )
The smallest constant s for which [START_REF] Fedotov | The spectral theory of adiabatic quasi-periodic operators on the real line[END_REF] holds is called the doubling dimension of µ.

2.13.2 Space M 1,p (X), definition, properties

The space M 1,p (X), 0 ≤ p < ∞ is the space of u ∈ L p (X) such that there exists a generalized gradient g ∈ L p (X), g ≥ 0 with |u(x)u(y)| ≤ d(x, y)(g(x) + g(y)), µ-almost every where in X. Equipped with the norm

||u|| 1,p = (||u|| p L p + inf g ||g|| p Lp ) 1 p , M 1,p ( 
X)is a Banach space if p ≥ 1. These spaces were defined by P. Hajlasz [START_REF] Hajlasz | Sobolev spaces on an arbitrary metric space[END_REF]. A good introduction to these spaces and other Sobolev type spaces on metric measure spaces, and applications such as geometric analysis, quasi conformal mappings, non-linear subelliptic equations, differential geometry, analysis of graphs, are presented in P. Hajlasz [START_REF] Hajlasz | Sobolev spaces on metric measure spaces[END_REF]. Pointwise behavior such as Lebesgue points, Hölder continuity, for M 1,p functions have been studied by P.Hajlasz and others. In particular, the case p = 1 was studied recently by J. Kinunen, H. Tuominen [START_REF] Kinnunen | Pointwise behavior of M 1,1 Sobolev functions[END_REF]. We recall that M 1,p (R n ) coincide with the usual Sobolev space W 1,p (R n ) if p > 1. This is not true for p = 1. And the Hardy-Littlewood maximal operator M defined by:

Mh(x) = sup r>0 1 µ(B(x, r)) B(x,r) |h|dµ is bounded in L p (X) for p > 1, but is not bounded in L 1 (X).
2.14 Steklov eigenproblems are considered on a bounded, smooth domain D ⊂ R 2 . The authors obtain sharp relationships connecting the first non-zero eigenvalues p 2 , ξ 2 , q 1 of Steklov problems and membrane sigenvalues.

The harmonic Steklov eigenproblem

A function s ∈ H 1 (Ω) is said to be a harmonic Steklov eigenfunction on Ω corresponding to the Steklov eigenvalue δ, if s satisfies:

Ω ∇s . ∇v dx = δ|∂Ω| -1 ∂Ω sv dσ, ∀v ∈ H 1 (Ω).
Here Ω is a smooth bounded domain in R n , cf. G. Auchmuty [START_REF] Auchmuty | Steklov eigenproblems and the representation of solutions of elliptic boundary value problems[END_REF]. This problem arises, in particular, as a model for the sloshing of a perfect fluid in a tank.

Applications

. In [START_REF] Auchmuty | Spectral characterization of the trace spaces[END_REF], G. Auchmuty uses harmonic Steklov eigenfunction expansion to characterize the trace spaces H s (∂Ω), under quite general conditions on Ω and its boundary, see section 2.16.

Strichartz-type inequality

Strichartz's inequality

In [START_REF] Strichartz | Restriction of fourier transform to quadratic surfaces and decay of solutions to the wave equation[END_REF], R.Strichartz considers the solution u(x, t) of

iu t + ∆u = g(x, t), (x, t) ∈ R n × R, u(x, 0) = f (x) where f ∈ L 2 (R n ), g ∈ L p (R n+1 ) with p = 2(n+2) n+4
. He shows that u ∈ L q (R n+1 ) for q = 2(n+2) n and satisfies the inequality

u q ≤ C( f 2 + g p )

Strichartz-type inequalities

Since then, Strichartz-type inequalities have been proved by several authors in different situations. In [START_REF] Robbiano | Strichartz estimates for Schrödinger equations with variable coefficients[END_REF], L. Robbiano, C. Zuily study the initial value problem:

ı ∂u ∂t -P u = 0 , u(., 0) = u o ∈ L 2 (R n ) where P = n j,k=1 D  (g jk (x)D k ) + n =1 (D j b j (x) + b j (x)D j ) + V (x), D j = 1 ı ∂ ∂x j
The assumptions are: the coefficients g jk = g kj , b j and V are real valued, b j and g jkδ jk belong to the space B σo of symbols which decay like x -1-σo , δ jk is the kronecker symbol,

x = (1 + |x| 2 ) 1 2 ), V ∈ L ∞ (R n
), there exists ν > 0 such that, for every (x, ξ) ∈ R n × R n , the principal symbol p(x, ξ) of P satisfies p(x, ξ) ≥ ν|ξ| 2 ; moreover, the bicharacteristic flow associated to p(x, ξ) is not trapped backward not forward. Let T > 0 and (q > 2, r) be a couple of real numbers verifying 2 q = n 2 -n r , then the existence of a constant C > 0 such that

e -itP u o (L q [-T +T ],L r (R n )) ≤ C u o L 2 (R n ) for all u o ∈ L 2 (R n ), is proved.

Trace space H s (∂Ω): an intrinsic Steklov eigenfunction expansion definition

The following result is proved in [START_REF] Auchmuty | Spectral characterization of the trace spaces[END_REF] 

(Ω) → L 2 (Ω). Let 0 = δ o < δ 1 ≤ ... ≤ δ j ≤ ... [resp. s j , j ≥ 
0] be the harmonic Steklov eigenvalues [resp. the correponding ∂-orthonormal eigenfunctions], and ŝj = 1 + δ j Γs j . The following definition is given, for s ≥ 0:

H s (∂Ω) = {g ∈ L 2 (∂Ω); ∞ j=0 (1 + δ j ) 2s |g j | 2 < ∞},
where g j = |∂Ω| -1 ∂Ω gŝ j dσ, equipped with the natural inner product. These spaces satisfy the same properties as the usual trace spaces (see J-L. Lions, E. Magenes [START_REF] Lions | Problèmes aux limites non homogènes and applications[END_REF]). For s < 0, H s (∂Ω) is defined by duality.

Trudinger condition

Characterisation of a class of potentials

Let H = -∆ + Q be the Schrödinger operator in L 2 (R n ), where the potential Q belongs to the L. Schwartz's space of distributions D ′ (R n ) (cf. L. Schwartz [START_REF] Schwartz | théorie des distributions[END_REF]). In [START_REF] Mazya | Infinitesimal form boundedness and Trudinger's subordination for the Schrödinger operator[END_REF], V. G. Mazya and I. E. Verbisky give a characterization of the Trudinger condition (see N.S. trudinger [START_REF] Trudinger | Linear elliptic operators with measurable coefficients[END_REF]) (P β , β > 0), for Q i.e. there exists o > 0 and c > 0 such that , for every ∈ (0, o ), we have:

| Q, |u| 2 | ≤ ∇u 2 L 2 (R n ) + c -β u 2 L 2 (R n ) ∀u ∈ D(R n ) Let B δ (x o
) be the ball of radius δ centered at x o , They prove that potentials Q which satisfy (P β ) are characterized by the decomposition:

(

1) Q = div Γ + γ, Γ ∈ [L 2 loc (R n )] n , γ ∈ L 1 loc (R n ),
with the condition: there exists δ o > o such that, for δ ∈ (0, δ o ),

B δ (xo) | Γ(x) -m( Γ)| 2 dx ≤ cδ n-2 β-1 β+1 and B δ (xo) |γ(x)|dx ≤ cδ n-2β β+1 ,
where m( Γ) denotes the mean value of Γ on B δ(xo) and c is independent of x o and δ o .

2.18

Ultraparabolic equations Definition 7. A linear ultraparabolic equation is an equation of the form

m 1 k i (x, t)v ti = n i,j=1 a ij (x, t)v xi,xj + n i=1 b i (x, t)v xi + c(x, t)v + f (x, t) where x = (x 1 , ...x n ) ∈ R n , t = (t 1 , ...t m ) ∈ R m , m ≥ 2 and n i,j=1 a ij (x, t)ξ i ξ j ≥ a o n i=1 ξ 2 i
with a o > 0, for every ξ ∈ R n and for all values (x, t) in some domain Q T .

Singularly perturbed Regularized parabolic problem

The following problem Lv = v t + k(x, y, t)v ya(x, y, t)v xxb(x, y, t)v xc(x, y, t)v = f (x, y, t) ( is introduced and it is proved that it does not have any boundary layer, as → 0.

Then -uniform estimates of u are obtained in suitable functional spaces, according to the regularity and decay assumptions on f , ϕ, and the coefficients in L. The limit of u as → 0, leads to a solution v of problem [START_REF] Fedotov | Level repulsion and spectral type for one-dimensional adiabatic quasi-periodic Schrödinger operators[END_REF], which belongs to the anisotropic Sobolev space W 3,2,1 (Q T ), and the anisotropic Hölder space C λ,λ, 1 12 (Q T ∩ {x ∈ [-K, K]} for λ ∈ (0, 1) and K > 0. Moreover, estimates of the form |v(x, y, t)| ≤ C p e -p|x| , ∀p > 0 or |v(x, y, t)| ≤ C m 1 + |x| m , m = 0, 1... hold in Q T . Similar results were obtained previously, for problem [START_REF] Fedotov | Level repulsion and spectral type for one-dimensional adiabatic quasi-periodic Schrödinger operators[END_REF], by D.R. Akhmetov, M.M. Lavrentiev, R.Spigler [START_REF] Akhmetov | Singular perturbations for certain partial differential equations without boundary-layers[END_REF], where Q T = [0, 1] 2 × [0, T ] with additional boundary conditions on v. Other examples and applications to Markov processess, atomic physics, transport theory, chemistry, hydrodynamics, are mentioned in loc.cit. and references there. The authors prove that the solution obtained in [START_REF] Akhmetov | Regularizing a nonlinear integroparabolic Fokker-plank equation with space periodic solutions, existence of strong solutions[END_REF] satisfies the estimate |ρ(θ, ω, t, Ω) ≤ Ce -M ω 2 .

Virtual eigenvalue

In [START_REF] Arazy | Virtual eigenvalues of high order Schrödinger operator[END_REF], J. Arazy and L. Zelenko consider the high order Schrödinger operator in L 2 (R d ):

H γ = (-∆) l + γV (x)
where 2l ≥ d, x → V (x) is a real-valued, non negative, continuous function which tends to 0 sufficiently fast, as |x| → ∞, and γ is a small negative coupling constant. They study the virtual eigenvalues of H γ i.e. the negative eigenvalues which are born at the moment γ = 0 from the end point λ = 0 of the gap (-∞, 0) of the spectrum of -(∆) l (cf. section 1.3). Here (gu)(ξ) is the Fourier transform of gu ∈ E ′ (Ω), and a cone is a subset of R n , stable under the dilatations ξ → ρξ, ρ > 0.

Wavefront sets

Wavefront set and the Weyl quantization

For the change of quantization see A. Martinez [START_REF] Martinez | An introduction to semiclassical and microlocal analysis[END_REF]. For a(x, ξ) ∈ C ∞ (R d ×R d ), its Weyl quantization, for u ∈ S(R d ), is denoted by a w (x, D x )u(x) = (2π) -d e i(x-y).ξ a( x + y 2 , ξ)u(y)dydξ

Let u ∈ S ′ (R d ), then, (x, ξ) / ∈ W F (u), ξ = 0 if and only if there exists ϕ ∈ D(R 2d ) such that ϕ(x, ξ) = 0 and ||ϕ w (x, hD x )u|| ≤ C N h N , h ∈ (0, 1] for any N ∈ Z + , where || . || denotes the L 2 norm.

Homogeneous wavefront set

The notion of homogeneous wavefront set was introduced by S. Nakamura [START_REF] Nakamura | Propagation of the homogeneous wavefront set for Schrödinger equations[END_REF]. Let u ∈ S ′ (R d ), then (x, ξ) ∈ R 2d \ 0 is not in the homogeneous wavefront set of u, denoted by HWF(u), if and only if there exists ϕ ∈ D(R 2d ) such that ϕ(x, ξ) = 0 and ||ϕ w (hx, hD x )u|| ≤ C N h N , h ∈ (0, 1] for any N ∈ Z +

Application

In [START_REF] Ito | Propagation of singularities for Schrödinger equations on the Euclidean space with a scattering metric[END_REF], K. Ito studies the propagation of singularities, in terms of wavefront sets, for the solution u t = e -itH u o to the time-dependent Schrödinger equation

i du dt = Hu, H = 1 2 ∆ + V, u(0) = u o ∈ L 2 (R n )
where ∆ is the Laplace-Beltrami operator with respect to a scattering metric g given on S n + (cf. section 2.12), and V is a smooth subquadratic potential. Suppose ∈ W F (u to) . I mention the notion of quadratic scattering wavefrontset introduced in R.B. Melrose [START_REF] Melrose | Spectral and scattering theory on asymptotically Euclidean spaces[END_REF] and also used in [START_REF] Ito | Propagation of singularities for Schrödinger equations on the Euclidean space with a scattering metric[END_REF]. 
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 1 Figure 1. The Cantor set
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 411 BM O space Let sup I be the supremum over all cubes I ⊂ R n with edges parallel to the coordinate axes, l(I ) be the sidelength of I and f I the mean value of f over I. The square form of John-Nirenberg's BM O = BM O(R n )

  and sharp estimates for the norms of the embeddings Q α ֒→ BM O, and . , are obtained . We point out that 3) means that f ∈ Q -1

log 3 .

 3 p.35). The following examples are self similar sets whose fractal and Hausdorff dimensions are equal.In R the dimensions of the Cantor set ([START_REF] Titchmarsh | The Theory of Functions[END_REF] and[START_REF] Falconer | Fractal geometry, Mathematical foundations and applications[END_REF] p.43) are log 2In R 2 , the Sierpinski triangle, Figure2, also called the Sierpinski gasket, ] p.36). In Figures2 and 3, pre-fractals E 4 (cf. section 1.1) , for the Sierpinski triangle and carpet respectively, are the union of closed blue sets.
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 23 Figure 2. The Sierpinski gasket
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 1133 Crawford's work J.D. Crawford worked on Kuramoto-Sakaguchi' s model[START_REF] Coddington | Theory of Ordinary Differential Equations[END_REF] (cf.[START_REF] Crawford | Amplitude expansions for instabilities in populations of globally-coupled oscillators[END_REF]). Later on, he considered a more general model where sin(θ ′θ) is replaced by f (θ ′θ)1.11.4 The Acebron-Spigler modelIn[START_REF] Acebron | Adaptative frequency model for phase-frequency synchronization in large populations of globally coupled nonlinear oscillators[END_REF], J.A. Acebron, R. Spigler, are intersted in self-synchronization among the coupled oscillators, both in phase and in frequency. They point out that the Kuramoto-Sakaguchi model with noise terms does not allow for simultaneous synchronization in both phase and frequency. They propose a new model in which frequencies of the oscillators vary in time along with their phase. The governing equations, when N 1 and noise effects are included, are a set of Langevin equations, which lead, when N → ∞, to a Fokker-Planck type equation of the form (with normalized parameters)

  is bounded and compactly supported in [-G, +G] and the initial condition ρ o has an exponential decay in ω at infinity, namely sup θ∈R,Ω∈[-G,+G]

1 .

 1 0 where A, B, D, are constants with D Example 14 In [65], the following Gray-Scott systems and the associated stationary system in a bounded smooth domain Ω ⊂ R N are considered ∂v ∂t = 2 ∆vv + Auv 2 τ ∂u ∂t = ∆u -(6 ) -1 uv 2 + (1u), u > 0, v > 0 associated with the boundary condition ∂u ∂ν = ∂v ∂ν = 0 on ∂Ω, mostly when N=2, 3 and Ω is a ball B R of center 0 and radius R; the cases Ω = R N , or R N \ B R , or B R2 \ B R1 are also discussed.
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 4 Figure 4. The αβ plane

  The obstacle B may be hard (i.e. zero Dirichlet conditions are additionally imposed on B) or replaced by a central non-negative [resp. non-positive] function supported by B, i.e. the investigated operator has the form -∆ + αχ B (x) where χ B is the indicator function of B, and α > 0 [resp. < 0]. Several examples with very clear figures are presented. Similar problems are studied for the stationnary Schrödinger operator in Ω.
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 5 Figure 5. Spectral band
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 111 Resonances for a semi-classical Schrödinger operator.
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 141 Steklov and membrane eigenvaluesSee J.R. Kuttler, V.G. Sigillito[START_REF] Kuttler | Inequalities for membrane and Steklov eigenvalues[END_REF]. Steklov eigenvalues are interpreted physically as the natural frequencies of a vibrating membrane with its mass concentrared around the edge. Three Steklov eigenvalue problems: ∆u = 0 on D, ∂u ∂n = pu on ∂D ∆ 2 u = 0 on D, ∂u ∂n = ∂∆u ∂n + ξu = 0 on ∂D ∆ 2 u = 0 on D, u = ∆uq ∂u ∂n = O on ∂D and two membrane eigenvalue problems: ∆u + λu = 0 on D, u = 0 on ∂D (fixed membrane) ∆u + µu = 0 on D, ∂u ∂n = 0 on ∂D (free membrane)

  ) has been, recently, studied by D. R. Akhmetov, M.M. Lavrentiev and R. Spigler with the condition of periodicity v| y=0 = v| y=1 and the initial condition v(x, y, 0) = ϕ(x, y), on different domains. Equation (46) is an ultraparabolique equation with y = t 1 , t = t 2 . The coefficients in L and f [resp.ϕ] are defined on R × R × [0, T ] [resp. R 2 ], are smooth enough and y periodic with period 1. In D.R. Akhmetov, R.Spigler[START_REF] Akhmetov | Uniform and optimal estimates for solutions to singularly perturbed parabolic equations[END_REF],Q T = R × [0, 1] × [0, T ].The singularly perturbed regularized parabolic problem Luu yy = f (x, y, t) in Q T (u , u y )| y=0 = (u , u y )| y=1 , u (x, y, 0) = ϕ(x, y)
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 182 Fokker-Plank type equation (See section1.11). In[START_REF] Akhmetov | Uniform and optimal estimates for solutions to singularly perturbed parabolic equations[END_REF], the authors consider the non linear equation-Ω -K(θ, t))ρ]ω ∂ρ ∂θ , in the unbounded domain Q T = {(θ, ω, t, Ω) ∈ [0, 2π]×R×[O, T ]×[-G, G]}, associated with the boundary and initial data ρ| θ=0 = ρ| θ=2π , ρ| t=0 = ρ o (θ, ω, Ω). Here K(θ, t) = K sin(ϕθ)ρ(ϕ, ω, t, Ω)dϕdωdΩ.
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 201 The wavefront set of a distribution (See F. Treves[START_REF] Treves | Introduction to pseudodifferential operators and Fourier integral operators,volumes I and II[END_REF]). Let Ω be an open set in R n . A distribution u ∈ D ′ (Ω) (cf. L. Schwartz[START_REF] Schwartz | théorie des distributions[END_REF]) is said to be C ∞ in a neighborhood of (x o , ξ o ) ∈ Ω×(R n \{0}), if there exits a function g ∈ D(Ω), g ≡ 1 in a neigborhood U of x o and an open cone Γ o in R n containing ξ o such that:∀M ≥ 0, ∃C M ≥ 0 such that | (gu)(ξ)| ≤ C M (1 + |ξ|) -M , ∀ξ ∈ Γ o .

  (z o , ζ o ) ∈ T * (R n ) is backward nontrapping and let ω -= lim t→-∞ z(t; z o , ζ o ) |z(t; z o , ζ o )| ,where z(t; z o , ζ o ) is solution of the Hamilton equations. It is proved that, if there exists t o > 0 such that (-t o ω -, ω -) / ∈ HW F (u o ), then (z o , ζ o ) /
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  1.11.3 From Kuramoto to CrawfordIn[START_REF] Strogatz | From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillator[END_REF], S. H. Strogatz tells the story of coupled oscillators, from Y. Kuramoto's work to J.D. Crawford's contributions.1.11.3.1 The infinite-N version of[START_REF] Bodine | Asymptotic Analysis of solutions of a radial Schrödinger equation with oscillating potential[END_REF] The frequencies ω are distributed according to the probability density g(ω). Let ρ(θ, t, ω) denote the fraction of oscillators with natural frequency ω and phase in [θ, θ + dθ], at time t. Then, ρ is non-negative, 2π-periodic in θ, and satisfies the normalization condition

	2π 0 ρ(θ, t, ω)dθ = 1, for all t, ω. The evolution of ρ is governed by the continuity condition ∂ρ ∂t = -∂ ∂θ (ρv)

  (cf.section 2.14). Let Ω be a bounded, connected, open subset of R n , whose boundary ∂Ω satisfies quite general conditions; in particular, ∂Ω may be the union of a finite number of disjoint closed Lipschitz surfaces, each surface having finite area. The usual real sobolev space H 1 (Ω) is equipped with the inner product (u, v) ∂ = ∂Ω ∇u . ∇v dx + |∂Ω| -1 ∂Ω uv dσ. Denote by Γ the trace map H 1
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Abstract setting of Kirchhoff-type equation

. Let H be a Hilbert space, A a selfadjoint non-negative operator on H, with dense domain D(A). Then there exists a unique self-adjoint positive operator A 1 2 such that (A 1 2 ) 2 = A. (For the definition and properties of A α , 0 < α < 1, see, for instance, D. Huet [START_REF] Huet | Décomposition spectrale et opérateurs[END_REF], T. Kato [START_REF] Kato | Perturbation theory for linear operators[END_REF] or M. Schechter [START_REF] Schechter | Principles of functional analysis[END_REF]).

, the equation

becomes equation ( 28) (| | denotes the norm in H). The abstract Cauchy problem

is investigated in M. Ghisi, M. Gobino [START_REF] Ghisi | Global existence and asymptotic behavior for a midly degenerate dissipative hyperbolic equation of Kirchhoff type[END_REF], where δ > 0 and m

2 ) and under the nondegeneracy condition m(|A

) > 0, existence, uniqueness, in suitable functional spaces, of u solution to [START_REF] Doelman | A stability index analysis of 1-D patterns of the Gray-Scott model[END_REF], and the asymptotic behavior of (u(t), u

2 ) × H, as t → ∞, are studied.

Singular perturbations in Kirchhoff type equations.

In M. Ghisi, M. Gobino [START_REF] Ghisi | Hyperbolic-parabolic singular perturbations for midly degenerate Kirchhoff equations[END_REF], time-decay estimates, as t → ∞, are obtained for the singularly perturbed Cauchy problem

and for the first order limit problem

where > 0, (u o , u 1 ) ∈ D(A)×D(A

2 ) and m is of class C 1 . Decay estimates are stated for equation (38) under the nondegeneracy condition |A

and, for equation [START_REF] Eizenberg | Elliptic perturbations for a class of hamilton-Jacobi equations[END_REF], under a weaker condition m(|A

In this last case, most of the constants which appear in decay estimates are independent of . A clear comparison with similar previous estimates, obtained by several authors, is presented

Lyusternik-Schnirelman category

This category is defined in L.A. Lyusternik, L. Schnirelman [START_REF] Lyusternik | Methodes toptologiques dans les problemes variationnels[END_REF], (see also Encyclopaedia of Mathematics [38]). It arises in T. Bartsch, T. Weth [START_REF] Bartsch | The effect of the domain's configuration ofnodal solutions of singularly perturbed elliptic equations[END_REF], where the number of nodal solutions to a nonlinear elliptic Dirichlet problem can be expressed as the category of a suitable inclusion between two spaces which involve the shape of ∂Ω (cf. section 2.8 example 20).