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Abstract. In this paper, the inversion of a linear operator is tackled by a procedure called
iterative shrinkage. Iterative shrinkage is a procedure that minimizes a functional balancing
quadratic discrepancy terms with lp regularization terms. In this work, we propose to replace
the classical quadratic discrepancy terms with adaptive ones. These adaptive terms rely on
adapted projections on a suitable basis. Two versions of these adaptive terms are proposed (one
with a straightforward use of the projections and the other with relaxed projections) together
with iterative algorithms minimizing the obtained functional. We prove the convergence and
stability of corresponding algorithms. Moreover we prove that for a straightforward use of these
adaptive projections, although the process is consistent, valuable information may be lost, which
is not the case with the “relaxed” projections. We illustrate both algorithms on multispectral
astronomical data.

1. Introduction
In this paper, we consider the general inverse problem of finding an object f from its (possibly
noisy) observation g. We assume that the observation process can be modeled by a known
bounded linear operator T . Hence one can model the observation g as g = T (f)+n where n is a
noise term. Even knowing T , this problem is ill-posed and therefore needs to be “regularized”.
The compromise that is sought is to have an estimate f̂ of f that both

(i) fits the data: T (f̂) ∼ g

(ii) has “desirable” properties (for example, sharpness if f is a picture).

The regularization of inverse problems may be tackled with different models (stochastic or
not) on the data f or noise n and different criteria of optimality to define what the “best” guess
is. In this work we focus on functional analysis techniques to solve this problem. The optimality
of the guess is defined by a cost functional J which measures both the fitness to the data and
the properties of f itself. The estimate f̂ we seek is a minimizer of this cost functional J , which
is typically the sum of

(i) a discrepancy term that measures the fitness to the data: Jdisc(T (f), g)

(ii) a regularization term that measures the “desirable” properties of f : Jreg(f),

with a regularization parameter γ to balance the two terms. We have then:

J(f) = Jdisc(T (f), g) + γJreg(f) (1)



T : Hi → Ho is a bounded linear operator between two Hilbert spaces. Classically, Hi = Ho

and is an L2 space and the discrepancy term is simply the quadratic norm of the residual

Jdisc(T (f), g) =
∥∥Tf − g

∥∥2

Ho.

The regularization term may include a priori knowledge on the properties that are desirable on
f . This formulation with cost functional is specially practical when the properties on f are well
modeled by its belonging to a particular functional space, since then one can simply choose Jreg

as the norm in this space. For images for example, the norm in the space of bounded variation
functions has been successfully used ([1]....). In this work, we use weighted lp-norms on a basis
of Hi as the regularization term. The regularization terms we consider have then the following
form:

Jreg(f) =
∑

λ∈Λ

wλ| 〈f, ϕλ〉 |
p def

= |||f |||p
w,p (2)

where

• ϕ={ϕλ}λ∈Λis a basis of Hi.

• p is an exponent, 1 ≤ p ≤ 2.

• w={wλ}λ∈Λare strictly positive weights.

This allows to cover a wide variety of norm and consequently properties for f . For example,
choosing p = 2 and ϕ= {ϕλ}λ∈Λas the Fourier basis gives a simple quadratic norm with
constraints on the power spectrum of f . When p = 1, the norm promotes sparsity in the
basis chosen. We will give concrete examples of the regularization norm we choose for a
particular application. Many other regularization term may be proposed, but here we focus
on the discrepancy term.

The discrepancy term has been less closely studied in the literature and most methods rely on
the classical quadratic term described earlier. However, it is clear that some a priori knowledge
on the observation could also be useful to regularize the inversion. For example, often methods
are known that alleviate the noise in the observation, thus emphasizing more important features
in the observation. The classical quadratic discrepancy term does not allow to focus on these
features.

This paper presents two ways to modify the classical quadratic discrepancy term in order
to incorporate this idea of important feature in the observation. The key is to use adaptive
projection operators to modify the discrepancy term. The original idea is from J.-L. Starck
and co-authors. In [2], they present an iterative algorithm that focuses on important features
in blurred astrophysical images by introducing projections on the “multiresolution support”.
These are projections on a subspace defined by the wavelet transform of the observations. They
are adaptive and allow to consider only important features of the data and discard the noise in
the case of deconvolution of astrophysical data presented in [2]. Following this idea, we propose
the use of general projections to define adaptive discrepancy measures. The idea is that the
image space of the projection defines important features in the observation - these should be
well predicted by the estimate of f - while the kernel of the projection defines information that
is less important or even not relevant (for example noise in the observation). Let us denote by
Mg a projection operator that depends on g, we consider in this paper the discrepancy terms of
the form:

Jdisc(T (f), g) =
∥∥Mg(Tf − g)

∥∥2

Ho . (3)

The cost functional we study therefore reads:

J(f) =
∥∥Mg(Tf − g)

∥∥2

Ho + γ|||f |||p
w,p =

∥∥Mg(Tf − g)
∥∥2

Ho + γ
∑

λ∈Λ

wλ| 〈f, ϕλ〉 |
p (4)



Minimizing functionals with classical or adaptive discrepancy terms and lp regularization
terms (Eq.(4) without or with Mg) is obtained via ”iterative shrinkage algorithms”. These
algorithms have received a lot attention in the last few year. Founding papers derive such
algorithms in different framework (e.g. Bayesian in [3] or functional in [4]). Many aspects
were and are still studied, in particular, different regularization terms (e.g. [5]), the extension
to nonlinear problems [6], the separation of different constituents of the data in layers [7],
the application to multidimensional data [8; 9], as well as the convergence speed [10; 11]. To
the best of our knowledge, there is however no work on generalizing the discrepancy term
and the consequences on the convergence and stability of the corresponding modified shrinkage
algorithms, which is the main topic of this paper.

Using the mathematical framework introduced in [4], we study the behavior of the iterative
algorithm minimizing functionals obtained with adaptive discrepancy terms such as those in
Eq.(4). We prove the strong convergence and stability of the proposed iterative algorithms
minimizing such functionals. We also show that the straight projections may lead to undesired
effects (some useful information being erased by the projections). Therefore, we define “relaxed”
projections operators which will not suffer this drawback while retaining the possibly of
adaptation to important feature in the observation.

After the introduction, the paper is organized as follows. Section 2 reviews the principals
results in [4], which present a complete study of the convergence, stability and convergence rate
of iterative algorithms to minimize the functional of Eq. (4) when M = Id (i.e without adaptive
discrepancy term). In section 3, we present a first version of functional with discrepancy term.
These consist in straight adaptive projections. We prove the convergence and stability of the
obtained iterative algorithm and exhibit the drawbacks of having plain projection. Section 4
gives the relaxed version of the discrepancy term, together with its analysis. We briefly explain
in section 5 the extension of this framework to inverse problem with multiple observation and/or
objects. This extension is used in section 7, which is devoted to an application in astronomy.

2. Iterative shrinkage algorithm of [4]:

In this section, we summarize the findings in [4], where an iterative shrinkage algorithm was
proposed to minimize Eq.(5) without adaptive discrepancy term, i.e the functional:

Jγ,w,p(f) =
∥∥Tf − g

∥∥2

Ho + γ|||f |||p
w,p =

∥∥Tf − g
∥∥2

Ho + γ
∑

λ∈Λ

wλ| 〈f, ϕλ〉 |
p. (5)

Here, the set ϕ={ϕλ}λ∈Λis a fixed basis of Hi.
The main results in [4] are the proofs of convergence, stability and convergence rate of the

proposed algorithm. We will build on the first two results to analyze our functionals with
adaptive discrepancy terms and therefore remind the results in this section.

2.1. Iterative algorithm

The authors of [4] propose the following iterative algorithm to obtain a minimizer of Eq.(5):

Algorithm 2.1 {
f0 arbitrary
fn = Sγw,p

(
fn−1 + T ∗(g − Tfn−1)

)
, n ≥ 1

At each iteration, one computes the Landweber iterate fn−1 + T ∗(g − Tfn−1) and modifies it
with the Sγw,p function. The Sγw,p treats independently each coefficient of the argument h on
the basis ϕ={ϕλ}λ∈Λ:

Sw,p(h) =
∑

λ

Swλ,p(hλ)ϕλ , (6)



with the functions Sw,p from R to itself are given by

Sw,p(x)
def
=

(
x+

wp

2
sign(x) |x|p−1

)−1
, for 1 ≤ p ≤ 2, (7)

where (.)−1 denotes the inverse so that ∀x, Sw,p(x+ wp
2 sign(x) |x|p−1) = x.

In particular:

• p = 1: Sw,1(x) =





x− w/2 if x ≥ w/2
0 if |x| < w/2
x+ w/2 if x ≤ −w/2

(soft-thresholding operator).

• p = 2: Sw,2(x) =
x

1 + w
.

2.2. Convergence and stability

The two following theorems summarize the findings presented in [4]. The first theorem states
that iterative algorithm 2.1 converges strongly in the norm associated in the Hilbert space Hi

for any initial guess f0.

Theorem 2.2 (Convergence) Let T be a bounded linear operator from Hi to Ho, with
|||T ||| < 1. Take p ∈ [1, 2], and let Sw,p be the shrinkage operator defined by Eq.(6), where
the sequence w ={wλ}λ∈Λ is such that there exists a constant c > 0 such that ∀λ ∈ Λ : wλ ≥ c.
Then the sequence of iterates

fn = Sγw,p

(
fn−1 + T ∗(g − Tfn−1)

)
, n = 1, 2, . . . ,

with f0 arbitrarily chosen in Hi, converges strongly to a minimizer of the functional Jγ,w,p.
If the minimizer f⋆ of Jγ,w,p is unique, (which is guaranteed e.g. by p > 1 or ker(T ) = {0}),

then every sequence of iterates fn converges strongly to f⋆, regardless of the choice of f0.

The second theorem is concerned with the stability of the method. It gives sufficient
conditions to ensure that the estimate recovered from a perturbed observation, g = Tf0 +e, will
approximate the object f0 as the amplitude of the perturbation ‖e‖Ho goes to 0.

Theorem 2.3 (Stability) Assume that T is a bounded operator from Hi to Ho with |||T ||| < 1,
that γ > 0, 1 ≤ p ≤ 2 and that the entries in the sequence w = {wλ}λ∈Λ are bounded below by
c > 0.

Assume that either p > 1 or ker(T ) = {0}. For any g ∈ Ho and any γ > 0, define f⋆
γ,w,p;g to

be the minimizer of Jγ,w,p with observation g. If γ = γ(ǫ) satisfies

lim
ǫ→0

γ(ǫ) = 0 and lim
ǫ→0

ǫ2

γ(ǫ)
= 0 , (8)

then we have, for any fo ∈ Hi,

lim
ǫ→0

[
sup

‖g−Tfo‖Ho≤ǫ
‖f⋆

γ(ǫ),w,p;g − f †o‖Hi

]
= 0 , (9)

where f †o is the unique element of minimum ||| · |||w,p–norm in the set Sfo
= {f ;Tf = Tfo}.

Let us now make a two remarks concerning theses results.



Remark 1: Note that when T is invertible, Sfo
is reduced to {fo} and therefore f †o = fo. This

means that Algorithm 2.1 provides a stable inversion of the set of invertible operators: one is
ensured that when the observation becomes ideal, so will be the estimation.

Remark 2: The proposed iterative algorithm converges strongly to a minimizer of the functional
Jγ,w,p. Such a minimizer is an estimate of the object f that compromises between generating
an observation close to the data g in a quadratic sense (‖Tf − g‖2

Ho) and having the smallest
||| · |||w,p–norm.

By using different bases, exponents p or weights w, one can construct a ||| · |||w,p–norm such
that it will preserve or enhance desirable properties of f . For example, for wλ = p = 1, the
regularizing term is nothing more than the sum of absolute value of the coefficients on the
basis ϕ= {ϕλ}λ∈Λ. This is frequently used to promote the sparsity of the decomposition of
the estimate on the basis ϕ= {ϕλ}λ∈Λ, corresponding to the a priori knowledge that plausible
estimates are compactly represented in this basis (few coefficients of large amplitude allow for a
good description of the signal).

On the other hand, the quadratic discrepancy term (‖Tf−g‖2
Ho) in Jγ,w,p is fixed and can not

be adapted to the problem at hand. For example, it can not enhance more important features
that should be matched in the observations, while discarding less important ones. In the rest of
this paper, we will present adaptive discrepancy terms that aim at fixing this point.

3. Adaptive discrepancy terms via projections on the observations’ feature space

3.1. Founding idea: the multiresolution support

In [2], the authors are concerned with the deconvolution of an astrophysical image. The
observations of interest are blurred and noisy pictures of galaxies. For these, denoising by wavelet
hard-thresholding was already known to improve the quality of noisy observations. The wavelet
hard-thresholding procedure on g is the reconstruction from the wavelet transform of g where
all the coefficients smaller than a predefined threshold have been put to zero. Therefore, wavelet
hard-thresholding is nothing more than applying to g an adaptive projection: the projection
on the “multiresolution support” of g, i.e. on the subspace defined by the largest wavelet
coefficients of g (the name multiresolution support was defined in [2]). The fact that wavelet
thresholding improves the observation shows that the “multiresolution support” of g naturally
defines a subspace that describes the important features of g.

The authors of [2] proposed to use this multiresolution support not only to denoise g itself
but also in the context of deblurring by using it to evaluate how well an estimate f fits the data
g. They proposed an iterative algorithm very close to Algorithm 2.1, for p = wλ = 1 except that
the residual (g− Tfn−1) is projected on the multiresolution support of g: (g− Tfn−1) becomes
Mg(g − Tfn−1) where Mg is the projection on the multiresolution support of g.

We propose to use this idea to extend the class of functionals and algorithms studied in [4]
and study the mathematical properties of the resulting algorithms. Indeed, the idea in [2] is in
essence to focus on the important features of the observation g knowing that it is not an perfect
observation. If the ideal observation is known to be sparse in some basis (e.g. astronomical data
have a sparse wavelet representation) then one can exploit this sparsity to focus on relevant pieces
of information in the observation g by projecting on the subspace defined by large coefficients.
This leads us to using adaptive projections in the discrepancy term of the functionals.

3.2. Iterative algorithm with adaptive projection

We first define the notion of adaptive projection: an adaptive projection defined by the data g
is the orthogonal projection on a subspace defined by the fact that the coefficients of g on an
orthonormal basis are greater than predefined thresholds. Mathematically:



Definition 3.1 Given an orthonormal basis {βλ}λ∈Λof Ho, an element g in Ho and a sequence
of non-negative thresholds τ= {τλ}λ∈Λ, the adaptive projection Mg,τ is the map from Ho into
itself defined by:

∀h ∈ Ho, Mg,τ (h) =
∑

λ s.t. |gλ|>τλ

hλβλ

(where, as usual, hλ denotes the scalar product 〈h, βλ〉)

We propose the following algorithm:

Algorithm 3.2

{
f0 arbitrary
fn = Sγw,p

(
fn−1 + T ∗ Mg,τ (g − Tfn−1)

)
, n ≥ 1

Note that if T is a convolution, {βλ}λ∈Λis a wavelet basis, p = 1 and ∀λ ∈ Λ, wλ = 1, this is
equivalent to what was proposed in [2]. From what we saw before, we can infer that Algorithm
3.2 should converge to a minimizer of

Jγ,w,p,τ (f) =
∥∥Mg,τ (Tf − g)

∥∥2

Ho + γ|||f |||p
w,p (10)

which is a functional with an adaptive discrepancy term.
Before we go on proving the convergence and stability of Algorithm 3.2, we first gain insight

on it by looking at the particular case when T is a diagonal operator on the basis {βλ}λ∈Λ.

3.3. Diagonal case: a mixture of hard- and soft-thresholding

Let us assume that T is diagonal:

T (h) =
∑

λ∈Λ

tλhλβλ

where the tλ are scalars.

Jγ,w,p,τ (f) =
∥∥Mg,τ (Tf − g)

∥∥2

Ho + γ|||f |||w,p (11)

=
∑

λ s.t. |gλ|>τλ

|(Tf − g)λ|
2 + γ

∑

λ∈Λ

wλ|fλ|
p

=
∑

λ s.t. |gλ|>τλ

(
|tλfλ − gλ|

2 + γwλ|fλ|
p
)

+ γ
∑

λ s.t. |gλ|≤τλ

wλ|fλ|
p

=
∑

λ s.t.
|gλ|>τλ

& tλ 6=0

t2λ

(
|fλ − gλ/tλ|

2 + γwλ/t
2
λ|fλ|

p
)

+
∑

λ s.t.
|gλ|>τλ

& tλ=0

(
|gλ|

2 + γwλ|fλ|
p
)

+
∑

λ s.t.
|gλ|≤τλ

γwλ|fλ|
p

The equations for each fλ are now decoupled so that the minimizer f⋆ of Jγ,w,p,τ is defined by:

{
f⋆

λ = Sγwλ/t2
λ
,p(gλ/tλ) if |gλ| > τλ and tλ 6= 0

f⋆
λ = 0 if |gλ| ≤ τλ or tλ = 0

(12)

Introducing the hard-thresholding operator with threshold τ :

Hτ (x) =

{
x if |x| > τ
0 otherwise,

(13)



and rewriting the preceding equation, the minimizer f⋆ of Jγ,w,p,τ for T diagonal is defined by:

{
f⋆

λ = Sγwλ/t2
λ
,p(Hτλ/tλ

(gλ)) if tλ 6= 0

f⋆
λ = 0 if tλ = 0.

(14)

Note that without the adaptive projection (minimizing Jγ,w,p via Algorithm 2.1), the solution
is the same without hard-thresholding: the minimizer f⋆ of Jγ,w,p for T diagonal is defined by:

{
f⋆

λ = Sγwλ,p(gλ)
f⋆

λ = 0
(15)

Thus we obtain the previous shrinkage operator Sγwλ/t2
λ
,p composed with a hard-thresholding

operator Hτ/t. We call the result an “adaptive thresholding operator”. The hard-thresholding
operation is known to be a way to enhance the solution after application of the pseudo inverse.
On the other hand the shrinkage operator Sγwλ/t2

λ
,p regularizes the same solution with respect

to a smoothness defined by the ||| · |||w,p–norm. We find here that the introduction of the
discrepancy term with adaptive projections is simply an intermediate solution between both
of these regularizations.

When p = 1 and tλ = 1, we obtain a compromise between hard and soft-thresholding if
τλ > γwλ. To illustrate this, we graph in Fig.1 the hard-thresholding function with threshold
τ (left), the soft-thresholding function with threshold γ (right) and the function obtained in
Eq.(14) (middle) in the case τ > γ (here w = 1).
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Figure 1. Left: hard-thresholding operator Hτ ; middle: adaptive thresholding operator; right:
soft-thresholding operator Sγ,1.

3.4. A convergent iterative algorithm

The strong convergence of Algorithm 3.2 to a minimizer of Eq.(10) is guaranteed by Theorem
2.2. Provided that the operator T , the exponent p and the sequence w= {wλ}λ∈Λverify the
conditions in Theorem 2.2), one can apply this theorem to g′ = Mg,τ g and T ′ = Mg,τ T to
get the solution (this works because Mg,τ is a self-adjoint projection, so that T ′ verifies the
conditions as soon as T does).

3.5. Stability is an issue

3.5.1. Examples
The study on diagonal operators suggests that introducing adaptive projections gives flexibility

by defining a new shrinkage operator. In this section, we see that this flexibility comes to a
price: the resulting algorithm is stable in the sense of Theorem 2.3, however the limit obtained



has undesired properties. There is stability in the sense that if the parameters (τ , w,..) are
chosen properly as the noise level decreases - i.e. when the observation g gets closer to the true
observation Tfo - then the solutions converge to a well-defined limit. However this limit is not
necessarily fo, even if T is invertible.

In a nutshell, what happens is that stability requires that the thresholds τ= {τλ}λ∈Λ are
large enough compared to ||g − Tfo||. This implies that the subspace defined by the indexes λ
such that {Tfo}λ = 0 will necessarily be in the kernel of the adaptive projections Mg,τ as soon
as g is close enough to Tfo. Therefore the information in this subspace will lost. The result is
then that as the observation becomes ideal (i.e. close to Tfo) the solution of Algorithm 3.2 will
approach the element of minimal ||| · |||w,p–norm in the set MT,fo

of elements of Hi that have the
same image under T as fo except maybe on the coordinates λ such that (Tfo)λ = 0.

Let us define formally MT,fo
:

Definition 3.3 (MT,fo
) Given two Hilbert spaces Hi and Ho, an operator T : Hi → Ho, an

orthonormal basis {βλ}λ∈Λof Ho and an element fo of Hi. The set MT,fo
is the subset of

elements of Hi that verify:

f ∈ MT,fo
⇐⇒ MTfo,0(Tf) = Tfo ⇐⇒

[
{Tfo}λ 6= 0 ⇒ {Tf}λ = {Tfo}λ

]

It is clear that even if the operator we seek to invert is one-to-one, for a given object fo, the
set MT,fo

need not be reduced to {fo} itself:

Example 1 If T is the identity, f1 = (1, 0) ∈ R
2, then MId,f1 = {(1, x), x ∈ R} on the

canonical basis.

In this case the minimizer of any ||| · |||w,p–norm in the set MId,f1 is f1 itself, whatever the choices
of the parameters p and w = {wλ}λ∈Λ,... are. Algorithm 3.2 will therefore provide the desired
result: if g is arbitrarily close to Tf1 = f1 then the minimizer of Jγ,w,p,τ for suitable parameters
γ and τ={τλ}λ∈Λis arbitrarily close to f1.

However, this is not the case in the following example, where T is also an invertible operator
in R

2:

Example 2 Consider T : R
2 → R

2, the bounded and linear operator defined by:

T :

(
f1

f2

)
7→ 1

4

(
2 f1 + f2

f1 − f2

)
and fa =

(
a
a

)
for some a 6= 0.

• T has a bounded inverse: T−1 :

(
f1

f2

)
7→ 4

3

(
f1 + f2

f1 − 2f2

)
and |||T |||= 1

2 <1.

• Tfa =

(
3a
4
0

)
and MT,fa

= {f : (Tf)1 = (Tfa)1} = {f : 2f1 + f2 = 3a}.

The element in MT,fa
with minimal l1 norm is: f †a =

(
3a
2
0

)
, and not fa itself. Thus the

minimizers of Eq.(10) (for p = 1) do not converge to fa as the observations converge to Tfa.
In other words, information on the second coordinate in image plane has been lost that prevents
the algorithm to invert T even with arbitrary accurate data.



3.5.2. Stability theorem
We now state the stability theorem for Algorithm 3.2. It turns out that Algorithm 3.2 is

regularizing for elements f in a particular set: Hi
T,w,p, which is defined by:

Definition 3.4 (Hi
T,w,p) Given a Hilbert space Hi, Hi

T,w,p is the subset of elements of Hi that

verify: fo is in Hi
T,w,p if and only if the set MT,fo

= {f : MTfo,0Tf = Tfo} has a unique element

of minimum |||.|||w,p-norm.

When p > 1, then Hi
T,w,p = Hi, regardless of T . This is not true if p = 1, even if kerT = {0}.

Algorithm 3.2 is regularizing for elements f in Hi
T,w,p, and the minimizer obtained in the limit

‖Tfo − g‖Ho goes to zero is exactly the minimizer of the |||.|||w,p-norm in the set MT,fo
. This is

the object of the following theorem:

Theorem 3.5 Assume that T is a bounded operator from Hi to Ho with |||T ||| < 1, that γ > 0,
p ∈ [1, 2] and that the entries in the sequence w = {wλ}λ∈Λ are bounded below uniformly by a
strictly positive number c.

For any g ∈ Ho and any γ > 0 and any non-negative sequence τ={τλ}λ∈Λ, define f⋆
γ,w,p,τ ;g

to be a minimizer of Jγ,w,p,τ (f) with observation g. If γ = γ(ǫ) and τ = τ(ǫ) satisfy:

(i) lim
ǫ→0

γ(ǫ) = 0 and lim
ǫ→0

ǫ2

γ(ǫ)
= 0

(ii) ∀λ ∈ Λ, lim
ǫ→0

τλ(ǫ) = 0 and ∃ δ > 0, s.t: [ ǫ < δ ⇒ ∀λ ∈ Λ, τλ(ǫ) > ǫ ]

then we have, for any fo ∈ Hi
T,w,p:

lim
ǫ→0

[
sup

‖g−Tfo‖Ho≤ǫ
‖f⋆

γ(ǫ),w,p,τ(ǫ); g − f †o‖Hi

]
= 0 ,

where f †o is the unique element of minimum ||| |||w,p–norm in the set MT,fo
.

We will prove this stability theorem in a similar manner as Theorem 2.3 is proved in [4].
The proof proceeds as follows: first we prove that the norms ‖f⋆

γ(ǫ),w,p,τ(ǫ); g‖w,p are uniformly

bounded. Secondly, we prove that when fo is in Hi
T,w,p, any sequence {f⋆

γ(ǫn),w,p,τ(ǫn); gn
}n

converges weakly to f †o when ǫn converges to 0. (Here gn is any element in Ho verifying
‖gn − Tfo‖Ho ≤ ǫn). Finally we prove strong convergence of the {f⋆

γ(ǫn),w,p,τ(ǫn); gn
}n which

proves Theorem 3.5.
The main addition of the proof given here (case with adaptive projection in the discrepancy

term) compared to one provided in [4] (case with classical quadratic discrepancy term) is the
analysis of the behavior of the adaptive projection operators Mg,τ when ||g − Tfo|| → 0. More
exactly, we prove in Lemmas 3.6 and 3.7 that condition ii) in Theorem 3.5 is needed to obtain
the weak convergence of the adaptive projection operators Mg,τ when ||g − Tfo|| → 0 in section
3.5.3. Using this weak convergence allows to adapt the proof of Theorem 2.3 provided in [4], to
give the full proof of Theorem 3.5 in 3.5.4.

3.5.3. Weak convergence of the projection operators
To prove Theorem 3.5, we first examine the behavior of the projections Mg(ǫ),τ(ǫ) as ǫ goes

to zero in the next two lemmas. The first lemma (Lemma 3.6) gives necessary and sufficient
conditions on the sequence τ={τλ}λ∈Λ to that these projections converge in a weak sense as ǫ
goes to zero. We will be interested in the case where the weak limit operator is MTfo,0. The
second lemma (Lemma 3.7) refines these conditions, so that in addition, the sequence Mg(ǫ),τ(ǫ)

converges strongly to MTfo,0 on the set: T (MT,f0).



Lemma 3.6 For f ∈ Hi, let {g(ǫ, f)}ǫ>0 be an arbitrary family of elements in Ho that satisfy
‖g(ǫ, f) − Tf‖Ho < ǫ, ∀ǫ > 0.

(i) ∀h ∈ Ho, Mg(ǫ,f),τ(ǫ)h converges weakly as ǫ goes to 0 if and only if ∀λ : ∃ δ(λ)
such that either (a) or (b) holds, with

(a) ∀ǫ ∈ (0, δ(λ)),
∣∣[g(ǫ, f)]λ

∣∣ > τλ,

(b) ∀ǫ ∈ (0, δ(λ)),
∣∣[g(ǫ, f)]λ

∣∣ ≤ τλ.

(ii) Mg(ǫ,f),τ(ǫ) converges weakly, independently of the choice of f and of the family g(ǫ, f), as
ǫ goes to 0 if and only if ∀λ : both (a) and (b) hold, with

(a) ∃ δ(λ) such that ∀ǫ ∈ (0, δ(λ)), τλ(ǫ) > ǫ
(b) lim

ǫ→0
τλ(ǫ) = 0

In that case, the weak-limit operator is necessarily MTf,0.

(iii) When conditions ii.(a) and ii.(b) above hold:
if h(ǫ) converges weakly to h, then Mg(ǫ,f),τ(ǫ)h(ǫ) converges weakly to MTf,0 h as ǫ goes to 0.

Proof of Lemma 3.6 Let us examine the behavior of Mg(ǫ,f),τ(ǫ) coordinate by coordinate.

Since
[
Mg(ǫ,f),τ(ǫ)h

]
λ

equals either hλ or 0, depending on whether or not
∣∣[g(ǫ, f)]λ

∣∣ > τλ(ǫ), it
follows that Mg(ǫ,f),τ(ǫ)(h) will converge weakly as ǫ goes to 0 if and only if for all coordinates
λ, one of the following holds:

Either there exists some δ(λ) > 0 such that
∣∣[g(ǫ, f)]λ

∣∣ > τλ(ǫ) for ǫ < δ(λ). In this case,[
Mg(ǫ,f),τ(ǫ)h

]
λ

= hλ for ǫ < δ(λ).

Or there exists some δ(λ) > 0 such that
∣∣[g(ǫ, f)]λ

∣∣ ≤ τλ(ǫ) for ǫ < δ(λ). In this case,[
Mg(ǫ,f),τ(ǫ)h

]
λ

= 0 for ǫ < δ(λ).

This proves the first assertion.
Let us now consider how uniform this behavior is in the choice of the family g(ǫ, f). Since∣∣[g(ǫ, f) − Tf ]λ

∣∣ ≤ ‖g(ǫ, f) − Tf‖Ho ≤ ǫ, the set of values that can be assumed by |g(ǫ, f)λ| is

exactly
[
Tf − ǫ, Tf + ǫ

]
(take g = Tf + rβλ, r ∈ [−ǫ, ǫ] to reach all the values in this set).

Therefore, for a fixed f , the weak convergence of the operators Mg(ǫ,f),τ(ǫ), regardless of which
sequence g(ǫ, f) is chosen, is equivalent to putting constraints on the sequence {τ(ǫ)λ}λ∈Λ that
depend of the coordinates (Tf)λ. These constraints depends on whether (Tf)λ 6= 0 or (Tf)λ = 0:

• If Tfλ 6= 0 then
{
|g(ǫ, f)λ|

}
=

[
|Tfλ| − ǫ, |Tfλ| + ǫ

]
. Therefore, one needs either:[

ǫ < δ(λ) ⇒ τλ(ǫ) > |Tfλ| + ǫ
]

or
[
ǫ < δ(λ) ⇒ τλ(ǫ) ≤ |Tfλ| − ǫ

]
. In the first case,

βλ will always be in the kernel of Mg(ǫ,f),τ(ǫ) once ǫ < δ(λ). In the second case βλ will
always in the range of Mg(ǫ,f),τ(ǫ) once ǫ < δ(λ).

• If Tfλ = 0 then {|g(ǫ, f)λ|} = [0, ǫ]. Therefore one needs [ǫ < δ(λ) ⇒ τλ(ǫ) > ǫ]. In this
case, βλ will always be in the kernel of Mg(ǫ,f),τ(ǫ) once ǫ < δ(λ).

Note that we do not know beforehand the value of Tf . To be useful, we must derive requirements
on the parameters τλ(ǫ) that do not depend on f . The minimum requirements on τ(ǫ) ensuring
the operators Mg(ǫ,f),τ(ǫ) converge weakly as ǫ goes to 0 are:

• ∀λ, limǫ→0 τλ(ǫ) = 0: this ensures that if Tfλ 6= 0, we will have τλ(ǫ) < |Tfλ| − ǫ for
sufficiently small ǫ.

• ∀λ, ∃δ(λ) such that ǫ < δ(λ) ⇒ τλ(ǫ) < ǫ: this ensures that if Tfλ = 0, we will have
τλ(ǫ) < |Tfλ| + ǫ = ǫ for sufficiently small ǫ.

If these conditions are satisfied, the Mg(ǫ,f),τ(ǫ) converge weakly as ǫ goes to 0 and one can
determine the weak limit:



• for λ s.t. Tfλ 6= 0: limǫ→0 τλ(ǫ) = 0 hence there exists δ(λ, f) such that ǫ < δ(λ, f) implies
τλ(ǫ) < |Tfλ| − ǫ. It follows that: |g(ǫ, f)λ| > τλ(ǫ) so that Mg(ǫ,f),τ(ǫ)(βλ) = βλ for any
g(ǫ, f) and any ǫ < δ(λ, f)

• for λ s.t. Tfλ = 0: ǫ < δ(λ) implies τλ(ǫ) > ǫ. It follows that if ǫ < δ(λ), then
|g(ǫ, f)λ| > τλ(ǫ) so that Mg(ǫ,f),τ(ǫ)(βλ) = 0 for any g(ǫ, f) and any ǫ < δ(λ) .

This proves that the weak limit of Mg(ǫ,f),τ(ǫ) for any fixed f is MTf,0 and finishes the proof of
the second part of Lemma 3.6.

Finally, assuming h(ǫ) converges weakly to h, we have ∀λ:

∣∣∣
[
Mg(ǫ,f),τ(ǫ)h(ǫ) − MTf,0 h

]
λ

∣∣∣ (16)

=
∣∣∣
[
Mg(ǫ,f),τ(ǫ)(h(ǫ) − h) + (Mg(ǫ,f),τ(ǫ) − MTf,0)h

]
λ

∣∣∣ (17)

=
∣∣∣
[
Mg(ǫ,f),τ(ǫ)(h(ǫ) − h)

]
λ

∣∣∣ +
∣∣∣
[
Mg(ǫ,f),τ(ǫ)h− MTf,0 h

]
λ

∣∣∣ (18)

The second term vanishes as ǫ goes to 0 because Mg(ǫ,f),τ(ǫ) converges weakly to MTf,0 when the
conditions 2.(a) and 2.(b) hold. Moreover, we have seen in the proof of the second part of the
lemma that for any λ:

• either there exists a δ(λ) such that Mg(ǫ,f),τ(ǫ)(βλ) = 0 for any ǫ < δ(λ) . In that case,∣∣∣
[
Mg(ǫ,f),τ(ǫ)(h(ǫ) − h)

]
λ

∣∣∣ = 0, for ǫ < δ(λ).

• or there exists a δ(λ) such that Mg(ǫ,f),τ(ǫ)(βλ) = βλ for any ǫ < δ(λ) . In that case,∣∣∣
[
Mg(ǫ,f),τ(ǫ)(h(ǫ) − h)

]
λ

∣∣∣ =
∣∣∣
[
h(ǫ) − h

]
λ

∣∣∣, for ǫ < δ(λ); and the weak convergence of h(ǫ)

to h allows to conclude that
∣∣∣
[
Mg(ǫ,f),τ(ǫ)(h(ǫ) − h)

]
λ

∣∣∣ → 0

This proves that Mg(ǫ,f),τ(ǫ)h(ǫ) converges weakly to MTf,0 h and finishes the proof of Lemma
3.6.

We shall now see how to ensure strong convergence of the Mg(ǫ,f),τ(ǫ)(h) when h is in MT,f .

Lemma 3.7 If there exists a value of δ independent of λ such that ∀ǫ < δ and ∀λ, τλ(ǫ) > ǫ,
then the two following properties hold:

(i) For any choice of f and of the family g(ǫ, f):

∀ǫ < δ, Mg(ǫ,f),τ(ǫ) = MTf,0Mg(ǫ,f),τ(ǫ) = Mg(ǫ,f),τ(ǫ)MTf,0 =
∑

λ s.t. Tfλ 6=0
and |gλ|≥τλ

〈 ., βλ〉βλ.

(ii) In particular, for any choice of f ∈ Hi
T,w,p and of the family g(ǫ, f), (i.e. whenever MT,f

has a unique minimizer f † of the |||.|||w,p-norm):

∀ǫ < δ, Mg(ǫ,f),τ(ǫ)(Tf
†) = Mg(ǫ,f),τ(ǫ)(Tf).

Proof of Lemma 3.7: The first part of Lemma 3.7 results from properties of orthogonal
projections. If P1 and P2 are two orthogonal projections, then:

P1 P2 = P2 P1

ker(P2) ⊂ ker(P1) ⇔ P1P2 = P1.



Hence, we already proved Mg(ǫ,f),τ(ǫ) MTf,0 = MTf,0 Mg(ǫ,f),τ(ǫ) and

Mg(ǫ,f),τ(ǫ)MTf,0 = Mg(ǫ,f),τ(ǫ) ⇔
[
(Tf)λ = 0 ⇒ |g(ǫ,f)λ

| ≤ τλ(ǫ)
]
.

When f and ǫ are fixed, the right hand side holds for any g(ǫ, f) if and only if
[
(Tf)λ = 0 ⇒

ǫ < τλ(ǫ)
]

which proves the first part of Lemma 3.7.

For f in Hi
T,w,p, f

† is well defined and verifies MTf,0Tf
† = Tf . Applying Mg(ǫ,τ(ǫ)) to this

equality and using the previous result finishes the proof of Lemma 3.7.

3.5.4. Proof of Theorem 3.5
With the help of these two lemma, we can now proceed to the

Proof of Theorem 3.5: Let us consider fo in Hi
T,w,p, i.e. fo verifies that MT,fo

has a unique

minimizer ||| |||w,p–norm. We note this minimizer f †o . We fix the following sequences: {ǫn}n such

that ǫn −→
n→∞

0 , {gn}n such that ∀n, ‖gn − Tfo‖Ho ≤ ǫn, and {γn}n
def
= {γ(ǫn)}n and {τn}n

def
=

{τ(ǫn)}n that verify conditions i) to ii) in Theorem 3.5. For every n, we choose a minimizer

f⋆
n

def
= f⋆

γn,w,p,τn; gn
of the functional Jn(f)

def
= Jγn,w,p,τn; gn(f) = ‖Mgn,τn(Tf−gn)‖2

Ho +γn|||f |||
p
w,p.

We want to prove that for any such choice of the ǫn, gn, γn, τn and f⋆
n, the sequence f⋆

n

converges strongly in Hi to f †o , where f †o is the unique minimizer of the |||.|||w,p-norm in the set

MT,fo
= {f : (Tf)λ = (Tfo)λ, ∀λ s.t. (Tfo)λ 6= 0}. We will also note Mn

def
= Mgn,τn .

a) The sequences {|||f⋆
n|||w,p}n and {‖f⋆

n‖Hi}n are uniformly bounded:

By definition of Jn, ∀n:

|||f⋆
n|||

p
w,p ≤ 1

γn
Jn(f⋆

n)

so that |||f⋆
n|||

p
w,p ≤ 1

γn
Jn(f †o ) since f⋆

n minimizes Jn.

But:

Jn(f †o ) = ‖Mn(Tf †o − gn)‖2
Ho + γn|||f

†
o |||

p
w,p

≤ ‖Mn(Tf †o − Tfo)‖
2
Ho + ‖Mn(Tfo − gn)‖2

Ho + γn|||f
†
o |||

p
w,p

≤ ‖Mn(Tf †o − Tfo)‖
2
Ho + |||Mn|||

2.‖(Tfo − gn)‖2
Ho + γn|||f

†
o |||

p
w,p

≤ ‖Mn(Tf †o − Tfo)‖
2
Ho + ǫ2n + γn|||f

†
o |||

p
w,p

where we used |||Mn|||
2 ≤ 1 and ‖Tfo − gn‖ ≤ ǫn in the last equation. Hence

∀n, |||f⋆
n|||

p
w,p ≤

‖Mn(Tf †o − Tfo)‖
2
Ho

γn
+
ǫ2n
γn

+ |||f †o |||
p
w,p. (19)

Since condition ii) of Theorem 3.5 is satisfied, we can use Lemma 3.7.(2). It follows that if n

is large enough, MnTf
†
o = MnTfo. Moreover, ǫ2n

γn
−→
n→∞

0 by condition i) of Theorem 3.5. This

proves that {|||f⋆
n|||w,p}n is uniformly bounded.

Since w is bounded below by c > 0 and p ≤ 2, the ‖.‖Hi-norm is bounded above by c
− 1

p |||.|||w,p:

|fλ| =
(
|fλ|

p
) 1

p ≤
(

wλ

c |fλ|
p
) 1

p ≤
(∑

λ∈Λ

wλ

c |fλ|
p
) 1

p = c
− 1

p |||f |||w,p (20)



so that:

‖f‖2
Hi =

∑

λ∈Λ

|fλ|
2 ≤

∑

λ∈Λ

wλ

c |fλ|
p|fλ|

2−p ≤
∑

λ∈Λ

wλ

c |fλ|
p
[
c
− 1

p |||f |||w,p

]2−p
(21)

‖f‖2
Hi ≤ 1

c |||f |||
p
w,p

[
c−

1
p |||f |||w,p

]2−p
= c−

2
p |||f |||2

w,p (22)

Hence, the sequence {f⋆
n} is also uniformly bounded in Hi.

b) The sequence {f⋆
n}n converges weakly to f †o :

Since it is uniformly bounded in Hi, the sequence {f⋆
n}n has at least one weakly convergent

subsequence {f⋆
k}k. Let us denote its weak limit f̃ . We shall now prove that f̃ = f †o .

Since f⋆
k is a minimizer of Jk obtained through the iterative algorithm, 3.2, it verifies the

fixed point equation: f⋆
k = Sγkw,p (f⋆

k + T ∗Mkgk − T ∗MkTf
⋆
k ). We note hk = f⋆

k + T ∗Mkgk −
T ∗MkTf

⋆
k , so that f⋆

k = Sγkw,p(hk). By definition of the weak limit, it follows that:

∀λ, f̃λ = lim
k→∞

Sγkwλ

(
(hk)λ

)

= lim
k→∞

[(hk)λ] + lim
k→∞

[Sγkwλ
((hk)λ) − (hk)λ] but lim

k→∞
γkwλ = 0

So, ∀λ, f̃λ = lim
k→∞

[(hk)λ] since ∀x, Sv(x) −−−→
v→0

x

= lim
k→∞

[(f⋆
k + T ∗Mkgk − T ∗MkTf

⋆
k )λ]

= f̃λ + lim
k→∞

[(T ∗Mkgk − T ∗MkTf
⋆
k )λ] since (f⋆

k )λ −−−→
k→∞

f̃λ.

As a result: ∀λ, lim
k→∞

[(T ∗Mkgk − T ∗MkTf
⋆
k )λ] = 0.

But since ‖gk − Tfo‖Ho ≤ ǫk, then ‖T ∗Mk(gk − Tfo)‖Hi ≤ |||T ∗||||||Mk|||ǫk < ǫk. This proves
that for all λ:

lim
k→∞

[(T ∗MkTfo − T ∗MkTf
⋆
k )λ] = 0. (23)

Moreover, from Lemma 3.6.(2), we know that {Mk(Tfo)}k converges weakly to MTfo,0(Tfo) =
Tfo. Together with the continuity of T ∗, this leads to:

T ∗MkTf
⋆
k

w
−−−→
k→∞

T ∗Tfo. (24)

On the other hand, f⋆
k converges weakly to f̃ . Using the continuity of T , we get Tf⋆

k
w

−−−→
k→∞

Tf̃ .

From Lemma 3.6.(3), this also implies {MkTf
⋆
k}k

w
−−−→
k→∞

MTfo,0 Tf̃ . and it follows from the

continuity of T ∗ that:
T ∗MkTf

⋆
k

w
−−−→
k→∞

T ∗MTfo,0Tf̃ . (25)

Plugging this last result in Eq. (24), we obtain the equality:

T ∗MTfo,0Tf̃ = T ∗Tfo (26)

Since MTfo,0(Tfo) = Tfo, the previous equality reduces to: T ∗MTfo,0T (f̃ − fo) = 0. Taking

the scalar product with f̃ − fo, we obtain:

〈
f̃ − fo, T

∗MTfo,0T (f̃ − fo)
〉

= 0

⇔
〈
MTfo,0T (f̃ − fo), MTfo,0T (f̃ − fo)

〉
= 0

⇔ ‖MTfo,0T (f̃ − fo)‖
2
Ho = 0

⇔ MTfo,0T (f̃ − fo) = 0

⇔ MTfo,0Tf̃ = Tfo



We used for the first equality that MTfo,0 = M∗
Tfo,0 = M2

Tfo,0. This proves that f̃ belongs to the
set MT,fo

.

Let us now prove that |||f̃ |||w,p ≤ |||f †o |||w,p. Because of the weak convergence of the f⋆
n to f̃ ,

for all λ, the non-negative sequence {wλ|f
⋆
nλ|}n converges to wλ|f̃λ|. One can then use Fatou’s

lemma to obtain:

|||f̃ |||p
w,p =

∑

λ

lim
n→∞

{wλ|f
⋆
nλ|}n ≤ lim

n→∞

∑

λ

{wλ|f
⋆
nλ|}n = lim

n→∞
|||f⋆

n|||
p
w,p

But we proved earlier that lim supn|||f
⋆
n|||

p
w,p ≤ |||f †o |||

p
w,p. Therefore, we get:

|||f̃ |||p
w,p ≤ lim

n→∞
|||f⋆

n|||
p
w,p ≤ |||f †o |||

p
w,p (27)

By definition, f †o is the unique minimizer of the |||.|||w,p-norm in Mfo
, so this implies that

f̃ = f †o .

Hence f †o is the only possible accumulation point of the sequence f⋆
n. Since we proved that the

sequence {f⋆
n}n is uniformly bounded in the ‖.‖Hi -norm and that it has a unique accumulation

point: f †o , this allows us to conclude that f⋆
n converges weakly to f †o .

c) The sequence {f⋆
n}n converges strongly to f †o :

Replacing f̃ by its value f †o in (27), we get: |||f †o |||
p
w,p ≤ limn→∞ |||f⋆

n|||
p
w,p ≤ |||f †o |||

p
w,p which proves

that the sequence {|||f⋆
n|||

p
w,p}n converges to |||f †o |||

p
w,p. We shall see now that the two results we

obtained so far:

f⋆
n

w
−−−→
n→∞

f †o (28)

|||f⋆
n|||w,p −−−→

n→∞
|||f †o |||w,p , (29)

imply the strong convergence of the sequence {f⋆
n}n to f †o . (This argument closely follows [4].)

Let us prove that {‖f⋆
n‖Hi}n converges to ‖f †o‖Hi . We have:

∣∣∣‖f⋆
n‖

2
Hi − ‖f †o‖

2
Hi

∣∣∣=
∣∣∣
∑

λ

(
|f⋆

nλ|
2 − |f †oλ|

2
) ∣∣∣≤

∑

λ

∣∣∣ |f⋆
nλ|

2 − |f †oλ|
2
∣∣∣ (30)

Writing x2 = (xp)
2
p and using the derivability of x→ x

2
p , one can bound the last term:

∣∣∣|f⋆
nλ|

2 − |f †oλ|
2
∣∣∣ ≤ 2

p max{
(
|f⋆

nλ|
p
) 2

p
−1
,
(
|f †oλ|

p
) 2

p
−1

}
∣∣∣ |f⋆

nλ|
p − |f †oλ|

p
∣∣∣ (31)

≤ 2
p max{|f⋆

nλ|
2−p, |f †o λ|

2−p}
∣∣∣ |f⋆

nλ|
p − |f †oλ|

p
∣∣∣ (32)

≤ 2
pc max{|f⋆

nλ|
2−p, |f †o λ|

2−p}
∣∣∣ wλ|f

⋆
nλ|

p − wλ|f
†
oλ|

p
∣∣∣ (33)

We saw in Eq. (42) that for any f ∈ Hi and λo ∈ Λ |fλo
| ≤ c

1
p |||f |||w,p. Plugging this into Eq.

(33) and summing over λ, we get:

∣∣∣‖f⋆
n‖

2
Hi − ‖f †o‖

2
Hi

∣∣∣≤ 2
pc

− 2
p max{|||f⋆

n|||
2−p
w,p , |||f

†
o |||

2−p
w,p }

∑

λ∈Λ

∣∣∣ wλ|f
⋆
nλ|

p − wλ|f
†
oλ|

p
∣∣∣ (34)



Since {|||f⋆
n|||

p
w,p}n converges to |||f †o |||

p
w,p, for n large enough, max{|||f⋆

n|||
2−p
w,p , |||f

†
o |||

2−p
w,p } is bounded

by 2|||f †o |||
2−p
w,p . Defining gc,p,fo

= 4
pc

− 2
p |||f †o |||

2−p
w,p , we get:

∣∣∣‖f⋆
n‖

2
Hi − ‖f †o‖2

Hi

∣∣∣ ≤ gc,p,fo

∑
λ∈Λ

∣∣∣ wλ|f
⋆
nλ|

p − wλ|f
†
o λ|

p
∣∣∣

≤ gc,p,fo

∑
λ

(
wλ|f

⋆
nλ|

p + wλ|f
†
oλ|

p − 2wλ min{|f⋆
nλ|, |f

†
oλ|}

p
)

≤ gc,p,fo

(
|||f⋆

n|||
p
w,p + |||f †o |||

p
w,p − 2

∑
λwλ min{|f⋆

nλ|, |f
†
o λ|}

p
) (35)

We already know that |||f⋆
n|||

p
w,p −−−→

n→∞
|||f †o |||

p
w,p, we shall see now that the same holds for

the last term in the previous inequality. Let us define the sequence {unλ}n for each λ by

unλ = wλ min{|f⋆
nλ|, |f

†
o λ|}

p. The weak convergence of the f⋆
n to f †o implies that for each λ,

unλ −−−→
n→∞

wλ|f
†
oλ|

p. Moreover, for all n, 0 ≤ unλ ≤ wλ|f
†
oλ|

p and
∑

λwλ|f
†
oλ|

p = |||f †o |||
p
w,p < ∞

so that by the dominated convergence theorem, lim
n→∞

∑
λ unλ =

∑
λ lim

n→∞
unλ. Replacing the unλ

and their limits by their value, we obtain:

lim
n→∞

∑

λ

wλ min{|f⋆
nλ|, |f

†
o λ|}

p = |||f †o |||
p
w,p.

Hence:
(
|||f⋆

n|||
p
w,p + |||f †o |||

p
w,p − 2

∑

λ

wλ min{|f⋆
nλ|, |f

†
o λ|}

p
)
−−−→
n→∞

|||f †o |||
p
w,p + |||f †o |||

p
w,p − 2|||f †o |||

p
w,p = 0

so that by taking the limit as n goes to ∞ in Eq.(35), we can conclude that

‖f⋆
n‖Hi −−−→

n→∞
‖f †o‖Hi .

Using the identity ‖f⋆
n − f †o‖Hi = ‖f⋆

n‖Hi + ‖f †o‖Hi − 2
〈
f⋆

n, f
†
o

〉
, this last result combined with

the weak convergence of the f⋆
n to f †o proves that the sequence {f⋆

n}n converges strongly in Hi

to f †o .

Note that we only assumed fo is in Hi
T,w,p to obtain stability. It could very well be that

the functional Jγn,w,p,τn;gn has several minimizers, in that case, depending on the choice of the
starting element for the iterative algorithm 3.2, the element f∗n might have different values. As a
result, the sequence {f∗n}n is not fixed by the parameters ǫn, γn, τn and gn. However no matter

which of these sequences {f∗n}n we consider, it will converge strongly to f †o .

4. Adaptive discrepancy terms via “relaxed” projections

In the previous section, we showed that introducing adaptive projections in the discrepancy term
allows to take into account features that are more important in the data but results in a loss of
information that may be harmful to the estimation of the object sought. The reason is that the
projections used cancel some information. To fix this instability problem still keeping the spirit
of the previous method, one can imagine to only dampen the non-feature space defined by the
adaptive projections instead of canceling it. As we see in the next section, the resulting “relaxed
projections” still emphasize the same features but without losing any information; therefore the
stability as defined in Theorem 2.3 is restored.



4.1. Relaxed Adaptive Projections

The “relaxed projection” Mg,τ,µ with dampening parameter µ and corresponding to the
orthogonal adaptive projection Mg,τ is

Mg,τ,µ = Mg,τ +µ(Id−Mg,τ ) (36)

or more formally:

Definition 4.1 Given an orthonormal basis if Ho, β={βλ}λ∈Λ, an element g in Ho, a sequence
of non-negative thresholds τ={τλ}λ∈Λ and a scalar µ > 0, Mg,τ,µ is the map from Ho into itself
defined by:

∀h ∈ Ho, Mg,τ,µ(h) =
∑

λ s.t. |gλ|>τλ

hλβλ + µ
∑

λ s.t. |gλ|≤τλ

hλβλ

This operator is introduced in the discrepancy term so that we now seek to minimize the
functional

Jγ,w,p,τ,µ(f) =
∥∥Mg,τ,µ(Tf − g)

∥∥2

Ho + γ|||f |||p
w,p, (37)

via the following iterative algorithm:

Algorithm 4.2

{
f0 arbitrary
fn = Sγw,p

(
fn−1 + T ∗ Mg,τ,µ

2(g − Tfn−1)
)
, n ≥ 1

Note that in this case, one needs to square the relaxed projection operator in the iterative
algorithm. This is because unlike Mg,τ , Mg,τ,µ is not a self-adjoint projection. This equation
can be easily checked by replacing T by Mg,τ,µ T and g by Mg,τ,µ g in the original functional
Jγ,w,p of Eq.(4) and in Algorithm 2.1. In practice, we use the fact that Mg,τ,µ

2 = Mg,τ,µ2 ; so the
operator is still easy to compute.

The previous change of variable used in Theorem 2.2 also proves the strong convergence
of Algorithm 4.2 to a minimizer of Eq.(37) (under the same conditions as in Theorem 2.2).

4.2. Stability is recovered

The introduction of the dampening factor ensures that all the information in the data will be
taken into account and we recover the stability in the usual sense: if the data become ideal
(g → Tfo) and the parameters γ, τ= {τλ}λ∈Λ and µ are chosen accordingly, then the solution
converges to fo when fo is the unique antecedent of Tfo.

4.2.1. Stability theorem
The conditions on the parameters to obtain stability in this case are given in the following

theorem:

Theorem 4.3 Assume that T is a bounded operator from Hi to Ho with |||T ||| < 1 and that the
entries in the sequence w ={wλ}λ∈Λ are bounded below uniformly by a strictly positive number
c.

For any g ∈ Ho and any γ > 0, 0 < µ ≤ 1 and non-negative sequence τ= {τλ}λ∈Λ, define
f⋆

γ,w,p,τ,µ; g to be a minimizer of Jγ,w,p,τ,µ(f) with observation g. If γ = γ(ǫ), τ = τ(ǫ) and
µ = µ(ǫ) satisfy:

(i) lim
ǫ→0

γ(ǫ) = 0 and lim
ǫ→0

ǫ2

γ(ǫ)
= 0



(ii) ∀λ ∈ Λ, lim
ǫ→0

τλ(ǫ) = 0 and ∀λ ∈ Λ, ∃ δ(λ) > 0, s.t: [ ǫ < δ(λ) ⇒ τλ(ǫ) > ǫ ]

(iii) lim
ǫ→0

µ(ǫ) = µo, with 0 < µo ≤ 1

then for any fo such that there is a unique minimizer of the ||| |||w,p–norm in the set ST,fo
= {f :

Tf = Tfo}:

lim
ǫ→0

[
sup

‖g−Tfo‖Ho≤ǫ
‖f⋆

γ(ǫ),w,p,τ(ǫ),µ(ǫ); g − f †o‖Hi

]
= 0 ,

where f †o is the unique element of minimum ||| |||w,p–norm in the set ST,fo
.

The proof of this theorem is very similar to the proof of Theorem 3.5. The weak convergence of
the adaptive operators is ensured by conditions ii) and iii) of Theorem 4.3 and the corresponding
lemma is Lemma 4.4. This lemma, similarly to Lemmas 3.6 and 3.7, examines the convergence
of the operators Mg,τ,µ are is proved in section 4.2.2. Section 3.5.4 is then devoted to the proof
of Theorem 4.3.

4.2.2. Weak convergence of the projection operators

Lemma 4.4 Suppose that τ = τ(ǫ) and µ = µ(ǫ) verify conditions ii) and iii) of Theorem 4.3.
Then the two following properties hold:

(i) For any h in Ho, M2
g(ǫ,f),τ(ǫ),µ(ǫ)h converges weakly to M2

Tf,0,µo
h as ǫ goes to 0.

(ii) If h(ǫ) converges weakly to h as ǫ goes to 0, then M2
g(ǫ,f),τ(ǫ),µ(ǫ)h(ǫ) converges weakly to

M2
Tf,0,µo

h as ǫ goes to 0.

Proof of Lemma 4.4: In the proof of Lemma 3.6, we have seen that under conditions imposed
on τ(ǫ) (condition ii) of Theorem 4.3), the following happens:

• for λ s.t. Tfλ 6= 0: limǫ→0 τλ(ǫ) = 0 hence there exists δ(λ, f) such that ǫ < δ(λ, f) implies
τλ(ǫ) < |Tfλ| − ǫ. It follows that: |g(ǫ, f)λ| > τλ(ǫ).

• for λ s.t. Tfλ = 0: ǫ < δ(λ) implies τλ(ǫ) > ǫ. It follows that if ǫ < δ(λ), then
|g(ǫ, f)λ| > τλ(ǫ).

So that in the first case: M2
g(ǫ,f),τ(ǫ),µ(ǫ)(βλ) = βλ for any g(ǫ, f) and any ǫ < δ(λ, f); and in the

second case: M2
g(ǫ,f),τ(ǫ),µ(ǫ)(βλ) = µ(ǫ)2βλ for any g(ǫ, f) and any ǫ < δ(λ). Since µ(ǫ) converges

to some µo by assumption (condition iii) of Theorem 4.3), it follows that M2
g(ǫ,f),τ(ǫ),µ(ǫ)h

converges to M2
Tfo,0,µo

h as (ǫ) goes to 0. This proves the first part of Lemma 4.4.

To prove the second part of Lemma 4.4, we use again the splitting trick we used in 3.6.(3):

∣∣∣
[
M2

g(ǫ,f),τ(ǫ),µ(ǫ)h(ǫ) − M2
Tf,0,µo

h
]
λ

∣∣∣ (38)

=
∣∣∣
[
M2

g(ǫ,f),τ(ǫ),µ(ǫ)(h(ǫ) − h) + (M2
g(ǫ,f),τ(ǫ),µ(ǫ) − M2

Tf,0,µo
)h

]
λ

∣∣∣ (39)

=
∣∣∣
[
M2

g(ǫ,f),τ(ǫ),µ(ǫ)(h(ǫ) − h)
]
λ

∣∣∣ +
∣∣∣
[
(M2

g(ǫ,f),τ(ǫ),µ(ǫ) − M2
Tf,0,µo

)h
]
λ

∣∣∣ (40)

And the same argument as we used in Lemma 3.6.(3) allows to conclude.

Note that we did not need 0 < µo ≤ 1 to prove this lemma.



4.2.3. Proof of Theorem 4.3
Now that the weak convergence of M2

g(ǫ,f),τ(ǫ),µ(ǫ) is established, we proceed to the proof of

Theorem 4.3.
This proof is very similar to the proof of Theorem 3.5. For the sake of completeness, we give

the full details of the first two parts of the proof, indicating by
◮ ◭

when the argument differs from before. Once we prove that f †o is the unique accumulation point
of the sequence {f⋆

n}n (weak convergence of the sequence), the proof the strong convergence is
strictly identical and we do not repeat it.

Proof of Theorem 4.3: Let us consider fo in Hi, that verifies that ST,fo
has a unique

minimizer ||| |||w,p–norm. We note this minimizer f †o . We fix the following sequences: {ǫn}n

such that ǫn −→
n→∞

0 , {gn}n such that ∀n, ‖gn − Tfo‖Ho ≤ ǫn, and {γn}n
def
= {γ(ǫn)}n,

{µn}n
def
= {µ(ǫn)}n and {τn}n

def
= {τ(ǫn)}n that verify conditions i) to iii) in Theorem

4.3 For every n, we choose a minimizer f⋆
n

def
= f⋆

γn,w,p,τn,µn; gn
of the functional Jn(f)

def
=

Jγn,w,p,τn,µn; gn(f) = ‖Mgn,τn,µn(Tf − gn)‖2
Ho + γn|||f |||

p
w,p. We want to prove that for any such

choice of the ǫn, gn, γn, µn, τn and f⋆
n, the sequence f⋆

n converges strongly in Hi to f †o . We will

also note Mn
def
= Mgn,τn,µn .

a) The sequences {|||f⋆
n|||w,p}n and {‖f⋆

n‖Hi}n are uniformly bounded:

By definition of Jn, ∀n:

|||f⋆
n|||

p
w,p ≤ 1

γn
Jn(f⋆

n)

so that |||f⋆
n|||

p
w,p ≤ 1

γn
Jn(f †o ) since f⋆

n minimizes Jn.

◮ But:

Jn(f †o ) = ‖Mn(Tf †o − gn)‖2
Ho + γn|||f

†
o |||

p
w,p

= ‖Mn(Tfo − gn)‖2
Ho + γn|||f

†
o |||

p
w,p since Tf †o = Tfo

≤ ‖Mn‖
2.‖(Tfo − gn)‖2

Ho + γn|||f
†
o |||

p
w,p

≤ max{1, |µn|
2}.ǫ2n + γn|||f

†
o |||

p
w,p since ‖Tfo − gn‖ ≤ ǫn

Hence

∀n, |||f⋆
n|||

p
w,p ≤ max{1, |µn|

2}.
ǫ2n
γn

+ |||f †o |||
p
w,p. (41)

Since ǫ2n
γn

−→
n→∞

0 and µn −→
n→∞

µo ∈ (0, 1], this proves that {|||f⋆
n|||w,p}n is uniformly bounded. ◭

Moreover, w is bounded below by c > 0 and p ≤ 2, so the ‖.‖Hi -norm is bounded above by

c
− 1

p |||.|||w,p:

|fλ| =
(
|fλ|

p
) 1

p ≤
(

wλ

c |fλ|
p
) 1

p ≤
(∑

λ∈Λ

wλ

c |fλ|
p
) 1

p = c
− 1

p |||f |||w,p (42)

so that:

‖f‖2
Hi =

∑

λ∈Λ

|fλ|
2 ≤

∑

λ∈Λ

wλ

c |fλ|
p|fλ|

2−p ≤
∑

λ∈Λ

wλ

c |fλ|
p
[
c−

1
p |||f |||w,p

]2−p
(43)

‖f‖2
Hi ≤ 1

c |||f |||
p
w,p

[
c
− 1

p |||f |||w,p

]2−p
= c

− 2
p |||f |||2

w,p (44)



Hence, the sequence {f⋆
n} is also uniformly bounded in Hi.

b) The sequence {f⋆
n}n converges weakly to f †o :

Since it is uniformly bounded in Hi, the sequence {f⋆
n}n has at least one weakly convergent

subsequence {f⋆
k}k. Let us denote its weak limit f̃ . We shall now prove that f̃ = f †o .

Since f⋆
k is a minimizer of Jk obtained through the iterative Algorithm 4.2, it verifies the

fixed point equation: f⋆
k = Sγkw,p

(
f⋆

k + T ∗M2
kgk − T ∗M2

kTf
⋆
k

)
. We note hk = f⋆

k + T ∗M2
k gk −

T ∗M2
kTf

⋆
k , so that f⋆

k = Sγkw,p(hk). By definition of the weak limit, it follows that:

∀λ, f̃λ = lim
k→∞

Sγkwλ

(
(hk)λ

)

= lim
k→∞

[(hk)λ] + lim
k→∞

[Sγkwλ
((hk)λ) − (hk)λ] but lim

k→∞
γkwλ = 0

So, ∀λ, f̃λ = lim
k→∞

[(hk)λ] since ∀x, Sv(x) −−−→
v→0

x

= lim
k→∞

[
(f⋆

k + T ∗M2
kgk − T ∗M2

kTf
⋆
k )λ

]

= f̃λ + lim
k→∞

[
(T ∗M2

kgk − T ∗M2
kTf

⋆
k )λ

]
since (f⋆

k )λ −−−→
k→∞

f̃λ.

As a result: ∀λ, lim
k→∞

[
(T ∗M2

kgk − T ∗M2
kTf

⋆
k )λ

]
= 0.

◮ Since ‖gk − Tfo‖ ≤ ǫk, then ‖T ∗M2
k (gk − Tfo)‖Ho ≤ ‖T ∗‖‖Mk‖

2ǫk < max{1, |µk|}
2.ǫk. Since

µk converges to µo ∈ (0, 1], and ǫk to 0, this proves that for all λ:

lim
k→∞

[
(T ∗M2

kTfo − T ∗M2
kTf

⋆
k )λ

]
= 0. (45)

From Lemma 4.4.(1), the sequence {M2
k (Tfo)}k converges weakly to M2

Tfo,0,µo
(Tfo) = Tfo. ◭

Together with the continuity of T ∗, this leads to:

T ∗M2
kTf

⋆
k

w
−−−→
k→∞

T ∗Tfo. (46)

On the other hand, f⋆
k converges weakly to f̃ . Using the continuity of T , we get Tf⋆

k
w

−−−→
k→∞

Tf̃ .

◮ Lemma 4.4.(2) allows then to conclude that M2
kTf

⋆
k

w
−−−→
k→∞

M2
Tfo,0,µo

Tf̃ ◭

and it follows from the continuity of T ∗ that:

T ∗M2
kTf

⋆
k

w
−−−→
k→∞

T ∗M2
Tfo,0,µo

Tf̃ . (47)

Plugging this last result in Eq. (46), we obtain the equality:

T ∗M2
Tfo,0,µo

Tf̃ = T ∗Tfo (48)

Note thatMTfo,0,µo
is a self adjoint and thatM2

Tfo,0,µo
(Tfo) = MTfo,0,µo

(Tfo) = Tfo. Therefore

the previous equality reduces to: T ∗M2
Tfo,0,µo

T (f̃−fo) = 0. Taking the scalar product with f̃−fo,
we obtain:

◮

〈
f̃ − fo, T

∗M2
Tfo,0,µo

T (f̃ − fo)
〉

= 0 ⇔
〈
MTfo,0,µo

T (f̃ − fo), MTfo,0,µo
T (f̃ − fo)

〉
= 0

⇔ ‖MTfo,0,µT (f̃ − fo)‖
2
Ho = 0

⇔ MTfo,0,µo
T (f̃ − fo) = 0

⇔ T (f̃ − fo) = 0 since MTfo,0,µo
is invertible.

⇔ Tf̃ = Tfo



This proves that f̃ belongs to the set ST,fo
. ◭

Let us now prove that |||f̃ |||w,p ≤ |||f †o |||w,p. Because of the weak convergence of the f⋆
n to f̃ , for all

λ, the non-negative sequence {wλ|f
⋆
nλ|}n converges to wλ|f̃λ|. One can then use Fatou’s lemma

to obtain:

|||f̃ |||p
w,p =

∑

λ

lim
n→∞

{wλ|f
⋆
nλ|}n ≤ lim

n→∞

∑

λ

{wλ|f
⋆
nλ|}n = lim

n→∞
|||f⋆

n|||
p
w,p

◮ But we proved earlier that |||f⋆
n|||

p
w,p ≤ max{1, |µn|}.

ǫ2n
γn

+ |||f †o |||
p
w,p. Therefore, since the

limn→∞ µn = µo ∈ (0, 1] and limn→∞
ǫ2n
γn

= 0, we get:

|||f̃ |||p
w,p ≤ lim

n→∞
|||f⋆

n|||
p
w,p ≤ |||f †o |||

p
w,p (49)

◭

By definition, f †o is the unique minimizer of the |||.|||w,p-norm in ST,fo
, so this implies that f̃ = f †o .

The conclusion of this paragraph is that f †o is the only possible accumulation point of the
sequence f⋆

n. Since we proved that the sequence {f⋆
n}n is uniformly bounded in the ‖.‖Hi-norm

and that it has a unique accumulation point: f †o , this allows us to conclude that f⋆
n converges

weakly to f †o .

c) The sequence {f⋆
n}n converges strongly to f †o :

[This is identical to the proof given for Theorem 3.5]

It is clear that in practice, by choosing µ small, the properties of g enhanced by both
Algorithm 3.2 and 4.2 are similar. The second algorithm is however more stable as it is
guaranteed to make a correct guess when the data is sufficiently close to the image of an object
f , when f is the only antecedent of its own image by T .

5. Extension to inverse problem with several objects and observations

We now consider the more general problem where we seek M objects or components f1, .., fM

from L observations g1, ..., gL. In the case of the estimation of astrophysical maps from
multifrequency observations, each object fi is the map of an astrophysical phenomena (ex:
the map of galaxy clusters) and each gl is an observation of the sky at wavelength νl.

We make the following assumptions:

• Each object belongs to a Hilbert space Hi
m: ∀m = 1..M, fm ∈ Hi

m.

• Each observation belongs to a Hilbert space Ho
l : ∀l = 1..L, gl ∈ Ho

l .

• We know the linear bounded operators Tm,l : Hi
m → Ho

l

such that the model for the observations is linear with additive noise:

∀l = 1..L, gl =
M∑

m=1

Tm,lfm + nl (50)

where nl are noise terms.
To estimate the objects f1, .., fM from g1, ..., gL, we will now minimize functionals composed of

a sum of discrepancy terms (one per observation) and regularization terms (one per component)
such as:

J(f1, f2, . . . , fM ) =

L∑

l=1

ρl

∥∥∥Mgl
(

M∑

m=1

Tm,lfm − gl)
∥∥∥

2

Ho
l

+

M∑

m=1

γm|||fm|||Xm ; (51)



where the γm and ρl are strictly positive scalars and the “norms” |||.|||Xm are ||| · |||w,p–norm as
before:

|||f |||Xm =
∑

λ∈Λ

wm
λ | 〈f, ϕm

λ 〉 |pm (52)

where for all m, ϕm ={ϕm
λ }λ∈Λ is a basis of Hi

m, wm
λ > 0 and 1 ≤ pm ≤ 2 and for all l, Mgl

is
an adaptive such as the ones we have seen in section 3 and 4.

For example, the Cosmic Microwave Background signal, which is the relic radiation of our
Universe, is well modeled by a Gaussian process with known spectral power P . The Gaussianity
leads to a quadratic measure, while the power spectrum can be enforced in Fourier space.
Therefore, an adapted ||| · |||w,p–norm is

∑
k P (k)−1| 〈f, exp(−2πjk)〉 |2. As for galaxy clusters,

these being rare, small and intense objects, the wavelet transform of such a map is sparse (only
a few coefficients of large amplitude). Therefore, an adapted term is the l1 norm of its wavelet
coefficients:

∑
j,k | 〈f, ψj,k〉 |.

We mention here without giving the proofs that such cost functionals (with or without
adaptive discrepancy terms) can be minimized by iterative algorithms similar to Algorithm
2.1, 3.2 and 4.2. To do so, one works on the vectorized operator T = {Tm,l}m,l, observation
G = (g1, g2, . . . , gL)T , and object F = (f1, f2, . . . , fM )T : such that the goal is to minimize:

J(F ) =
∥∥MG(TF −G)

∥∥2

Ho + γ|||F ||| ; (53)

where the norm in Hilbert space Ho is the weighted Euclidean norm:
∥∥G

∥∥2

Ho =
∑L

l=1 ρl

∥∥Gl

∥∥2

Ho
l

and |||F ||| is the mixed norm |||F ||| =
∑M

m=1 γm|||fm|||Xm =
∑M

m=1 γm
∑

λ∈Λw
m
λ | 〈f, ϕm

λ 〉 |pm .

It is true that the weighted norm induced on Ho makes it a standard Hilbert space, hence
the discrepancy terms do match the ones seen before perfectly. But the regularization terms do
not match: we get in Eq.(4) a simple weighted lp sum (with a single exponent p), which is not
true here for M > 1.

However, the minimization of Eq.(53) can be done by slightly modifying the iterative
algorithm that we use for Eq.(4): it suffices to change the shrinkage operators Sw,p so that they
take into account the different weighted lp norms for each of the coordinates of F . Moreover,
the proofs of convergence and stability carry to this more complicated case (see [8] for details).
We use these extended iterative algorithms and functionals in section 7.

6. Extension to complex coefficients and redundant transforms

The algorithms and theorems presented so far apply only to the case where the regularization
systems ϕm= {ϕm

λ}λ∈Λ are orthonormal bases of H1 and the scalar products 〈., ϕm
λ 〉 are real.

It will be useful in our application to use redundant and/or complex families instead. To do
that, one needs to make two changes, as was pointed out in [4].

Firstly, the definition of the operators Sw,p has to be extended to complex numbers. This is
done by applying Sw,p only to the modulus of a complex number, keeping the phase fixed:

Sw,p(r.e
iθ)

def
= Sw,p(r).e

iθ, r ∈ R, θ ∈ [0, 2π]. (54)

Secondly, if the family ϕ= {ϕλ}λ∈Λ is redundant, the set of sequences of scalar products of
elements of H1:

C =
{
{〈f, ϕλ〉}λ∈Λ, f ∈ H1

}
,

is a strict subset of the set of square summable sequences l2(R) ( or l2(C)). As a result,

f =
∑

λ

Sγwλ,p

(
{a+ T ∗(g − Ta) }λ

)
ϕλ (55)



does not imply that:

∀λ, 〈f, ϕλ〉 = Sγwλ,p

(
{a+ T ∗(g − Ta) }λ

)
(56)

In the derivation of algorithms 2.1, 3.2 and 4.2, we used the fact that Eq. (55) and Eq. (56)
are equivalent when ϕ= {ϕλ}λ∈Λ is an orthonormal basis. When ϕ= {ϕλ}λ∈Λ is redundant,
this problem is rectified by projecting the sequence of coefficients obtained at each step of the
iteration algorithm onto the set of scalar products C:

fn = PC Sγw,p

(
fn−1 + T ∗(g − Tfn−1)

)
, n ≥ 1 (57)

where PC is the projection onto the set C.

7. Application

7.1. Multispectral Data

In this section we apply the algorithms described previously to the problem of reconstructing
maps of astrophysical phenomena from multispectral observations. We consider simulated
multispectral observations of the Cosmic Microwave Background (CMB) radiation with the
observation conditions relative to the Atacama Cosmology Telescope (ACT). In this case, we
observe the same portion of sky at different wavelengths νl. The observations are blurred
mixtures of the physical phenomena we seek f1,..,fM that can be modeled by:

∀l = 1..L, g(νl) = gl = bl ∗

M∑

m=1

am,lfm + nl. (58)

The blurring bl changes with the wavelength νl and is Gaussian. The mixture coefficients am,l

are called frequency dependencies and give the contribution of phenomena m to observation
l. The noise terms nl have a known variance σl that also depend on the wavelength νl. Note
that here, the operator Tm,l from Eq.(50) is a mixture followed by a convolution Tm,l(·) =

bl ∗
∑M

m=1 am,l(·)m. For ACT, the observation wavelength are low: ν =145, 217 or 265GHz.
(Details about the noise and blur level can be found in [8] , p.88.)

Here, we seek to reconstruct two components:

• the CMB (= f1): this is an electromagnetic radiation that fills the whole of the Universe
(see Figure 2, left panel). Its existence and properties are considered one of the major
confirmations of the Big Bang theory.

• the galaxy clusters, noted SZ (= f2): the clusters can be seen through their Sunyaev-
Zeldovich effect (SZ effect in short) which is due to high energy electrons in the galaxy
clusters that interact with Cosmic Microwave Background photons.

In fact, we focus on the detection and estimation of the galaxy clusters in observations such as
can be done with ACT.

A complete model of the observations would have to include other astrophysical phenomena
such as infrared point sources or our Galaxy dust. We will not consider them here, since their
contribution at low wavelengths, such as the ones considered here, are negligible.

Figure 2 illustrates the simulated data we use. The two left panels show the astrophysical
map we seek to reconstruct from the observations shown on the two right panels. (The units of
the maps is the micro-Kelvin).
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Figure 2. Multispectral data (units:µK); left to right: CMB map, galaxy clusters map,
observation at 145GHz, observation at 217GHz

7.2. General parameters of the functional algorithms

In this multispectral case, the reconstruction methods proposed are extended as we have seen
in section 5. The functionals we seek to minimize now contain one regularization term for each
component and one regularization term per observation (see Eq.(51)).

As can be seen from the observations, the contribution of the galaxy clusters (SZ) is negligible
compared to this of the CMB. We rely on the fact that these maps have very different spatial
properties to disentangle them. These properties are reflected by the regularization terms.
The CMB component is regularized by a weighted l2-norm in Fourier space, the weights being
proportional to its spectral power. The SZ component is regularized by an l1-norm on its
wavelets coefficients. The wavelet transform used for regularization is the dual tree complex
wavelet transform [12; 13].

We compare the results obtained with the classical discrepancy terms (Eq.(51) with ∀l:
Mgl

= Id, i.e Eq.(4) extended) to these obtained with various adaptive projections, relaxed
(Eq.(37) extended) and not (Eq.(10) extended). In any case, the adaptive/relaxed projection is
done on an orthonormal wavelet transform (Symmlet, 2 vanishing moments) and the threshold
parameter τ are set to the noise standard deviation.

The general balancing parameters ρl are set to 1. The γm are learned from a database of
simulations.
Remark. The wavelet transform used for the regularization term of the SZ component is not a
basis but a redundant system: the dual tree complex wavelet transform. The redundancy is 4:1
and the frame is tight (energy is conserved between original and transformed space). The choice
of a redundant transform was made to remedy the lack of translation and rotation invariance of
critically sample wavelet basis. Indeed, shrinkage on a complex dual tree transform yields much
less artifacts since coefficients vary smoothly due to their complex envelope where standard
wavelet coefficients oscillate much more.

7.3. Reconstruction of CMB and galaxy clusters maps from multispectral observations

The simultaneous Reconstruction of both the CMB and galaxy cluster maps from the
multispectral observations as seen in subsection 7.1 has been performed with the different
iterative algorithms proposed in section 2, 3 and 4. All parameters were described in 7.1 except



for the relaxed projection dampening parameter µ (see Eq.(36)) which is fixed here to µ = 0.1
when using Algorithm 4.2.

Fig. 3 displays the results obtained for

• the initial algorithm (Algo. 2.1) with classical l2 discrepancy terms. The results are labeled
“µ = 1”.

• the relaxed projection algorithm (Algo. 4.2) with stable adaptive discrepancy terms. The
results are labeled “µ = 0.1”.

The observed maps and the CMB and galaxy clusters maps that we seek to recover are in shown
on the left panels of Fig. 2. The reconstructed CMB maps are in the two left panels of Fig. 3.
The reconstructed galaxy maps are in the two right panels of Fig. 3.
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Figure 3. Reconstructed maps; without projections: first and third images (µ = 1); with
adaptive projections: second and fourth images (µ = 0.1); far/middle left: CMB; far/middle
right: galaxy clusters

The following analysis is illustrated by the results shown in 3 but is valid in a more general
study with 24 similar simulations.

7.3.1. Analysis of CMB reconstruction All the reconstructed CMB maps are accurate to the
microKelvin precision. The Root Mean Square Error of the different reconstructions to the
original (true) CMB map is not affected by the introduction of the adaptive discrepancy term.

The precision obtained for this component is highly satisfactory and allows to proceed to
further treatment for astrophysical purposes.

7.3.2. Analysis of the galaxy clusters reconstruction All the reconstructed galaxy cluster maps
have a low accuracy (worst case 100 microKelvin). The Root Mean Square Error of the different
reconstructions to the original (true) clusters map is not affected by the introduction of the
adaptive discrepancy term. Hence as far as global measures are concerned, all the presented
algorithms perform in the same manner for galaxy clusters. These poor results are expected by
the fact that the contribution of the galaxy clusters to the observation is well below the CMB
contribution and the noise level.

However, as explained in [8], global measures are not satisfactory to evaluate the quality of
a reconstructed cluster map. Indeed, the goal is to locate the presence of clusters and quantify



some of their statistical characteristics like size, intensity or age... Detailed study of the reliability
of these quantities has be done for Algorithm 2.1 [8] and show that it actually gives good results
in this prospective. Here, we do not reproduce the all study for Algorithm 3.2 and 4.2 but simply
compare them to Algorithm 2.1.

As can be inferred from Fig. 3, the results are very similar. The introduction of adaptive
discrepancy terms yield a slight improvement in the estimation of the central intensity of a
cluster (see the three clusters in the upper part of the circle in Fig. 3). This improvement is not
statistically significant however it illustrates how adaptive discrepancy terms provide a novel
way of tuning the algorithm to the data.

8. Conclusion

In this paper, we attacked the problem of inverting a known bounded linear operator by
minimizing a cost functional balancing discrepancy term with a regularization term. The
regularizing term is a weighted lp norm in a basis chosen to fit desirable properties of the object
sought. Such cost functional with classical quadratic discrepancy terms, along with iterative
algorithm that lead to a minimizer, have been thoroughly investigated both from a theoretical
and practical point-of-view in the literature. Our contribution in this paper, is to extend such
method by modifying the discrepancy term to make it adaptive. Following the seminal idea in
[2], we propose two modifications on the discrepancy term using adaptive projections or a relaxed
version of these projections that focus on the important features of the observed data. Using
the mathematical framework in [4], we prove that the corresponding functionals and iterative
algorithms are strongly convergent and stable. We also show that using projection directly may
lead to the loss of information in the data, and subsequently unexpected and undesired shape
of the solution in the asymptotic case of perfect observations. The functionals using adaptive
term with relaxed projections instead are shown not to suffer this drawback.

We have extended the functionals and algorithms to the case where several objects are sought
from several observations, making sure that the obtained functional take in account the fact that
different objects have different properties. The resulting algorithms (with classical discrepancy
term, with projections or with relaxed projections) have been successfully applied to the problem
of reconstructing maps of physical phenomena from multifrequency observations of the Cosmic
Microwave Background in astronomy. These methods allow to reconstruct maps of the Cosmic
Microwave Background and of the galaxy’ clusters with enough precision to reliably detect
clusters from them. The difference between the algorithms is not significant however small
visual differences in the results are in agreement with the differences in the discrepancy terms
used.
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