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How deals with discrete data for the reduction
of simulation models using neural network
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Abstract: Simulation is useful for the evaluation of a MadBeoduction/distribution Schedule (MPS).
Also, the goal of this paper is the study of thsigie of a simulation model by reducing its comptgxi
According to theory of constraints, we want to Hduileduced models composed exclusively by
bottlenecks and a neural network. Particularly dtitayer perceptron, is used. The structure of the
network is determined by using a pruning procedtuihés work focuses on the impact of discrete data o
the results and compares different approachesaiondth these data. This approach is applied tonsw

internal supply chain.

Keywords multilayer perceptron, reduced model, simulatiosural network, re-scheduling, supply

chain.

1. INTRODUCTION

Evaluation of planning or scheduling scenario byidation
is very useful for the decision makers. Indeed,usition
highlights the evolution of the machines stateg WIP
(work in process), and the queues. This informaisonseful
in order to perform a “Predictive scheduling” (Lapand
Roubellat 2001) or a rescheduling. The real timstesys
performing manufacturing checks (production repayki
provide current follow up information very quicklgto the
management system (Khouja 1998). However, it ificdit
to use this huge amount of information in orderntake
decision (Pritsker and Snyder 1994). At these kvef
planning and control and to estimate how the wipbigsical
system works, the “management of critical
(bottlenecks) is often pertinent (Volimaat al 1992).
Goldratt and Cox, in “The Goal” (1992) put forwatde
Theory of Constraints (TOC), which proposes to ngantne
whole supply chain by bottlenecks control. Dynaniigcrete
events simulation of material flow permits this ragament
(Thomas and Charpentier 2005). In fact, simulatioodels
of actual industrial cases are often very compled ¢he
modellers encounter problems of scale (Pagal 1999).

resources

continuous variables (as length, speed ...) are mixihd
discrete ones (as category, colour ...). The main gbthis
paper is to investigate how discrete data may leedusing
learning process in order to assure the qualitynedfral
network used in reduced simulation models. Thistiglied
on one industrial example which is a sawmill flomop case.
In the next part, the used approach of model réalucind
the multilayer perceptron are presented. The bémd will be
devoted to the presentation of the industrial ajagibn. The
fourth part presents the inputs and output datth@fneural
network, and the learning. The results are invastig) in
order to evaluate the comportment of the networkinttion
of the considered data in the last part.

2. THE MODEL REDUCTION

2.1 The algorithm

Zeigler (1976) has been the first to deal with pheblem of
model reduction. For him, complexity of a moderésative
to the number of elements,
calculations. Simplify a discrete simulation modegin be
performed by using different approaches: in replggart of

simplest (reduced/aggregated) models of simulgBnoks

values taken by a variable and in grouping parta afodel

and Tobias 2000, Chwét al 2006, Ward 1989). In addition, tggether. Inniset al (1983) first listed 17 simplification

performing models from experimental data (Thonsasal
1996). So the use of neural networks appears fgcastan
interesting approach within the framework of thepply

comprised of four steps: hypotheses (identify timg@drtant
parts of the system), formulation (specify the mipd=oding
(build the model) and experiments. Brooks and TeR&00)

generally used in order to perform a mapping betwe§yhere the indicators to be followed are the average
continuous spaces. However, in the considered Cas@foughput rates. Other cases have been studieg. Th

connections and model



reduction algorithm used (Thomas and Thomas 20G8ai) {W%’M,WQ
extension of those presented by Thomas and Chapent No
(2005). Its principal steps are recalled and ergldibelow:  of the ny inputs:

}. This neuron first computes the weighted sum

1. Identify structural bottleneck (work station (WS) ; 0 , 4 4
which for several years has been mainly constrained = hz_:lwih Xh +Di 1)
in capacity). N

here bl is a bias or threshold term. The output of the
2. ldentify conjunctural bottleneck for the bundle ofW i ! Hipd

Manufacturing Orders (MO) of the considered mpsheuron is given by a activation function of the sanil):

. : . . 1_ |51
3. Among the WS not listed in 1 and 2, identify thoseXi -Q(Zi ) 2)
(synchronisation WS) satisfying these conditions: \here g(.) is chosen as an hyperbolic tangent:
- present at least in one of the MO using a 2 1-e 2
bottleneck, g(x) = v (3
l+e
- widely used considering the whole MO. X0
4. If all MO have been considered go to 5 else go.to 3 : ‘
5. Use neural networks for model the intervals between QL
WS which has been found during preceding steps. '
So, WS remaining in the model are either conjuratar 5 *
structural bottlenecks or WS which are vital to the
synchronization of the MO. All other WS are incorgied in .
“aggregated blocks” upstream or downstream of Gostks.

“Conjunctural bottleneck” is a WS which is satuthfer the Fig. 1. Architecture of the multilayer perceptron.

MPS and predictive scheduling in question. Thi®isay that ) ) )

it uses all available capacity. By “structural beteck” we The neuron in the last layer simply performs thkofaing
mean a WS which (in the past) has often been i suc SUM. its activation function being chosen linear:
condition. indeed, for one specific portfolio (okH#>S) there

n
is only one bottleneck — the most loaded WS — big WS 7= jwllel +b? (4)
can be another WS than the traditional bottlenecks. i=1

“Synchronization WS” are resources used jointly hwit where w? are the weights connecting the output of the

bottlenecks for at least one MO and used for ta@rghg of hidden neurons with the output neuron afdstihe threshold

different MO which do not use bottleneck. To mirgmithe of the output neuron. Now, only the number of hitde

number of these “synchronization work centers”, ¥S neurons is always unknown. In order to determinethie

which have the most in common amongst all this lued  |earning starts from an overparametrized structéreeight

MO using no bottlenecks and which figure in thetimw of  elimination method is used to remove spurious patara

at least one MO using bottleneck must be found. (Setiono and Leow 2000). The learning of the MLP is
performed in three steps:

2.2 The multilayer perceptron - Initialisation of the weights of an oversized sture

by using the N Wid Igorithm (1990).
Works of Cybenko (1989) and Funahashi (1989) haveeu y using the Nguyen Widrow algorithm ( )

that a multilayer neural network with only one heddlayer - Learning of the parameters by using Levenberg-
using a sigmoidal activation function and an outfayer Marquard algorithm with robust criterion (Thomas
using a linear activation function can approximate non and Bloch 1996).

linear functions with the wanted accuracy. This utes

explains the great interest of this type of neuratwork - Weights elimination by using the algorithm proposed
which is called multilayer perceptron (MLP). Inghiesearch by Setiono and Leow (2000).

work, our hypothesis lies in the fact that a paft tioe

modelized production system could be approximata Iogn 3. OVERVIEW OF THE SAWMILL

linear function obtained thanks to a MLP. At the time of the study, the sawmill SIAT had gaaity of

The structure of the MLP is recalled here. Its #edture is 270.000 m3 / year, a 52 million euros turnover &0

shown in figure 1. The i-th neuron in the hiddeyela(figure ~€mployees. The sawmill objective is to transforrgslanto
0 main and secondary products respecting a cuttiag. pfhe

. . 0 } . . :
1) receives g inputs {Xl’ ’Xno with associated weights considered cutting plan is presented into figure 2.
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Fig. 2. The cutting plan

The physical industrial production system is conggo®f
sequential WS (kockums saw, trimmer, sorter ...) gnelues
or conveyors (RQM4, RQM5, RQM?7 ...). The log entdrs t
system in RQML1 then it is steered to RQM4 or 5 atiog to
its characteristics. After that, it passes to thtting machine
(Canter). Then it enters the edger. After this phétse log is
transformed into main and secondary products. Tihal f
operation is the cross cutting which consists itticg up
products to length. Two important steps occur dyrihis
process. The first one is the choice of the conteRQM4
or RQMS5 in order to store the arrival log. In fuoct of this
choice, the time spending by the log to wait thet€asaw
may be very different. The second one is the tyfjperaduct.
When the cutting plan is considered, 2 types ofdpcts

appear: main and secondary ones. Only the second

products should use kockums saw when secondarynaim
products use trimmer. However, when the physicdlitrial
system is considered, 3 types of products should
considered. In fact the Cutting machine Canter wonito 3
steps. First, CSMK saw cuts 2 faces of the consititag and
produce the 2 secondary products hatched figuieh@se 2
products are driven to kockums saw in order toibisted.
Next the log is rotated of 90° and stored into @yor
RQM7. After that, the log is driven once again lte Canter
machine. The CSMK saw cuts the 2 other faces ofidge
and produce the 2 other secondary products whiellidven
to kockums saw. At this time, a parallelepiped lgamed
which is divided into 3 main products by anothemwsa
(MKV). The main products are so driven to the triexm

4. THE SIMULATION MODEL

4.1 The reduced model

During preceding works a reduced model has beepoged

(Thomas and Thomas 2008a, 2008b) based on thehaict
the bottleneck of this line is the trimmer (Thomasd

Charpentier 2005). So, only the arrival times @& groducts
in trimmer queue are useful in order to simulat lbad of

this bottleneck. Also a multilayer perceptron isedisto

perform this task. Then neural network uses thdlabla

shop floor information. The reduced, and so, sifigai

model is presented on figure 3. The determinatibrthe

neural model is the core of the problem.

4.2 The data and the learning

Neural network model is a black box obtained with
supervised learning of a non linear relation betwéegut
data set and output one. For this, we need to atotlee

available input data of the process and to deteynihre
desired output (Thomas and Thomas 2008b). Firsty &z
gives information which is collected by a scanmempput of
the line. This information is relating to the pratiu
dimension, as length (Lg) and 3 values for timbiamngbter
(diaPB ; diaGB ; diaMOY). These variables serveaotrol
the log to RQM4 or RQM5 queues which is additional
information (RQM).

@1@‘ Neural Network |
Log =l = 1
arrival| Input sorter | — =" |

| = Sorter

In addition of this dimensional information, theopess
variables at the time of the log arrival should be
2haracterised. The input stock of the trimmer (@n)r the
utilisation rate of the trimmer (U_trim) and themiper of
logs present in the different conveyors RQM4, RQ#H

M7 (Q_rgm4; Q_rgm5; Q _rgm7) must be taken.
Moreover, the sum of these numbers is also usedq(® =
Q_rgm4+Q_rgm5+Q_rgm7). The last type of informatisn
related to the cutting plan of the logs. In faetcte log will be
cut inton main or secondary products. In our applicatios, th
cutting plan (figure 2) divides the log into 7 puots:

L«;JJ%I SEHEFES—

ﬂ

Fig. 3. The reduced model

Trimmer

2 secondary products resulting from the first siép
cutting process on saw CSMK of the canter line,

2 secondary products resulting from the second step
cutting process on saw CSMK of the canter linerafte
staying in the RQM7 queue,

3 main products resulting from the third step of
cutting process on saw MKV of the canter line.

These 7 products can be classified into three osdteg
according to the location (CSMK or MKV) and the &m
during the cutting process (first or second cuijtinghis
information is given by the variable (T_piece). Gequently,
neural network inputs are: Lg; diaGB; diaMoy; digPB
T _piece; Q_trim; U_trim; Q_rgm; Q_rgm4; Q_rgmb5;
Q_rgm7; RQM. 12775 products are simulated. Amorggéeh
12 inputs data, two different categories exist:

Continuous one (quantitative) [Lg; diaGB; diaMoy;
diaPB; Q_trim; U_trim; Q_rgm; Q_rgm4; Q_rgmb5;
Q_rgm7]. These data are continuous ones and so are
well adapted to be used by learning procedure.

Discrete one (qualitative) [T_piece; RQM]. These
data are qualitative. So the study of their impact
the learning process is the core of this paper.

a



The core of this work is to focus on the use okéhdiscrete
variables during the learning. Our objective i&timate the

Table 2. Correlation between inputs and residual #

delay AAT) corresponding to the duration of the throughp)
time for the 12775 product&T is measured between th

process input time and the trimmer queue input .titne
practiceAT is the output of the neural network:

n; 12
AT = 2w?.g( > Wik X + b%}+ b? ()
i=1 h=1
The learning of the network is supervised. Scs meécessary
to divide the database into 2 datasets, learningvafidation
ones. The number of hidden neurons is always unkremd
should be determined. In order to determine it, [é@ning
starts from an overparametrized structure and aghtei

elimination method is used to remove spurious petars.

The initial structure used=10 hidden neurons (5).

" Mean StD Min Max

Lg 0.0354 0.0245 0.0002 0.0882
diaGB 0.0118 0.0096 0.0013 0.0342
dia Moy 0.0393 0.0238 0.0014 0.0843
diaPB 0.161¢ 0.0692 0.0640 0.3411
T_piece 0.0350  0.0261 0.0001 0.0959
Q_trim 0.0484 0.0324 0.0002 0.1172
U_trim 0.0298 0.0211 0.0000 0.0813
Q_rgm 0.0707 0.0467 0.0000 0.1774
Q_rgm4 0.0628  0.0531 0.0025 0.2280
Q_rgm5 0.0697  0.0456 0.0000 0.1831
Q_rgm7 0.052%  0.0355 0.0000 0.1314
RQM 0.2875 0.1310 0.1124 0.6706

5. THE RESULTS

The learning approach corresponds to a local seafch
minimum. So, in function of the initial weights,ethresults
may be different. In order to evaluate the dispersif the
results, 30 different sets of initials weights ased. Different
structures of the network will be tested in funotiof one
particular discrete input (RQM) which is difficut learn.

5.1 First approach

5000 |

4000 [-

3000 |

2000 |

1000 |

i
H

L
a

As seen in the part 4.2, the data RQM indicateschwhi Fig. 4. Residual function of RQM

conveyor (RQM4 or RQM5) is used by the considegl |
So, the first obvious approach is to give valugegy. 5) to

RQM when the conveyor is RQM4 (resp. RQM5). In thé®

table 1, the mean and the standard deviation ofdbigluals
obtained on the learning and the validation dats see

It can be noticed that Lg, diaGB, diaMoy, T_pietk,trim

resents a correlation coefficient with residualkiol is
never significant (always smaller than 0.0959). rignt
Q_rgm, Q_rgm5, Q_rqum7 present a minimal value of

presented.

Table 1. Mean and Standard deviation of the residal #1

learning residual Validation residual

Mean StD Mean StD
Mean 78.61 586.09 74.33 582.06
StD 43.94 146.50 41.61 145.44
Min 17.11 408.45 12.35 413.93
Max 213.08 1168.80  206.75 1170.93

correlation to 0 because the pruning algorithngame cases,

have pruned these inputs. Two inputs have always a

significant coefficient correlation with the resalu diaPB

and RQM. However RQM is a discrete data. So, the

correlation test isn't the most significant. Figdr@resents an
example of the residuals in function of RQM. It che
noticed that two different residuals exist depegdif value
of RQM. So, in order to estimate the influence @M on
residuals the best approach is to compare thessdamples.
For this, two tests can be performed. The first mnthe T
Student test which tests if the two samples of meaandy,

have the same mean. The null hypothesis (HO) asd it

These results show that residuals are always bad.
particular, the mean of residuals obtained may ,vany
function of the initial weights, from 17.11s to 2@8s on the
learning data set. It can be noticed that the mefathe

residual is lower than 30s in only 10% of the cages
learning. In order to determine if some dynamiasspnts in
the data aren't taken into account by the learnititg

correlation between the different inputs and tredigals can
be performed on the learning data set (table ®)il&i results

may be obtained on the validation data set.

alternative (H1) are:
|
HO: py-po =0
{Hl' o ©)
© M2 #0

The second test is the F Fisher test which is #éfie of the

two variancesc,znax and 02min of the samples. The null
hypothesis (HO) and its alternative (H1) are:

{HO: O%ax/oﬁﬂn =1
H1: 0r2nax/0r2nin >1

(7)



The results of these tests on the 30 tries havayslwhown

Now, only Lg, diaGB and U_trim have always a caséit

that the two samples have means and standard idegiat correlation never significant (always smaller thamn).

significantly different with a confidence intervad 99%. So,
the neural model doesn’t succeed to learn the R@td.d

5.2 Second approach

The data RQM is the core of the problem. The chticgive
value 4 (resp. 5) to RQM when the log uses RQM4p(re
RQM5) conveyors is not good. So, another approacto i
give the value 0 (resp. 1) when RQM4 (resp. RQM5)sed.
So, a new neural model is learned. Table 3 preskatmean
and the standard deviation of residuals obtainedeaming
and validation data sets with this new represeataif RQM.

Table 3. Mean and Standard deviation of the resical #2

learning residual Validation residual
Mean StD Mean StD
Mean 40.45 532.44 40.31 535.64
StD 38.83 107.13 39.69 106.20
Min -58.28 357.46) -54.49 380.60
(abs) 8.96 9.65
Max 101.92 786.74) 111.62 816.23

Moreover, in some cases (26.67%), the RQM dateeptes
correlation coefficient with residuals lower thanl Oto
compare with first approach where this coefficiesnalways
greater than 11.24. However, RQM is always a disadata.
So, the Fisher and the Student tests have to lferped on
the two samples corresponding to RQM=1 and RQM=0. F
the F test, the standard deviations are alwaysifisigntly
different with a confidence interval of 99%. Howevthe T
test indicates that the means of these two sangiesot
significantly different in 13.33% of the cases with
confidence interval of 99%. So, the RQM data istdret
learned with this new approach but the results are
unsatisfactory.

5.3 Third approach

In order to improve the results, a new input caratided to

the network. This input is the complement of RQM:

——[0: if RQM5

ROMS “ N (8)
1. if RQM4

So, neural network uses 13 inputs. Table 5 preseets) and
standard deviation of residuals obtained on legrrémd

validation data sets with this additional indRQM .

The line (abs) presents the minimum of the meaabsolute

value. These results have to be compared with thoSeble 5. Mean and Standard deviation of the residal #3

presented table 1. The first remark is that the mefathe
means residuals is greatly improved with this nggraach.
The worst results obtained on the mean are divided®
between the first and the second approaches (10ih.92
learning instead of 213.08 for the first approadh)an be
noticed that the absolute value of the mean ofré¢lsedual is
lower than 30s in 26.67% of the cases in learnirsgeiad of
10% of the first approach. As for the precedingrapph, the
correlation coefficient between the 12 inputs arte
residuals are presented in the table 4 for theiegdata set.

learning residual Validation residual
Mean StD Mean StD
tMean 11.17 460.52 9.02 465.90
StD 18.34 83.86 18.69 81.40
Min -17.37 333.95 -23.97 341.57
(abs) 0.07 1.11
Max 46.75 620.58 39.34 629.02

Table 4. Correlation between inputs and residual 2

Mean StD Min Max
Lg 0.0241 0.0199 0.0005 0.0962
diaGB 0.0216 0.0205 0.0007 0.0982
Dia Moy 0.0394 0.0260 0.0001 0.1051
diaPB 0.1145 0.0677 0.0017 0.2526
T piece 0.045 0.0354 0.0000 0.1308
Q_trim 0.0512 0.0398 0.0063 0.1543
U_trim 0.0262 0.0213 0.0000 0.0672
Q _rgm 0.0764 0.0532 0.0242 0.2019
Q _rgm4 0.0464 0.0322 0.0000 0.1284
Q _rgm5 0.0754 0.0519 0.0000 0.1837
Q_rgm7 0.066( 0.0419 0.0000 0.1760
RQM 0.2048 0.1263 0.0082 0.4461

The line (abs) presents the minimum of the meaaibsolute
value. These results have to be compared to theegirey
ones. The best results for the mean are greatlyowvegd. We
obtain 0.07 on the learning data set (to compai&36 with
approach 2). The worst results for the mean ofréséduals
are improved too, because we obtain 46.75 on theniley
data set to compare with 101.92 with the precedjmgroach
(divide by 2). Moreover, standard deviations of tasiduals
are also improved because its mean value is 4662
learning data set when it was of 532.44 for prawpdi
approach. It can be noticed that the absolute valuthe
mean of residuals is lower than 30s in 90% of thses
instead of 26.67% of the preceding approach. Simila
conclusions can be performed on the validation dataAs
for the preceding approach, the correlation coieffits
between the 13 inputs and residuals are presemtibe itable
4 for the learning data set. First, it can be rmatichat

logically, RQM and RQM present the same results. Now,
Lg, diaGB, dia_Moy, Q_trim, and U_trim have alwags
coefficient correlation never significant (alwaysaller than



0.1). Moreover, in many cases (60%), the RQM datagnts
a correlation coefficient with the residuals whishlower

approachSimulation Modelling Practice and Theori4:
930-944.

than 0.1 to compare with the first approach whdris t Cybenko G. (1989). Approximation by superpositiohao

configuration represents 26.67% of the cases.

Table 6. Correlation between inputs and residual %

Mean StD Min Max
Lg 0.0127, 0.0117 0.0000 0.0349
diaGB 0.0114 0.0120 0.0000 0.0436
dia Moy 0.0143 0.0159 0.0000 0.0713
diaPB 0.0444 0.0411 0.0000 0.1554
T piece 0.0390  0.0422 0.0000 0.1358
Q_trim 0.0239 0.0216 0.0000 0.0776
U_trim 0.0167 0.0120 0.0008 0.0450
Q _rgm 0.0327 0.0422 0.0004 0.1541
Q _rgm4 0.0378  0.0443 0.0000 0.1553
Q_rgm5 0.037%  0.0364 0.0000 0.1333
Q_rgm7 0.0307 0.0334 0.0000 0.1590
RQM 0.0821, 0.0708 0.0000 0.2738
RQM 0.0821 0.0708 0.0000 0.2738

However, RQM is always a discrete data. So, thadfiand
the Student tests have to be performed on the ammpkes

corresponding to RQM=1 and RQM=0RQM=0 and

sigmoidal functionMath. Control Systems Signal&(4):
303-314.

Funahashi K. (1989). On the approximate realisatién
continuous mapping by neural networkNeural
Networks 2: 183-192.

Goldratt. E., and Cox J. (1992Jhe Goal : A process of
ongoing improvementNorth River Press; "2 Revised
edition, Great Barrington, USA.

Innis G.S., and Rexstad E. (1983). Simulation model
simplification techniquesSimulation 41: 7-15.

Khouja M. (1998). An aggregate production planning
framework for the evaluation of volume flexibility.
Production Planning and ContrpB(2): 127-137. Lopez
P., and Roubellat F. (20010rdonnancement de la
production Hermes, Paris.

Nguyen D., and Widrow B. (1990). Improving the lsag
speed of 2-layer neural networks by choosing ihitia
values of the adaptative weightit. Joint Conf. on
Neural Networks IJCNN'9@: 21-26.

Page E.H., Nicol D.M., Balci O., Fujimoto R.M., Rigick
P.A., L'Ecuyer P., and Smith R. (1999). An aggregat
production planning framework for the evaluation of
volume flexibility. Winter Simulation Conf1509-1520.

Pritsker A., and Snyder K. (1994%imulation for planning
and schedulingAPICS.

Setiono R., and Leow W.K. (2000). Pruned neuralvoeks

RQM =1 resp.). For the F test, the standard deviatioas ar for regression.Int. Conf. on Artificial Intelligence

always significantly different with a confidencetarval of
99%. However, the T test indicates that the medrbese
two samples are not significantly different in 338 of the
cases with a confidence interval of 99%. So, tipipreach
greatly improved the results of the learning.

6. CONCLUSIONS

The use of neural network in order to construceduced

model of simulation is investigated here. Withinisth

framework, this paper focuses on the use of discozita
during the learning phase of the neural model. Tdwilts
have shown that some discrete data (RQM) have gngeict
on the results. This can be explained by the faat, tsome
discrete data leads to comportments of the systhiohwean
be very different. These data imply that some imfation

should be presented under different forms to thevork in

order to be well taken into account. Our perspestigre to
validate this approach on different applicationesasand, in
particular, on several external supply chains whatdeast,
one particular enterprise belongs to the differsapply
chains.
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