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Abstract:  Simulation is useful for the evaluation of a Master Production/distribution Schedule (MPS). 
Also, the goal of this paper is the study of the design of a simulation model by reducing its complexity. 
According to theory of constraints, we want to build reduced models composed exclusively by 
bottlenecks and a neural network. Particularly a multilayer perceptron, is used. The structure of the 
network is determined by using a pruning procedure. This work focuses on the impact of discrete data on 
the results and compares different approaches to deal with these data. This approach is applied to sawmill 
internal supply chain. 
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1. INTRODUCTION 

Evaluation of planning or scheduling scenario by simulation 
is very useful for the decision makers. Indeed, simulation 
highlights the evolution of the machines states, the WIP 
(work in process), and the queues. This information is useful 
in order to perform a “Predictive scheduling” (Lopez and 
Roubellat 2001) or a rescheduling. The real time systems 
performing manufacturing checks (production reporting) 
provide current follow up information very quickly into the 
management system (Khouja 1998). However, it is difficult 
to use this huge amount of information in order to make 
decision (Pritsker and Snyder 1994). At these levels of 
planning and control and to estimate how the whole physical 
system works, the “management of critical resources” 
(bottlenecks) is often pertinent (Vollman et al. 1992). 
Goldratt and Cox, in “The Goal” (1992) put forward the 
Theory of Constraints (TOC), which proposes to manage the 
whole supply chain by bottlenecks control. Dynamic discrete 
events simulation of material flow permits this management 
(Thomas and Charpentier 2005). In fact, simulation models 
of actual industrial cases are often very complex and the 
modellers encounter problems of scale (Page et al. 1999). 
Also, many works have highlighted the interest to use 
simplest (reduced/aggregated) models of simulation (Brooks 
and Tobias 2000, Chwif et al. 2006, Ward 1989). In addition, 
neural networks have proved their abilities to extract 
performing models from experimental data (Thomas et al. 
1996). So the use of neural networks appears recently as an 
interesting approach within the framework of the supply 
chain (Thomas and Thomas 2008a). Neural networks are 
generally used in order to perform a mapping between 
continuous spaces. However, in the considered cases, 

continuous variables (as length, speed …) are mixed with 
discrete ones (as category, colour …). The main goal of this 
paper is to investigate how discrete data may be use during 
learning process in order to assure the quality of neural 
network used in reduced simulation models. This is studied 
on one industrial example which is a sawmill flow shop case. 
In the next part, the used approach of model reduction and 
the multilayer perceptron are presented. The third part will be 
devoted to the presentation of the industrial application. The 
fourth part presents the inputs and output data of the neural 
network, and the learning. The results are investigated in 
order to evaluate the comportment of the network in function 
of the considered data in the last part. 

2. THE MODEL REDUCTION 

2.1 The algorithm 

Zeigler (1976) has been the first to deal with the problem of 
model reduction. For him, complexity of a model is relative 
to the number of elements, connections and model 
calculations. Simplify a discrete simulation model can be 
performed by using different approaches: in replacing part of 
the model by a random variable, in degrading the range of 
values taken by a variable and in grouping parts of a model 
together. Innis et al. (1983) first listed 17 simplification 
techniques for general modelling. Their approach is 
comprised of four steps: hypotheses (identify the important 
parts of the system), formulation (specify the model), coding 
(build the model) and experiments. Brooks and Tobias (2000) 
suggest a “simplification of models” approach for cases 
where the indicators to be followed are the average 
throughput rates. Other cases have been studied. The 



 
 

     

 

reduction algorithm used (Thomas and Thomas 2008a) is an 
extension of those presented by Thomas and Charpentier 
(2005). Its principal steps are recalled and explained below: 

1. Identify structural bottleneck (work station (WS) 
which for several years has been mainly constrained 
in capacity). 

2. Identify conjunctural bottleneck for the bundle of 
Manufacturing Orders (MO) of the considered MPS. 

3. Among the WS not listed in 1 and 2, identify those 
(synchronisation WS) satisfying these conditions: 

- present at least in one of the MO using a 
bottleneck, 

- widely used considering the whole MO. 

4. If all MO have been considered go to 5 else go to 3. 

5. Use neural networks for model the intervals between 
WS which has been found during preceding steps. 

So, WS remaining in the model are either conjunctural or 
structural bottlenecks or WS which are vital to the 
synchronization of the MO. All other WS are incorporated in 
“aggregated blocks” upstream or downstream of bottlenecks. 

“Conjunctural bottleneck” is a WS which is saturated for the 
MPS and predictive scheduling in question. This is to say that 
it uses all available capacity. By “structural bottleneck” we 
mean a WS which (in the past) has often been in such a 
condition. indeed, for one specific portfolio (one MPS) there 
is only one bottleneck – the most loaded WS – but this WS 
can be another WS than the traditional bottlenecks.  

“Synchronization WS” are resources used jointly with 
bottlenecks for at least one MO and used for the planning of 
different MO which do not use bottleneck. To minimize the 
number of these “synchronization work centers”, the WS 
which have the most in common amongst all this bundle of 
MO using no bottlenecks and which figure in the routing of 
at least one MO using bottleneck must be found. 

2.2  The multilayer perceptron 

Works of Cybenko (1989) and Funahashi (1989) have proved 
that a multilayer neural network with only one hidden layer 
using a sigmoïdal activation function and an output layer 
using a linear activation function can approximate all non 
linear functions with the wanted accuracy. This result 
explains the great interest of this type of neural network 
which is called multilayer perceptron (MLP). In this research 
work, our hypothesis lies in the fact that a part of the 
modelized production system could be approximate by a non 
linear function obtained thanks to a MLP. 

The structure of the MLP is recalled here. Its architecture is 
shown in figure 1. The i-th neuron in the hidden layer (figure 
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where 1
ib  is a bias or threshold term. The output of the 

neuron is given by a activation function of the sum in (1): 
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Fig. 1. Architecture of the multilayer perceptron. 

The neuron in the last layer simply performs the following 
sum, its activation function being chosen linear: 
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where 2
iw  are the weights connecting the output of the 

hidden neurons with the output neuron and b2 is the threshold 
of the output neuron. Now, only the number of hidden 
neurons is always unknown. In order to determine it, the 
learning starts from an overparametrized structure. A weight 
elimination method is used to remove spurious parameters 
(Setiono and Leow 2000). The learning of the MLP is 
performed in three steps: 

- Initialisation of the weights of an oversized structure 
by using the Nguyen Widrow algorithm (1990). 

- Learning of the parameters by using Levenberg-
Marquard algorithm with robust criterion (Thomas 
and Bloch 1996). 

- Weights elimination by using the algorithm proposed 
by Setiono and Leow (2000). 

3. OVERVIEW OF THE SAWMILL 

At the time of the study, the sawmill SIAT had a capacity of 
270.000 m3 / year, a 52 million euros turnover and 300 
employees. The sawmill objective is to transform logs into 
main and secondary products respecting a cutting plan. The 
considered cutting plan is presented into figure 2. 
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Fig. 2. The cutting plan 

The physical industrial production system is composed of 
sequential WS (kockums saw, trimmer, sorter …) and queues 
or conveyors (RQM4, RQM5, RQM7 …). The log enters the 
system in RQM1 then it is steered to RQM4 or 5 according to 
its characteristics. After that, it passes to the cutting machine 
(Canter). Then it enters the edger. After this phase, the log is 
transformed into main and secondary products. The final 
operation is the cross cutting which consists in cutting up 
products to length. Two important steps occur during this 
process. The first one is the choice of the conveyors RQM4 
or RQM5 in order to store the arrival log. In function of this 
choice, the time spending by the log to wait the Canter saw 
may be very different. The second one is the type of product. 
When the cutting plan is considered, 2 types of products 
appear: main and secondary ones. Only the secondary 
products should use kockums saw when secondary and main 
products use trimmer. However, when the physical industrial 
system is considered, 3 types of products should be 
considered. In fact the Cutting machine Canter works into 3 
steps. First, CSMK saw cuts 2 faces of the considered log and 
produce the 2 secondary products hatched figure 2. These 2 
products are driven to kockums saw in order to be finished. 
Next the log is rotated of 90° and stored into conveyor 
RQM7. After that, the log is driven once again to the Canter 
machine. The CSMK saw cuts the 2 other faces of the log, 
and produce the 2 other secondary products which are driven 
to kockums saw. At this time, a parallelepiped is obtained 
which is divided into 3 main products by another saw 
(MKV). The main products are so driven to the trimmer. 

4. THE SIMULATION MODEL 

4.1  The reduced model 

During preceding works a reduced model has been proposed 
(Thomas and Thomas 2008a, 2008b) based on the fact that 
the bottleneck of this line is the trimmer (Thomas and 
Charpentier 2005). So, only the arrival times of the products 
in trimmer queue are useful in order to simulate the load of 
this bottleneck. Also a multilayer perceptron is used to 
perform this task. Then neural network uses the available 
shop floor information. The reduced, and so, simplified 
model is presented on figure 3. The determination of the 
neural model is the core of the problem. 

4.2  The data and the learning 

Neural network model is a black box obtained with a 
supervised learning of a non linear relation between input 
data set and output one. For this, we need to collect the 

available input data of the process and to determine the 
desired output (Thomas and Thomas 2008b). First, each log 
gives information which is collected by a scanner in input of 
the line. This information is relating to the product 
dimension, as length (Lg) and 3 values for timber diameter 
(diaPB ; diaGB ; diaMOY). These variables serve to control 
the log to RQM4 or RQM5 queues which is additional 
information (RQM). 

 

Fig. 3. The reduced model 

In addition of this dimensional information, the process 
variables at the time of the log arrival should be 
characterised. The input stock of the trimmer (Q_trim), the 
utilisation rate of the trimmer (U_trim) and the number of 
logs present in the different conveyors RQM4, RQM5 and 
RQM7 (Q_rqm4; Q_rqm5; Q_rqm7) must be taken. 
Moreover, the sum of these numbers is also used (Q_rqm = 
Q_rqm4+Q_rqm5+Q_rqm7). The last type of information is 
related to the cutting plan of the logs. In fact, each log will be 
cut into n main or secondary products. In our application, the 
cutting plan (figure 2) divides the log into 7 products:  

- 2 secondary products resulting from the first step of 
cutting process on saw CSMK of the canter line,  

- 2 secondary products resulting from the second step 
cutting process on saw CSMK of the canter line after 
staying in the RQM7 queue, 

- 3 main products resulting from the third step of 
cutting process on saw MKV of the canter line.  

These 7 products can be classified into three categories 
according to the location (CSMK or MKV) and the time 
during the cutting process (first or second cutting). This 
information is given by the variable (T_piece). Consequently, 
neural network inputs are: Lg; diaGB; diaMoy; diaPB; 
T_piece; Q_trim; U_trim; Q_rqm; Q_rqm4; Q_rqm5; 
Q_rqm7; RQM. 12775 products are simulated. Among these 
12 inputs data, two different categories exist: 

- Continuous one (quantitative) [Lg; diaGB; diaMoy; 
diaPB; Q_trim; U_trim; Q_rqm; Q_rqm4; Q_rqm5; 
Q_rqm7]. These data are continuous ones and so are 
well adapted to be used by learning procedure.  

- Discrete one (qualitative) [T_piece; RQM]. These 
data are qualitative. So the study of their impact on 
the learning process is the core of this paper.  



 
 

     

 

The core of this work is to focus on the use of these discrete 
variables during the learning. Our objective is to estimate the 
delay (∆T) corresponding to the duration of the throughput 
time for the 12775 products. ∆T is measured between the 
process input time and the trimmer queue input time. In 
practice ∆T is the output of the neural network: 
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The learning of the network is supervised. So, it is necessary 
to divide the database into 2 datasets, learning and validation 
ones. The number of hidden neurons is always unknown and 
should be determined. In order to determine it, the learning 
starts from an overparametrized structure and a weight 
elimination method is used to remove spurious parameters. 
The initial structure used ni=10 hidden neurons (5).  

5. THE RESULTS 

The learning approach corresponds to a local search of a 
minimum. So, in function of the initial weights, the results 
may be different. In order to evaluate the dispersion of the 
results, 30 different sets of initials weights are used. Different 
structures of the network will be tested in function of one 
particular discrete input (RQM) which is difficult to learn.  

5.1  First approach 

As seen in the part 4.2, the data RQM indicates which 
conveyor (RQM4 or RQM5) is used by the considered log. 
So, the first obvious approach is to give value 4 (resp. 5) to 
RQM when the conveyor is RQM4 (resp. RQM5). In the 
table 1, the mean and the standard deviation of the residuals 
obtained on the learning and the validation data sets are 
presented.  

Table 1.  Mean and Standard deviation of the residual #1 

  learning residual Validation residual 
  Mean StD Mean StD 
Mean 78.61 586.09 74.33 582.06 
StD 43.94 146.50 41.61 145.44 
Min 17.11 408.45 12.35 413.93 
Max 213.08 1168.80 206.75 1170.93 

 

These results show that residuals are always bad. In 
particular, the mean of residuals obtained may vary, in 
function of the initial weights, from 17.11s to 213.08s on the 
learning data set. It can be noticed that the mean of the 
residual is lower than 30s in only 10% of the cases in 
learning. In order to determine if some dynamics presents in 
the data aren’t taken into account by the learning, the 
correlation between the different inputs and the residuals can 
be performed on the learning data set (table 2). Similar results 
may be obtained on the validation data set.  

Table 2.  Correlation between inputs and residual #1 

  Mean StD Min Max 
Lg 0.0354 0.0245 0.0002 0.0882 
diaGB 0.0118 0.0096 0.0013 0.0342 
dia Moy 0.0393 0.0238 0.0014 0.0843 
diaPB 0.1619 0.0692 0.0640 0.3411 
T_piece 0.0350 0.0261 0.0001 0.0959 
Q_trim 0.0484 0.0324 0.0002 0.1172 
U_trim 0.0298 0.0211 0.0000 0.0813 
Q_rqm 0.0707 0.0467 0.0000 0.1774 
Q_rqm4 0.0628 0.0531 0.0025 0.2280 
Q_rqm5 0.0697 0.0456 0.0000 0.1831 
Q_rqm7 0.0525 0.0355 0.0000 0.1314 
RQM 0.2875 0.1310 0.1124 0.6706 
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Fig. 4. Residual function of RQM 

It can be noticed that Lg, diaGB, diaMoy, T_piece, U_trim 
presents a correlation coefficient with residuals which is 
never significant (always smaller than 0.0959). U_trim, 
Q_rqm, Q_rqm5, Q_rqum7 present a minimal value of 
correlation to 0 because the pruning algorithm, in some cases, 
have pruned these inputs. Two inputs have always a 
significant coefficient correlation with the residual: diaPB 
and RQM. However RQM is a discrete data. So, the 
correlation test isn’t the most significant. Figure 4 presents an 
example of the residuals in function of RQM. It can be 
noticed that two different residuals exist depending of value 
of RQM. So, in order to estimate the influence of RQM on 
residuals the best approach is to compare these two samples. 
For this, two tests can be performed. The first one is the T 
Student test which tests if the two samples of mean µ1 and µ2 
have the same mean. The null hypothesis (H0) and its 
alternative (H1) are: 
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The second test is the F Fisher test which is the ratio of the 

two variances 2
maxσ  and 2

minσ  of the samples. The null 

hypothesis (H0) and its alternative (H1) are: 
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The results of these tests on the 30 tries have always shown 
that the two samples have means and standard deviations 
significantly different with a confidence interval of 99%. So, 
the neural model doesn’t succeed to learn the RQM data.  

5.2  Second approach 

The data RQM is the core of the problem. The choice to give 
value 4 (resp. 5) to RQM when the log uses RQM4 (resp. 
RQM5) conveyors is not good. So, another approach is to 
give the value 0 (resp. 1) when RQM4 (resp. RQM5) is used. 
So, a new neural model is learned. Table 3 presents the mean 
and the standard deviation of residuals obtained on learning 
and validation data sets with this new representation of RQM.  

Table 3.  Mean and Standard deviation of the residual #2 

  learning residual Validation residual 
  Mean StD Mean StD 
Mean 40.45 532.44 40.31 535.64 
StD 38.83 107.13 39.69 106.20 
Min -58.28 357.46 -54.49 380.60 
(abs) 8.96  9.65  
Max 101.92 786.74 111.62 816.23 

 

The line (abs) presents the minimum of the mean in absolute 
value. These results have to be compared with those 
presented table 1. The first remark is that the mean of the 
means residuals is greatly improved with this new approach. 
The worst results obtained on the mean are divided by 2 
between the first and the second approaches (101.92 in 
learning instead of 213.08 for the first approach). It can be 
noticed that the absolute value of the mean of the residual is 
lower than 30s in 26.67% of the cases in learning instead of 
10% of the first approach. As for the preceding approach, the 
correlation coefficient between the 12 inputs and the 
residuals are presented in the table 4 for the learning data set.  

Table 4.  Correlation between inputs and residual #2 

  Mean StD Min Max 
Lg 0.0241 0.0199 0.0005 0.0962 
diaGB 0.0216 0.0205 0.0007 0.0982 
Dia Moy 0.0394 0.0260 0.0001 0.1051 
diaPB 0.1145 0.0677 0.0017 0.2526 
T_piece 0.0450 0.0354 0.0000 0.1308 
Q_trim 0.0512 0.0398 0.0063 0.1543 
U_trim 0.0262 0.0213 0.0000 0.0672 
Q_rqm 0.0763 0.0532 0.0242 0.2019 
Q_rqm4 0.0469 0.0322 0.0000 0.1284 
Q_rqm5 0.0754 0.0519 0.0000 0.1837 
Q_rqm7 0.0660 0.0419 0.0000 0.1760 
RQM 0.2048 0.1263 0.0082 0.4461 

 

Now, only Lg, diaGB and U_trim have always a coefficient 
correlation never significant (always smaller than 0.1). 
Moreover, in some cases (26.67%), the RQM data presents a 
correlation coefficient with residuals lower than 0.1 to 
compare with first approach where this coefficient is always 
greater than 11.24. However, RQM is always a discrete data. 
So, the Fisher and the Student tests have to be performed on 
the two samples corresponding to RQM=1 and RQM=0. For 
the F test, the standard deviations are always significantly 
different with a confidence interval of 99%. However, the T 
test indicates that the means of these two samples are not 
significantly different in 13.33% of the cases with a 
confidence interval of 99%. So, the RQM data is better 
learned with this new approach but the results are 
unsatisfactory. 

5.3  Third approach 

In order to improve the results, a new input can be added to 
the network. This input is the complement of RQM:  





4RQMif:1

5RQMif:0
RQM  (8) 

So, neural network uses 13 inputs. Table 5 presents mean and 
standard deviation of residuals obtained on learning and 

validation data sets with this additional input RQM .  

Table 5.  Mean and Standard deviation of the residual #3 

  learning residual Validation residual 
  Mean StD Mean StD 
Mean 11.17 460.52 9.02 465.90 
StD 18.34 83.86 18.69 81.40 
Min -17.37 333.95 -23.97 341.57 
(abs) 0.07  1.11  
Max 46.75 620.58 39.34 629.02 

 

The line (abs) presents the minimum of the mean in absolute 
value. These results have to be compared to the preceding 
ones. The best results for the mean are greatly improved. We 
obtain 0.07 on the learning data set (to compare to 8.96 with 
approach 2). The worst results for the mean of the residuals 
are improved too, because we obtain 46.75 on the learning 
data set to compare with 101.92 with the preceding approach 
(divide by 2). Moreover, standard deviations of the residuals 
are also improved because its mean value is 460.52 for 
learning data set when it was of 532.44 for preceding 
approach. It can be noticed that the absolute value of the 
mean of residuals is lower than 30s in 90% of the cases 
instead of 26.67% of the preceding approach. Similar 
conclusions can be performed on the validation data set. As 
for the preceding approach, the correlation coefficients 
between the 13 inputs and residuals are presented in the table 
4 for the learning data set. First, it can be noticed that 

logically, RQM and RQM  present the same results. Now, 
Lg, diaGB, dia_Moy, Q_trim, and U_trim have always a 
coefficient correlation never significant (always smaller than 



 
 

     

 

0.1). Moreover, in many cases (60%), the RQM data presents 
a correlation coefficient with the residuals which is lower 
than 0.1 to compare with the first approach where this 
configuration represents 26.67% of the cases. 

Table 6.  Correlation between inputs and residual #3 

  Mean StD Min Max 
Lg 0.0127 0.0117 0.0000 0.0349 
diaGB 0.0114 0.0120 0.0000 0.0436 
dia Moy 0.0143 0.0159 0.0000 0.0713 
diaPB 0.0446 0.0411 0.0000 0.1554 
T_piece 0.0390 0.0422 0.0000 0.1358 
Q_trim 0.0239 0.0216 0.0000 0.0776 
U_trim 0.0167 0.0120 0.0008 0.0450 
Q_rqm 0.0327 0.0422 0.0004 0.1541 
Q_rqm4 0.0378 0.0443 0.0000 0.1553 
Q_rqm5 0.0375 0.0364 0.0000 0.1333 
Q_rqm7 0.0307 0.0334 0.0000 0.1590 
RQM 0.0821 0.0708 0.0000 0.2738 

RQM  0.0821 0.0708 0.0000 0.2738 

 

However, RQM is always a discrete data. So, the Fisher and 
the Student tests have to be performed on the two samples 

corresponding to RQM=1 and RQM=0 ( 0RQM =  and 

1RQM =  resp.). For the F test, the standard deviations are 
always significantly different with a confidence interval of 
99%. However, the T test indicates that the means of these 
two samples are not significantly different in 33.33% of the 
cases with a confidence interval of 99%. So, this approach 
greatly improved the results of the learning. 

6. CONCLUSIONS 

The use of neural network in order to construct a reduced 
model of simulation is investigated here. Within this 
framework, this paper focuses on the use of discrete data 
during the learning phase of the neural model. The results 
have shown that some discrete data (RQM) have great impact 
on the results. This can be explained by the fact that, some 
discrete data leads to comportments of the system which can 
be very different. These data imply that some information 
should be presented under different forms to the network in 
order to be well taken into account. Our perspectives are to 
validate this approach on different application cases, and, in 
particular, on several external supply chains where, at least, 
one particular enterprise belongs to the different supply 
chains.   
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