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Abstract.

Getting Micro-Electro-Mechanical Systems (MEMS) out of a wafer after fabrication
processes is of great interest in testing, packaging or simply using these devices. Actual
solutions require special machines like wafer dicing machines, increasing time and
cost of de-tethering MEMS. This article deals with a new solution for manufacturing
mechanical de-tetherable silicon MEMS. The presented solution could be done with
DRIE process, already used in silicon MEMS fabrication, without additional time or
cost. We are proposing a new way to create a notch on tethers linking both wafer
and millimetric MEMS, especially designed to break with a specified mechanical force.
A theoretical silicon fracture study, the experimental results and dimensional rules
to design the tethers are presented in this article. This new technique is particularly
useful for microscopic MEMS parts, and will find applications in the field of the MEMS
components micro-assembly.
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1. Introduction

Most of MEMS are manufactured into or onto single crystal silicon wafers. This kind
of substrate is commonly used in microelectronics and a lot of fabrication processes
are available to etch silicon. After fabrication, MEMS are localized on the wafer and
they often need to be tested, packaged and used separately. A de-tethering process
is then necessary. MEMS can be sized from 0.01 mm? to 100 mm?, with a thickness
between 50 pm and 500 pm and etched from both bulk silicon and SOIf wafers. These
parameters include a large amount of MEMS types. Different methods are thus used in
microfabrication to detach microsystems from the fabrication substrate.

The first possible method consists in dicing the wafer after fabrication to obtain
freestanding MEMS. A wafer saw can be used to divide the wafer into several parts.
The cutting thickness is about 200 um and this technology is only adapted to large
MEMS. Laser cutting is also used for precise application: laser spot diameter can be
smaller than 10 pm. But this process requires a special and expensive machine.

A second generic method consists in fabricating systems on a sacrificial layer and
releasing them by removing the sacrificial layer. The sacrificial layer can be built from
different materials: In SOI wafers, the buried oxide layer (BOX) can be used as a
sacrificial layer. Using anhydrous HF gas-phase etching with alcoholic vapor [1], the
BOX can be etched between wafer’s device and handle layers. The sacrificial layer can
be a metallic layer deposed by sputtering, and wet etching process is able to detach
microsystems [2]. A resin matrix can be molded around microsystems at the end of the
process to protect them and join them to the wafer [3]. MEMS can be disjoined before
going on to the assembly process in acetone etching solution. The use of a sacrificial
layer has two major disadvantages: they require complex processes for their creation
and destruction, and they can only detach a collection of microsystems.

The third method uses a breakable part between the microsystems and their sub-
strate [4, 5]. This part can be built in the silicon between the systems and the wafer’s
frame, to be broken off when a mechanical stress is applied. This method permits to re-
lease one system in a collection but does not permit a large population of microsystems
to be separated rapidly. In [6], tethers are designed as electric fuses, and de-tethering
is made by applying a calibrated current micro-pulse on appropriate electric pads. This
method is very interesting, however this process remains complex and requires a cali-
bration of current versus geometric parameters.

A summary of the performances of major de-tethering techniques is shown in table
1. Mechanical tethers are interesting methods but they currently remain complex to use
because the building of the tether in microfabrication requires adding several fabrication
steps. We introduce a new method to build reliable tethers without including new steps
of fabrication. The Deep Reaction Ionic Etching (DRIE) process is usually used to build
2,5D structures in single crystal silicon and polysilicon [7]. The introduced method uses

1 Silicon On Insulator
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Wafer Laser Sacrificial Fuse Mechanical

dicing cutting layer tether tether

Selective No Could be No Yes Yes
10 to 100 mm? OK OK - ? OK

Object 1 to 10 mm? OK OK OK ? OK
size 0.1 to 1 mm? - OK OK OK OK
0.01 to 0.1 mm? - OK OK OK OK

Invest cost Medium High Medium Low None
Operational cost Medium High Low Medium Low
Time per object: - - ++ + +

Table 1. De-tethering techniques

specificities of the DRIE process to build breakable tether with a specific notch in order
to reduce the level of the force required and to improve the control of the location of
the rupture. After fabrication, the release can be done manually or automatically: a tip
is positioned up to the MEMS, then the tip pushes the MEMS and applies the required
strain to break the silicon tether. One of the challenges is to correctly design tethers
so that they break easily during the release step but also so they do not break during
microfabrication processes, wafer transport and stocking.

The following section deals with the presentation of the method we put forward.
The third section focuses on the mechanical modeling of the notched beams. The fourth
section describes the implementation of the method in an application field and is followed
by a discussion about the performances of this new method.

2. New de-tethering technique for silicon MEMS

To reduce the value of the breaking force, we chose to induce a brittle fracture in the
silicion (not ductile) in order to obtain a rapid propagation of the crack without major
deformation. To create a brittle tie, a notch is required on the silicon tether which joins
MEMS to the substrate. As the easiest way to de-tether is applying a force normal to
the wafer plane, we suggest to create a notch perpendicular to the substrate.

2.1. Notching principle for DRIE process

To perform high aspect ratio geometry, the DRIE process is commonly used in
microfabrication because it allows an accurate control of the notch’s depth [9]. We
suggest to use a special phenomenon encountered in DRIE processes, the Aspect Ratio
Dependent Etching (ARDE) (see figure 1) [10, 11]. Etching depth is dependent on

I Minus sign is used when de-tethering take too much time.
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etching width i.e. the wider the width is to etch, the deeper the trench will be etched,
as compared to other narrower trenches. This phenomenon usually disturbs the DRIE
because etching depth cannot be equal for all features of various sizes on the substrate.
In current processes, separate masks have to be used when the etched widths are quite
different. However, the relationship between the depth of the trenches and the etching
surface could be exploited to build notches on silicon wafers.

Figure 1. ARDE in silicon wafer. Side view of several DRIE trenches in silicon wafer
made with different etching widths: a larger width induces a higher etching depth.

By using a very thin etching width in comparison to those used to build MEMS’s
structures, it is possible to create very thin notches. The major interest is to be able to
build the notch in the same fabrication step as the whole structure. However the depth
of the notches cannot be controlled with the same accuracy as with the regular etching
process.

2.2. Flowchart

A flowchart has been defined to test our presented approach (see figure 2). The
wafer used is a SOI wafer whose thicknesses are respectively 12 um, 1 pum and 400
pm for device, buried oxide and handle layer. First, the wafer is coated with 700
nm of aluminium and 20 nm of chromium used to protect the aluminium during
photoresist development. A conventional positive photoresist(MICROPOSIT 1813)
is then spincoated and lithographically patterned. After photoresist’s development,
chromium and aluminium layers are etched and the photoresist is stripped. Having
considered the experimental results obtained for ARDE with our DRIE processes, we
chose a notch width of 10 pm and a width of 200um for the etch of the MEMS’ structure.
The 5% ratio between both widths is able to build notches whose depth is the half of
the MEMS height. The wafer is etched with a standard DRIE process until structure
trenches are fully opened. The machine was a Deep RIE Alcatel A601E, with the
following parameters:

e Gases: SFy - 300 sccm, CyFg - 150 scem
e Cycle times: SFg-7s, CyFg-2s
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1. Si wafer with Al - Cr layer and photoresist

2. Lithographic patterning

3. Development
—

Tethered MEMS

Insolated

photoresist Al+Cr

(000 Si  mmmmm Photoresist — me=
(a) Microfabrication flowchart (b) Virtual view of notched tether

Figure 2. Notch design and fabrication

e Pressure for SFy cycle: 4.5x1072 mbar
e Temperature: 15°C

e ICP Power: 1500 W

e Bias Power: 80 W

A typical example of the experimental notches obtained with this process is presented
in figure 3.

Figure 3. SEM view of notched tether
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3. Generic mechanical study

A mechanical study is required to design a tether which is strong enough to hold-up
during microfabrication processes and transport, but brittle enough to break without
damaging MEMS during release. A mechanical model is presented to simulate the
breaking force and is compared to experiments.

3.1. Mechanical modeling of notched beam under simple bending

With 1.2 GPa of yield stress (3 to 4 times greater than structural steel) single crystal
silicon is a tough material but it is also very brittle. The rupture can then spread from
a weak point. The notch is used to control the point where the rupture will begin and
the direction of the breaking surface. Moreover, this notch enables weaker forces to be
used to de-tether MEMS.

Figure 4. Geometry of notched cantilever

Many expressions of rupture behavior for materials exist in literature. In our case,
the force applied to release the MEMS is normal to the substrate surface and the notched
beam is thus under simple bending. In this case, a statistical expression of the force
necessary to break the link is given in [12]. The model of the fracture behavior is based
on the critical stress intensity factor Koy which depends on beam geometry (geometric
parameters S, B, a and W are shown in figure 4) and the applied force F:

6FS
= Zy2 (1%(3))3/2\/ﬁ where «a = W (1)

The critical stress intensity factor is in fact proportional to the moment F-S applied

a

by the force F' on the notch. To obtain the breaking force for a fixed geometry with
a well-known material like single crystal silicon, fi(«) must be determined. Several
approximated expressions are available in [13, 14| and a general value is given by [15].
Nevertheless, the expression in [12], for « values between 0.1 and 0.9, has a maximum
standard deviation of 0.8% from finite element results and is precise enough for our
study:

11215 — a1 — «)(0.80497 — 4.5171a + 7.03740%/? — 3.138302)
B (1+2a)

fi(a)
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3.2. Critical stress intensity factor and rupture probability

The rupture probability is a function of the critical stress intensity factor and of the
mechanical properties of the materials. Only experimental values are available in
literature and give the rupture probability in function of the critical stress intensity
factor. A complete experimental set of values, determined in function of failure
probability is shown in [16] (see figure 5) on <110> plane. Most of our silicon
microsystems presented in the following are made in <100> wafers. As single crystal
silicon is an anisotropic material, K;c values could vary in function of the crystal
orientation. We first assume that the values given for <110> wafer could be extrapoled
to <100> wafers. The comparison between this mechanical model and the experimental
measurement is presented in the following.

99.99
99.9

29

95 <
90 'S
.4

80
70 &

50 ‘ﬁ
20 .
10

Failure Probability, %

01 —
06 07 080910 142 20

Applied Stress Intensity [MPa.m'?]

Figure 5. K¢ values for <110> notched single crystal silicon structures [16]

3.8. Rupture force evaluation

To determine an order of magnitude of the force required to break the link, the parameter
Ko for 50% of failure probability can be used:

KIC50% =1.42 ]\4-13@.77/1,§ (2)

Based on the equation (1), the average rupture force can be determined in relationship
to the geometrical parameters and the critical stress intensity factor:
BW?2(1 — a)3/?

65 fi(e)v/ma

3.4. Ezrperimental fracture force measurement

F=K (3)

Comparing fracture model to experimental measured force requires to precisely defined
the geometrical parameters and especially the depth a of the notch. The specific
geometry is named “Butterfly” and is presented in figure 6. Force measurements have
been done on structures where S was 1 mm, width B was 300 um and the height W of the
wafer was 400 um. Moreover, the depth of the notch a was measured after de-tethering
in a Scanning Electron Microscope (see figure 7).
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Figure 6. Geometry of the “Butterfly” tethers

Figure 7. Colorized SEM view of de-tethered MEMS

Fracture forces have been measured on a experimental setup. A cartesian robotic
structure, carrying a rigid tip (steel needle), was used up to a precision balance. This
precision balance has an accuracy of 1 uN and can measure force up to 650 mN. A
videomicroscope is added onto the setup to position the tip relatively to the notch with
a micrometric accuracy. A force measurement curve is presented in figure 8.

Based on eight measurements of the force, rupture probabilities were calculated
in relationship to the critical stress intensity factor Ko defined in (1). These values
were compared with the data shown in figure 5. Table 2 presents a summary of the
results. Statistical data given in figure 5 and our results based on a small number of
measurements are quite similar. The model we put forward could consequently be useful
to design the tethers and to evaluate the average rupture forces. The study of some
designs tested on experimental conditions is presented in the following section.
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Figure 8. Force measurement during mechanical de-tethering

Force (F) ) Notch K Experimental Modeling
(mN) depth (a) | (MPa.m?) | rupture probability | rupture probability

(pm) (fig-5)
165 220 0.97 6% 15%
218 220 1.29 19% 20%
237 220 1.40 31% 49%
243 220 1.43 44% 51%
248 220 1.46 54% 53%
252 220 1.49 69% 55%
241 230 1.55 81% 65%
258 225 1.59 94% 70%

Table 2. Rupture experimental results - 1 mm distance of the applied force

4. Example application

This section presents experimental tests on tether prototypes. Some designs of tethers
were fabricated on a silicon wafer for a particular applicative context presented in the
following.

4.1. Applications

The study presented in this article was applied to the manufacturing of silicon end-
effectors to be mounted on a piezoelectric microgripper. Using monolythic-piezoelectric
material to build the actuator and the end-effectors of a gripper greatly limits their
performances. To increase gripping capabilities, we chose to glue end-effectors on
the actuators (figure 9). Various gripping strategies are then possible with the same
actuator. One kind of end-effector was made in a SOI wafer which has thicknesses
were respectively 12 pm, 1 pm and 400 pm for device, buried oxide and handle layer
[8]. The end-effectors tip is etched in the thin layer and end-effectors’ base is etched in
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the thick layer. The mounting process is presented in figure 11. As end-effector pairs
must be glued onto the piezoelectric actuator, they require to remain aligned during the
mounting process. A removable third part has then been designed to link both silicon
finger tips (see figure 10). After joining, both fingers were separated by applying an
appropriate force to the removable third part. This design permits end-effectors to be
put easily onto the actuator and keep relative alignment of fingers.

Gripping shape

<\
Thin beay

12 ym beam

400 pym base

Base

Ll

Gluing pad

Figure 9. Silicon end effectors on the MMOC (Microprehensile Microrobot On Chip)
piezoelectric microgripper.

Batch microfabrication processes are used on the whole wafer and the detachment
process suggested allows to take only one end-effector pair from the others. Breakable
tethers were also used for other applications like silicon micromechanical parts and
microfabricated patterns for microscopic visual calibration.

. \ Microgripping

"qt‘.. . tips

Removable part

; 'AIignment tethers

—

Wafer tethers

Figure 10. SEM view of the silicon end-effectors de-tethered from the wafer.
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Figure 11. End-effectors SiFiTs’ mounting process

4.2. Brittle tests wafer

The model of the force presented in the section below links the geometry of the tether and
the force required to break it. During the design of the MEMS, the required detachment
force has to be evaluated and chosen. The required force is bounded by two principles:

e firstly it has to be greater than fabrication force perturbations in order to preserve
the tether during fabrication.

e Secondly the force must be smaller than the cleavage force in order to preserve the
MEMS structures and the wafer’s frame during rupture.

The choice of a force near to the minimum bound is sufficient, because it allows to
keep structures on the wafer with a minimum damage during de-tethering. Evaluating
minimum bound cannot be done in a generic way. In fact, it depends on the MEMS
surface, fabrication processes, wafer thickness and condition of transportation. To
evaluate it, we chose to experiment with the fabrication of different tether prototypes
in classical processes (wet and dry etching, transport, clamping...). Some Butterfly
structures (Btfly) presented in figure 6 have been tested using different widths B (100,
200 and 300 pm). The process shown in figure 2 was used to build notch whose depth
is the half of the wafer thickness. Moreover other breakable links have been tested:
straight beams whose width is 40 pum and which were notched or not. The thickness of
the wafer remains 400 um.

To perform brittle tests, 1 x 6 mm? beams were etched in a wafer, and each was
linked by a breakable link. After the microfabrication, several tests were carried out on
the wafer capacity to be manipulated and cleaved§. Results are presented in table 3.
This table compares the solidity of the various tethers after each microfabrication step.
134 pairs of fingers were fabricated and tethers are presented in figure 12. The table
shows that 40 um beams are susceptible to becoming de-tethered by wet etch processes.

§ Walfer’s cleavage is commonly used in microfabrication to cut the silicon dice. Silicon etched products
can be then easily separate after microfabrication processes.
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Tether  Notched  Initial Step 1 | Step 2 | Step 3 Total
quantity broken
Btfly 100 Yes 40 1 3% |2 5% |10 25% | 13 33%
Btfly 200 Yes 22 0 0 -2 9% | 2 9%
Btfly 300 Yes 16 0 0 -1 0 -1 0 .
Beam 40 Yes 36 8 22% | 0 -1 13 36% | 21  58%
Beam 40 No 20 2 10% | 0 -5 2% | T 35%

Table 3. De-tethering during microfabrication steps. Step 1: dry and wet etching,
Step 2: wafer’s transport, Step 3: wafer’s cleavage.

Liquid flows seem to cause high mechanical stress on these tethers. The wafer’s cleavage
brings major damages to almost whole tethers. Only massive butterfly structures of 300
pm wide stay on the wafer after all steps. The most interesting structures seem to be
the butterflies 200 and 300. In our application, the Btfly 200 are in fact used to link the
fingers to the wafer and Btfly 300 are used between the finger and the third removable

part.

Silicon structure

Wafer's frame

N

Tethers

Missing structure
(de-tethered)

Figure 12. Experimental brittle test wafer for silicon end-effectors’ design

5. Discussion

The presented detachment method is highly relevant for our application. However, this
mechanical tether principle could more widely used. They have already been re-used
for several millimetrical MEMS with different shapes. Theoretical model could be used
for a large range of tethers and is able to estimate the force required to break the link.
This section deals with different parameters which are to be taken into account to use
these tethers.

5.1. Guaranteed rupture range

Minimum bound of force rupture defined in (3) cannot be estimated easily without
experiments. It depends on the surface and the mass of the silicon object tethered,
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microfabrication processes and stress applied to the silicon wafer. We chose to evaluate
several structures in a brittle test wafer in the real fabrication process. Based on this
experience, it seems necessary to test different tethers of various widths before final
fabrication to verify the choice of tether geometry. Moreover, ARDE effect depends on
many parameters (pressure, etched surface, mask quality, etc.) and notch depth cannot
be predicted with great accuracy. Thus, a first wafer prototype could gives important
information about tether geometry obtained with a specific machine.

Another solution consists in maximizing the rupture force of the tethers. With
great width and small notch depth, butterfly tethers will be strong enough to endure
all fabrication stress. On the other hand, rupture shock, and crack propagation may
damage the silicon MEMS, as well as the wafer structure.

The rupture of tethers mainly depends on geometrical parameters, like width and
the ratio between tether thickness and notch depth. The model (3) shows than the
rupture moment F'-S is proportional to the width B of the tether. Nevertheless, the
influence of the notch depth a is more complex. The model (3) has been used simulate
the influence of the notch depth between 0.1 and 0.9 for notch ratio. Figure 13 shows its
influence on moment rupture F'-S for fixed K;- and on K¢ for fixed applied moment
F-S.

1000 20

900

18

\ Rupture moment for Kic = 1.42 MPa.m*?
800

16

Kic for fixed moment 241 pNm
700 14

600 / 12
500 / 10
400 / 8
300 / 6

Moment (UNm)

(Z ,ILU'EdN) 10308} AJISuayul ssans

0 50 100 150 200 250 300 350 400

Notch deepness for 0.1 < o < 0.9 (um)

Figure 13. Influence of notch depth on theoretical model

These curves show that beyond 240 pm (eg. mnotch ratio of 0.6), mechanical
behaviour cannot be considered as linear. Thus ARDE effect has to be bounded to
this ratio, otherwise a small variation of ARDE effect could create a high variation of
maximum rupture moment.
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5.2. Scale effect on notched tethers

The aim of this part is to discuss the miniaturization of our method. The typical size of
the microsystems tested is typically in the order of several millimeters. Our de-tethering
method could be applied on microsystems whose surface is typically between 1 mm? to
100 mm?. Under the millimeter square and for smaller thickness, mechanical tethers
have to be redesigned.

In fact, perturbation forces are significantly reduced for micro-scaled objects. As
stress forces are mainly surfacic and volumic, they decrease faster than the dimensional
scale. Inertia which could induce dethethering during microfabrication process is a
volumic effect and decreases rapidly with the scale. In this manner, scale effect is
interesting for mechanical tethers.

Micro-objects under typical size of 100 um require smaller tethers, and thinner
etching trenches for the DRIE process. For millimetrical objects, trenches of 200 pum
are commonly used for few hundred of microns etch depth. Then 10 pum trench is
sufficient to open an half deep notch. When 10 um or even 1 pum are used for etching
trenches, ARDE ratio of 1:20 requires submicrometric notch trenches. And this is
very difficult to obtain with regular microfabrication processes like metal-photoresist
photolithography. Works are in progress to use e-beam photolithography processes to
create submicrometric trenches.

5.3. Methods for de-tethering MEMS

The main goal of this paper is to present notched tether for MEMS de-tethering.
However the method used to break the tether is almost as important. A force has to be
applied onto the object perpendicularly to the wafer plane. But the most important is
to grasp the de-tethered object during and after the release. The force applied and the
rupture shock could eject the object far from its initial position. In fact, the smaller the
object is, the smaller is its inertia and consequently the further it could jump [17]. For
millimetrical MEMS, as our end-effectors, the rupture force can be applied manually
with a tweezer and the object stays in its initial position. But for micrometrical objects,
specific methods are required to not loss the objects:

e A vacuum gripper could be used to catch the object before the rupture and to apply
the rupture force. As the rupture force has to be applied perpendicularly to the
wafer plane, our tethers are adapted to vacuum gripping. Thus rupture does not
disturb the gripping. Other axis direction for rupture should make it impossible to
use a vacuum gripper.

e In the same way, a two fingered microgripper could detach and grasp the object
after the rupture. A great dexterity and blocking force are used to ensure object
releasing.

e The simplest method is to use a soft adhesive material to de-tether and maintain
the object. A specific stamp, with an adhesive surface could be placed in contact
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with the object. When the stamp is moved, the glued object is de-tethered and
the softness of the adhesive material reduces the rupture shock. In function of the
design of the stamp, one or several objects could be de-tethered at the same time.
Object release from the stamp could be done by use of regular microgrippers.

6. Conclusion

MEMS are typically produced in batch processes on surface substrates. This mass
production enables cost reduction and the fabrication of a large number of components.
To disjoin all these components from the fabrication layer, wafer dicing is the most
usual process. Nevertheless, for smaller MEMS or for more complex geometries than
squares or rectangles, dicing is no longer feasible. Consequently, we have offered a
new method to detach microsystems from the layer based on an innovative process
that creates mechanical breakable tethers. These tethers which could be created with
a regular DRIE process without additional processing steps enables the reduction in
costs and complexity of the de-tethering step. Tested silicon tethers have few hundred
micrometers lengths (100, 200, and 300 pm) and adaptable width (from 30 to 200 pm).
They are sized to de-tether millimetrical MEMS dies from the fabrication silicon wafer.
Rupture force range have been choosed especially for suggested structure (200 mN + /-
50 mN). A complete mechanical model, followed by a set of experimental measurements
and tests have been shown. Then, its possible to tether and de-tether MEMS sized
from 0.01 mm? to 100 mm?, with a thickness between 50 pm and 500 pm and etched
from both bulk silicon and SOI wafers. These parameters include a large amount of
MEMS types. A discussion has been presented on scale reduction of the tethers and the
different ways to de-tether MEMS from the fabrication wafer.
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