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Abstract: In maintenance field, many developments exist to support the prognostic activity.
However, the implementation of an adequate and efficient prognostic tool can be a non trivial
task as it is difficult to provide effective models of dynamic systems including the inherent
uncertainty of prognostic. In this context, the purpose of the paper is to propose a procedure
to generate a prognostic model. The work is based on the integration of bond graph tool and
Dynamic Bayesian Networks. The first one provides a dynamic model of the system, and the
second ones, thanks to their inference capability, enable to take into account uncertainty and
are well suitable to perform diagnosis and prognostic. The proposed procedure is illustrated on
an hydromechanical system.

Keywords: Prognostic, Dynamic systems, Modeling, Dynamic Bayesian Networks.

1. INTRODUCTION

The growth of reliability, availability and safety of a system
is a determining factor in regard with the effectiveness
of industrial performance. As a consequence, the high
costs in maintaining complex equipments make necessary
to enhance maintenance support systems. Thus, tradi-
tional concepts like preventive and corrective strategies are
progressively completed by new ones like predictive and
proactive maintenances (Muller et al. (2008)). Thereby,
prognostic is nowadays considered as a key feature in
maintenance as the estimation of the remaining useful life
of an equipment allows avoiding inopportune spending.
From the research point of view, many developments exist
to support the prognostic activity (Jardine et al. (2006)).
However, choosing an efficient technique depends on clas-
sical constraints that limit the applicability of the tools:
available data-knowledge, dynamic and complexity of the
system, implementation requirements, available monitor-
ing devices. Moreover, implementing an adequate tool can
be a non trivial task as it can be difficult to build effective
models of dynamic systems including the inherent uncer-
tainty of prognostic. In this context, the purpose of the
work is to propose a procedure to generate a prognostic
model for dynamic systems. This work was led in order
to respond to the need expressed by an industrial partner
(em@systec) which develops an e-maintenance platform,
and which is confronted to practical problems in imple-
menting maintenance modules in real applications.
Developments of this paper are founded on the following
two assumptions. 1) In many cases, it is not too costly to
equip dynamic systems with sensors. This allows gathering
real data on-line. 2) Even if there is few a priori knowledge
of the behavior of the system, it is all the more beneficial
to try to build its analytical dynamic model. Thus, the
proposed procedure is based on the integration of bond
graph tool (BG) and Dynamic Bayesian Networks (DBNs).

The first one provides a dynamic model of the system
(Karnopp et al. (1990)) and the second ones enable to take
into account uncertainty and are well suitable to perform
diagnosis and prognostic (Murphy (2002)).
The paper is organized in three main parts. In the first
part, prognostic is defined and positioned within the main-
tenance strategies, and an overview of prognostic metrics
and approaches is given. Following that, the methodology
to build a prognostic model is explained in the second
part. Finally, the proposed procedure is illustrated and
discussed on an hydromechanical system.

2. PROGNOSTIC FRAMEWORK

2.1 Prognostic and Intelligent Maintenance Systems

Maintenance activity combines different methods, tools
and techniques to reduce costs while increasing reliability,
availability and security of equipments. Thus, one usu-
ally speaks about fault detection, failures diagnosis, and
response development (choice and scheduling of preven-
tive/corrective actions). Briefly, these steps correspond to
the need, firstly, of “perceiving” phenomena, secondly,
of “understanding” them, and finally, of “acting” con-
sequently. However, rather than understanding a phe-
nomenon which has just appeared like a failure (a pos-
teriori comprehension), it is convenient to “anticipate” its
manifestation in order to take adequate actions as soon as
possible. This is what can be defined as the “prognostic
process” and which is the object of this paper.
Industrials show a growing interest in prognostic which
becomes a major research framework; see recent papers
dedicated to condition-based maintenance (CBM) (Jar-
dine et al. (2006); Ciarapica and Giacchetta (2006)). The
relative positioning of detection, diagnosis, prognostic and
decision / scheduling in the IMS (Intelligent Maintenance
Systems) framework is schematized in Fig. 1.



Fig. 1. Detection, diagnosis, prognostic and scheduling
activities in IMS

Without distinguishing faults and failures in the paper,
from the phenomenological point of view, the comple-
mentarity of detection, diagnosis and prognostic can be
explained as follows (see Fig. 2):

• detection aims at identifying the functioning mode of
the system, i.e., its current state,

• assuming that a failure occurred, diagnosis enables to
isolate and identify the component that has ceased to
operate (past propagation: from effects to causes),

• prognostic deals with the prediction of the future(s)
state(s) of the system (future propagation: from
causes to effects).

2.2 Prognostic concept

Although there are some divergences in literature, prog-
nostic can be defined as proposed by the International
Organization for Standardization: “prognostic is the esti-
mation of time to failure and risk for one or more existing
and future failure modes” (ISO, 13381-1 (2004)). In this
acceptation, prognostic is also called the “prediction of
a system’s lifetime” as it is a process whose objective
is to predict the remaining useful life (RUL) before a
failure occurs given the current machine condition and
past operation profile (Jardine et al. (2006)). Thereby, two
salient characteristics of prognostic can be pointed out:

• prognostic is mostly assimilated to a prediction pro-
cess (a future situation must be caught),

• prognostic is grounded on the failure notion, which
implies that it is associated with a degree of accept-
ability (the predicted situation must be assessed with
regard to a referential).

Both levels of prognostic are distinguished for clarity of
presentation but are however linked together in reality.

2.3 Prognostic metrics

There is no general agreement as to an appropriate and
acceptable set of metrics that can be employed in prognos-
tic applications, and researchers and CBM practitioners
are still working on this (Vachtsevanos et al. (2006)).
Various measures emerge however from literature and are

Fig. 2. Detection, diagnosis and prognostic - the phe-
nomenological aspect

Fig. 3. TTF, RUL, TTxx and confidence measures

presented hereafter. As for any industrial task, prognostic
can be evaluated at least in two ways:

(1) the main objective of prognostic is to provide the effi-
cient information that enable the underlying decision
process, i.e., the choice of maintenance actions. Thus,
a first set of metrics are those that quantify the risks
incured by the monitored system. This kind of metrics
can be called the prognostic measures,

(2) assuming that prognostic is in essence an uncertain
process, it is useful to be able to judge from its
“quality” in order to imagine more suitable actions.
In this way, different indicators can be constructed:
the prognostic system performance measures.

1) Prognostic measures
As mentioned earlier, the main prognostic measure pur-
sued is the predicted time to failure (TTF), also called the
remaining useful life (RUL). In addition, a confidence
measure can be built to indicate the degree of certitude of
the future predicted failure time.
By extension, and considering that practitioners can be
interested on assessing the system with regard to any
performance limit, RUL and confidence can be generalized:
in Fig. 3, TTxx refers to the remaining time to overpass
the performance limit Perf/xx, and Conf/xxT is the
confidence with which can be taken the asset TTxx > T.

2) Prognostic system performance measures
The timeliness of the predicted time to failure (TTF)
is the relative position of the probability density function
(pdf) of the prediction model along the time axis with
respect to the occurrence of the failure event. This measure
evolves as more data are available and reveals the expected
time to perform preventive actions (Vachtsevanos et al.
(2006)) (see Fig. 4). According to (Goebel and Bonissone
(2005)), one needs to define two different boundaries for
the maximum acceptable late and early predictions.
Accuracy measures the closeness of the predicted value to
the actual one. It has an exponential form and is as higher
as the error between the predicted value of TTF and the
real one is smaller. Precision reveals how close predictions
are grouped or clustered together and is a measure of the
narrowness of the interval in which the remaining life falls.
Precision follows from the variance of the predicted results
for many experiments. Complementarity of accuracy and
precision is illustrated in Fig. 5.

2.4 Prognostic approaches

Various prognostic approaches have been developed rang-
ing in fidelity from simple historical failure rate models
to high-fidelity physics-based models (Vachtsevanos et al.



(2006); Byington et al. (2002)). Required information
(depending on the type of prognostic approach) includes
engineering model and data, failure history, past operating
conditions, current conditions, etc.
Similarly to diagnosis, prognostic methods can be asso-
ciated with one of the following two approaches, namely
model-based and data-driven. Each one has its own advan-
tages and disadvantages, and, consequently, they are often
used in combination in many applications.

Model-based methods Model-based methods assume that
an accurate mathematical model for the analyzed system
can be constructed. These methods often use residuals as
features, and statistical techniques to define the thresholds
that allow detecting faults. Several techniques are pro-
posed in the literature to generate residuals: parity space,
parameters estimation, observers, bond graph, etc.
The main advantage of these approaches is their abil-
ity to incorporate physical understanding of monitored
system. In addition, in many situations, the changes in
feature vector are closely related to model parameters
(Chelidze et al. (2002)). A functional mapping between the
drifting parameters and the selected prognostic features
can be established (Luo et al. (2003)). Moreover, if the
understanding of the system degradation improves, the
model can be adapted to increase its accuracy and to
address subtle performance problems. Consequently, they
can significantly outperform data-driven approaches (next
section). But, this closed relation with a mathematical
model may also be a strong weakness: it can be difficult,
even impossible to catch the system’s behavior.

Data-driven methods Data-driven approaches use real
data (like on-line gathered with sensors or operator mea-
sures) to approximate and track features revealing the
degradation of components and to forecast the global
behavior of a system. Indeed, in many applications, mea-
sured input/output data is the major source for a deeper
understanding of the system degradation. Data-driven ap-
proaches can be divided into two categories: statistical
techniques (multivariate statistical methods, linear and
quadratic discriminators, partial least squares, etc.), and
artificial intelligence (AI) techniques (neural networks,
fuzzy systems, decision trees, etc.).
The strength of data-driven techniques is their ability
to transform high-dimensional noisy data into lower di-
mensional information for diagnosis/prognostic decisions.
AI techniques have been increasingly applied to machine
prognostic and have shown improved performances over
conventional approaches (Wang et al. (2004)). In practice
however, it is not easy to apply AI techniques due to
the lack of training data and of efficient procedures to

Fig. 4. Timeliness measure

Fig. 5. Accuracy and precision measures

extract specific knowledge. Thus, data-driven approaches
are highly-dependent on the quantity and quality of oper-
ational data.

3. PROCEDURE FOR PROGNOSTIC ON DYNAMIC
SYSTEMS

3.1 DBNs: a suitable prognostic tool

As stated in ISO, 13381-1 (2004) and mentioned earlier,
prognostic aims firstly at estimating the remaining useful
life of a system. Different methods can be used to provide
this indicator but are restricted by the type and amount of
available data, the necessity of building a model, etc. Sec-
ondly, prognostic tools must take into account the inherent
uncertainty of prognostic to perform decisional metrics
enabling the choice of maintenance actions: confidence,
timeliness or accuracy.
Some techniques are well suited to deal with the aforemen-
tioned frame. For example, neuro-fuzzy systems proved
to be adequate in forecasting applications under impre-
cision and uncertainty (Wang et al. (2004)). However,
this kind of tools makes no assumption on the dynamic
of the system (as they are based on a learning phase),
and does not explicitly take into account the cause-effect
relations. Yet, without being always necessary, it can be
useful to represent the events causal dependencies in order
to improve prognostic by considering diagnosis outputs.
According to that, Dynamic Bayesian Networks (DBNs)
(Murphy (2002)) are well suitable: their graphical repre-
sentation and their inference capability make them ap-
propriate for fault diagnosis (Lerner et al. (2000)) and
prognostic (Muller et al. (2008)). Thus, the main objective
of the reported work is to present a procedure to build a
DBNs prognostic model for dynamic systems. This model
takes into account the dynamic of the system, the sensors
and monitoring data, the diagnosis outputs and also the
on-line introduced maintenance actions.

3.2 Prognostic procedure for dynamic systems

The proposed procedure is founded on the two following
remarks. Firstly, when studying a dynamic system, it is
possible and useful to represent its physical knowledge and
dynamic behavior. This can be done by using bond graph
(BG) tool. Secondly, as mentioned in section 3.1, DBN is
a suitable prognostic tool. Thus, the present work aims at
making a good use of both approaches by linking them for
prognostic purpose. This can be done in 5 steps (Fig. 6):

• generate the bond graph model in integral causality,
• generate residuals from the bond graph model in

derivative causality,
• construct the temporal causal graph (TCG) from the

integral bond graph model,



Fig. 6. Steps of the prognostic procedure

• generate the DBN by using the structure of the TCG
and the residuals information,

• simulate the DBN to estimate the future state of the
dynamic system and provide prognostic metrics.

The BG model is constructed from the dynamic system
by representing the power transfer between the physical
elements composing it (Karnopp et al. (1990); Paynter
(1961)). The mathematical model of the system’s behavior
can be easily obtained from the BG model (in integral
causality) in the form of transfer function or state space
equations.
Residuals are generated from the derivative BG form
which is preferred to the integral form for two principal
reasons. 1) At the detection stage, the initial conditions are
not always known which makes the integral calculation im-
possible. 2) In diagnosis phase, one observes the effect and
tries to identify the cause (causal relations are inverted). In
the proposed prognostic procedure, the generated residuals
are used as monitoring features.
The temporal causal graph (TCG) is obtained from the
bond graph model in integral causality of the dynamic
system (Mosterman and Biswas (1997)). It is a topolog-
ical representation that captures local dynamic relations
between variables, and provides a more explicit represen-
tation of the relations between the system’s parameters
and the behavior variables (Lerner et al. (2000)). It also
shows the algebraic and temporal constraints between the
effort and flow variables of the BG model. In this paper,
the TCG is used in order to build the DBN.
A DBN is a way to extend Bayes nets to model probabil-
ity distributions over semi-infinite collections of random
variables (Ut, Xt, Yt) representing the input, the hidden
and the output variables of a state-space model (Murphy
(2002)). DBNs generalize Kalman filters, hidden Markov
models and hierarchical hidden Markov models, and allow
users to monitor and to predict the future state of the
system. The DBN related to the considered dynamic sys-
tem is generated from the TCG by following the method
proposed in (Lerner et al. (2000)).
At the simulation step, the DBN is parametrized by spec-
ifying the initial probability distributions of the nodes,
and inference algorithms can be implemented in order
to predict the future states of the system. Finally, the
simulation results can be processed to provide prognostic
metrics.

4. APPLICATION

4.1 System description

The procedure previously described is applied on an hy-
dromechanical system (Fig. 7). It is composed of a valve, a

Table 1. Variables and parameters

Symbol Designation Unit

Pin Fluid pressure at the input of the valve N/m2

F1 Fluid flow across the valve m3/s
P1 Pressure at the bottom of the tank N/m2

R2 Hydraulic conductance m4/s.N1/2

F2 Fluid flow m3/s
F Mechanical effort N
ω1, ω Angular velocities rd/s
x1 Stem position of the valve m
Γ Torque N.m

m Mass of the stem in the valve kg

R1 Hydraulic conductance m4/s.N1/2

C1 Hydraulic capacity = S
ρg

m4.s2/kg

ρ Water density kg/m3

S Cross section of the tank m2

g Gravity constant m/s2

k1 Stiffness N/m
b1 Friction coefficient N.s/m
k2 Stiffness N.m/rd
b2 Friction coefficient N.m.s/rd
J1 Moment of inertia kg.m2

Patm Atmospheric pressure N/m2

tank and a paddle wheel. The rotation of the paddle wheel
is ensured by the flow of water leaving the tank from an
orifice situated at the bottom of the tank. To maintain
the paddle wheel at a given rotating speed, the amount
of water in the tank is maintained at a constant level
by acting on the stem position of the valve. The control
system is not considered in the following developments.
The nomenclature of the variables and parameters used in
this application is given in table 1.

4.2 Generation of the Dynamic Bayesian Network

The bond graph model in integral causality of the hy-
dromechanical system is given in Fig. 8. This model is
derived from a word bond graph (Karnopp et al. (1990))
which is a bloc diagram showing the different powers
exchanged between the physical components of the sys-
tem. Four bond graph sub-models related to the valve,
the hydraulic tank, the orifice and the paddle wheel are
linked together. The mathematical model of the system
can be obtained from the BG model in the form of a state
space representation. This latter one allows to obtain the
transition and observation matrices which are used in the
final DBN.
The BG model previously built is used to generate the
Analytical Redundancy Relations (ARRs) and the cor-
responding residuals. This is performed by applying the

Fig. 7. The hydromechanical system



Fig. 8. The system’s bond graph model

procedure presented in (Bouamama et al. (2003)). The
main steps of this procedure are summarized hereafter:

• set the BG model in its derivative causality,
• write the equation of each junction of the obtained

BG,
• eliminate the unknown variables from each equation,
• generate the ARRs, and by evaluating them, derive

the corresponding residuals.

The unknown variables elimination process is achieved
by following the causal paths, from known to unknown
variables, on the derivative BG model. As a remind, an
ARR is a constraint (or equation) between the system’s
known variables (measures, known inputs and parame-
ters), whereas a residual is a numerical evaluation of an
ARR (see B. Ould Bouamama et al. (2006) for more
details). As the system is fully observable and does not
contain any algebraic loop, and without considering its
control part, five residuals can be generated (1 to 5).

r1 = Pin − 1
R2

1 (x1)
F 2

1 − P1 (1)

r2 = F1 − C1
dP1

dt
− F2 (2)

r3 = P1 − 1
R2

2

F 2
2 − Patm (3)

r4 = k2ω − dΓΦ(F2)

dt
+ b2

dω

dt
+ J1

d2ω

dt2
(4)

r5 =
dF

dt
−m

d2ω1

dt2
− b1

dω1

dt
− k1ω1 (5)

From the list of residuals, the fault signature matrix of
the hydromechanical system can be simply built by ana-
lyzing the structure of each residual. This matrix is binary,
containing in its rows the possible faults on the physical
components and sensors, and in its columns the residuals.
A “1” value in the fault signature matrix indicates that
a residual ri is sensitive to a fault in the corresponding
component (represented by one or more parameters in
the residual expression). In addition, two columns are
added which indicate the detectability (Db) and isolability
(Ib) of each potential fault (table 2). A “1” value in the
Db/Ib means that a fault occurring on the corresponding
physical component is detectable/isolable. Note that for
this application, the faults are all detectable (the com-
ponent’s parameters are present in at least one residual),
and isolable, except those of “Wheel” and “Sensor ω”. The
non-isolability of faults in these two components is due to

Table 2. Fault signature matrix

r1 r2 r3 r4 r5 Db Ib

Valve 1 0 0 0 1 1 1
Wheel 0 0 0 1 0 1 0
Tank 0 1 0 0 0 1 1
Sensor F1 1 1 0 0 0 1 1
Sensor F2 0 1 1 0 0 1 1
Sensor P1 1 1 1 0 0 1 1
Sensor ω 0 0 0 1 0 1 0
Sensor ω1 0 0 0 0 1 1 1

Fig. 9. The temporal causal graph of the hydromechanical
system

the fact that they have a same signature.
The TCG of the hydromechanical system is given in Fig. 9,
and is generated from the integral BG model of Fig. 8. The
variables shown on this TCG are the generalized variables
(efforts and flows) used in the BG model. The arrow from
f8 to e12, labeled ϕf8 , traduces the fact that the torque Γ
acting on the paddle wheel is dependent on the flow of fluid
coming from the tank. Similarly, the hydraulic resistance
R1 of the valve depends on the stem position x1, and this
is represented by the arrow labeled by ψx1dt.
The dynamic bayesian network of the hydromechanical
system is given in Fig. 10. It is derived from the TCG by
applying the method developed in (Lerner et al. (2000)).
Three types of nodes are represented: observed nodes
(shaded), hidden states and faults nodes. The variables
and parameters used in the DBN are those of the TCG,
and correspond to the BG generalized variables and sys-
tem’s parameters. In this application, three kind of drift
faults are considered: an incipient fault in the valve (sup-
posing that the hydraulic resistance of the valve changes
during the time due to sediments deposit), a small leakage
from the tank (assuming that this leakage can be repre-
sented by a change in the value of the hydraulic capacity
C1), and a slow change in the structure of the paddle
wheel. These faults are represented on the DBN graph by
the nodes (DR1 , R1), (DC1 , C1), and (DJ1 , J1).

4.3 Discussion

By following the proposed procedure, a DBN model for
prognostic can be constructed. Parameters of this DBN are
those of the physical system on which one can add noise,
profiles of faults, measurements noises, and data provided
by the monitoring and diagnosis systems (numerical values
of residuals). On this basis, simulations on the DBN can
be performed, by using inference algorithms proposed in
(Murphy (2002)), in order to estimate the future state of
the hydromechanical system and the prognostic metrics.



Fig. 10. The dynamic bayesian network of the hydrome-
chanical system

In practice, some processing on the residual signals are
needed to detect earlier drifting faults. One way to do this
consists in integrating the residual signals. Appropriate
thresholds must also be defined so that when a residual
exceeds its corresponding nominal value, an event is gen-
erated to update the related parameters of the DBN (for
example, if an incipient leakage is detected, the value of the
parameter C1 is modified). Again, simulating the updated
DBN, one can estimate the future state of the system
including these new observations (also called evidences).

5. CONCLUSION

Prognostic aims globally at estimating the remaining use-
ful life of a system. However, building an effective tool
to support this activity is not a trivial task: prognostic
is intrinsically uncertain and prognostic tools must take
this into account in order to perform decisional metrics
enabling the choice of preventive actions. According to
this, dynamic Bayesian networks are well suitable as they
enable to consider the dynamic of the system as well as
the inherent uncertainty of the prediction process. But,
this supposes the construction of the DBN model. Thus,
in this paper, a progressive procedure to build the DBN
model for prognostic is proposed and illustrated on an
hydromechanical system.
Developments are founded on the elaboration of the bond
graph model that represents the dynamic behavior of the
system. This model is then used to generate fault indica-
tors (residuals) as well as the temporal causal graph which
provides an explicit representation of the relations between
the system’s parameters and the behavior variables. Fi-
nally, the TCG serves to construct the DBN allowing to
perform prognostic (RUL, confidence measures, etc.).
The proposed methodology is quite easy to follow and
apply on small dynamic systems (mechatronic and hy-
dromechanical systems for example). Moreover, the re-
sulting DBN do not suffer from a learning process and
is parametrized by including the physical understanding
of phenomena.
Developments are at present extended to take into account
real industrial constraints in a more closely manner. The
generalization of the procedure on complex systems is
being studied by decomposing them into small subsystems.
Works are conducted with the objective of being integrated
to an e-maintenance platform of a French industrial part-
ner (em@systec).
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