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In this paper we obtain new bounds for the minimum output entropies of random quantum channels. These bounds rely on random matrix techniques arising from free probability theory. We then revisit the counterexamples developed by Hayden and Winter to get violations of the additivity equalities for minimum output Rényi entropies. We show that random channels obtained by randomly coupling the input to a qubit violate the additivity of the p-Rényi entropy, for all p > 1. For some sequences of random quantum channels, we compute almost surely the limit of their Schatten S1 → Sp norms.

Introduction

The relationship between random matrix theory and free probability theory lies in the asymptotic freeness of random matrices. Asymptotic freeness, as it was discovered by Voiculescu (see e.g. [START_REF] Voiculescu | Free random variables[END_REF]), usually predicts the asymptotic pointwise behavior of joint noncommutative moments. However in some cases it can also predict more. For example, in the case of i.i.d. GUE random matrices, it was showed by Haagerup and Thorbjørnsen [START_REF] Haagerup | A new application of random matrices: Ext(C * red (F2)) is not a group[END_REF] that even the norms have an almost sure behavior predicted by free probability theory.

Quantum information theory is the analogue of classical information theory, where classical communication protocols are replaced by quantum information protocols, known as quantum channels. Despite the apparent simplicity of some mathematical question related to information theory, their resistance to various attempts to (dis)prove them have led to the study of their statistical properties.

The Holevo conjecture is arguably the most important conjecture in quantum information theory, and the theory of random matrices has been used here with success by Hayden and Winter [14,[START_REF] Hayden | Counterexamples to the maximal p-norm multiplicativity conjecture for all p > 1[END_REF] to produce counterexamples to the additivity conjecture of Rényi entropy for p > 1. These counterexamples are of great theoretical importance, as they depict the likely behavior of a random channel. In [START_REF] Hastings | A Counterexample to Additivity of Minimum Output Entropy[END_REF], Hastings gave a counterexample for the case p = 1. It is also of probabilistic nature, but uses a very different and less canonical measure.

In our previous paper [START_REF] Collins | Random quantum channels I: Graphical calculus and the Bell state phenomenon[END_REF], we introduced a graphical model that allowed us to understand more systematically the computation of expectation and covariance of random channels and their powers. In particular we studied at length the output of the Bell state under a random conjugate bi-channel and obtained the explicit asymptotic behavior of this random matrix.

In the present paper, we focus on the mono-channel case. Our main result is Theorem 4.1. It relies on a result obtained by one author in [START_REF] Collins | Product of random projections, Jacobi ensembles and universality problems arising from free probability Probab[END_REF] and can be stated as follows:

Theorem 1.1. Let k be an integer and t be a real number in (0, 1). Let Φ n be a sequence of random channels defined according to Equation [START_REF] Bengtsson | Geometry of quantum states. An introduction to quantum entanglement[END_REF]. Then there exists a probability vector β (t) (defined in Equation [START_REF] Bhatia | Matrix Analysis[END_REF]) such that, for all ε > 0, almost surely when n → ∞, for all input density matrix ρ, the inequality [START_REF] Aubrun | Catalytic majorization and lp norms[END_REF] spec(Φ(ρ)) ≺ β (t) is ε-close to being satisfied. Moreover, β (t) is optimal in the sense that any other probability vector β ∈ ∆ k satisfying the same property must satisfy β (t) ≺ β.

We combine this result result with bi-channel bounds to obtain new counterexamples to the additivity conjectures for p > 1.

An illustration of our result is Corollary 5.6, which one can reformulate as follows:

Theorem 1.2. For each p > 1 and each finite quantum space A of dimension k ′ 2, there exists an integer such that for each quantum system B of dimension larger than this integer, the quantum channel arising from a quantum coupling A and B (of appropriate relative dimension, depending on p and k ′ ) has a high probability to be Rényi superadditive when coupled with its conjugate.

From a quantum information theory point of view, the true novelty of this result is that any dimension k ′ 2 is acceptable. This result does not seem to be attainable with the alternative proofs available in [START_REF] Hayden | The maximal p-norm multiplicativity conjecture is false[END_REF][START_REF] Hastings | A Counterexample to Additivity of Minimum Output Entropy[END_REF][START_REF] Brandao | On Hastings's counterexamples to the minimum output entropy additivity conjecture[END_REF][START_REF] Fukuda | Entanglement of random subspaces via the Hastings bound[END_REF].

Our techniques rely on free probability theory. They allow us to understand entanglement of random subspaces, and do not rely on a specific choice of a measure of entanglement. Even though the von Neumann entropy is the most natural measure of entanglement in general, this subtlety is important as the papers [START_REF] Aubrun | Catalytic majorization and lp norms[END_REF][START_REF] Aubrun | Stochastic domination for iterated convolutions and catalytic majorization[END_REF] imply that all the p 1 Rényi entropies don't enclose enough data to fully understand entanglement.

Our paper is organized as follows. We first recall a few basics and useful results of free probability theory of random matrix theoretical flavor in Section 2. In Section 3, we describe the random quantum channels we study. Section 4 describes the behavior of the eigenvalues of the outputs of random channels. In Section 5, we use results of the previous sections and of [START_REF] Collins | Random quantum channels I: Graphical calculus and the Bell state phenomenon[END_REF] to obtain new counterexamples to the additivity conjectures.

A reminder of free probability

The following is a summary of results contained in [START_REF] Collins | Product of random projections, Jacobi ensembles and universality problems arising from free probability Probab[END_REF], [START_REF] Voiculescu | A strengthened asymptotic freeness result for ran-dom matrices with applications to free entropy Internat[END_REF], [START_REF] Voiculescu | Free random variables[END_REF] and [START_REF] Collins | Integration with respect to the Haar measure on unitary, orthogonal and symplectic group[END_REF].

Asymptotic freeness.

A non-commutative probability space is an algebra A with unit endowed with a tracial state ϕ. An element of A is called a (non-commutative) random variable. In this paper we shall be mostly concerned with the non-commutative probability space of random matrices

(M n (L ∞-(Ω, P)), E[n -1 Tr(•)]) (we use the standard notation L ∞-(Ω, P) = ∩ p 1 L p (Ω, P)).
Let A 1 , . . . , A k be subalgebras of A having the same unit as A. They are said to be free if for all a i ∈ A j i (i = 1, . . . , k) such that ϕ(a i ) = 0, one has

ϕ(a 1 • • • a k ) = 0
as soon as j 1 = j 2 , j 2 = j 3 , . . . , j k-1 = j k . Collections S 1 , S 2 , . . . of random variables are said to be free if the unital subalgebras they generate are free.

Let (a 1 , . . . , a k ) be a k-tuple of selfadjoint random variables and let C X 1 , . . . , X k be the free * -algebra of non commutative polynomials on C generated by the k indeterminates X 1 , . . . , X k . The joint distribution of the family {a i } k i=1 is the linear form

µ (a 1 ,...,a k ) : C X 1 , . . . , X k → C P → ϕ(P (a 1 , . . . , a k )).
Given a k-tuple (a 1 , . . . , a k ) of free random variables such that the distribution of a i is µ a i , the joint distribution µ (a 1 ,...,a k ) is uniquely determined by the µ a i 's. A family (a n 1 , . . . , a n k ) n of k-tuples of random variables is said to converge in distribution towards (a 1 , . . . , a k ) iff for all P ∈ C X 1 , . . . , X k , µ (a n as n → ∞. Sequences of random variables (a n 1 ) n , . . . , (a n k ) n are called asymptotically free as n → ∞ iff the k-tuple (a n 1 , . . . , a n k ) n converges in distribution towards a family of free random variables.

The following result was contained in [START_REF] Voiculescu | A strengthened asymptotic freeness result for ran-dom matrices with applications to free entropy Internat[END_REF] (see also [START_REF] Collins | Integration with respect to the Haar measure on unitary, orthogonal and symplectic group[END_REF]).

Theorem 2.1. Let {U (n)
k } k∈N be a collection of independent Haar distributed random matrices of M n (C) and {W (n) k } k∈N be a set of constant matrices of M n (C) admitting a joint limit distribution as n → ∞ with respect to the state n -1 Tr. Then the family {U

(n) k , W (n) k } k∈N admits a limit * -distribution {u k , w k } k∈N with respect to E[n -1
Tr], such that u 1 , u 2 , . . . , {w 1 , w 2 , . . .} are free.

Free projectors.

Let us fix real numbers 0 α, β 1, and consider, for all n, a selfadjoint projector π n ∈ M n (C) of rank q n such that asymptotically q n ∼ αn as n → ∞. Let π ′ n be a projector of rank q ′ n such that q ′ n ∼ βn, and assume that it can be written under the form U π n U * , where U is a Haar distributed unitary random matrix independent from π n It is a consequence of Theorem 2.1, that π n and π ′ n are asymptotically free. Therefore π n π ′ n π n has an empirical eigenvalues distribution converging towards a probability measure. This measure is usually denoted by µ 1 ⊠ µ 2 , where µ 1 , µ 2 are the limit empirical eigenvalue distributions of the projectors π n and π ′ n respectively:

µ 1 = (1 -α)δ 0 + αδ 1 , µ 2 = (1 -β)δ 0 + βδ 1 .
In this specific case, we can compute explicitly µ 1 ⊠ µ 2 . For this purpose, we introduce two 2-variable functions which will be of great importance in what follows.

ϕ + : {(x, y) ∈ [0, 1] 2 } → [0, 1] (x, y) → 1 - (1 -x)(1 -y) - √ xy 2 ϕ -: {(x, y) ∈ [0, 1] 2 } → [0, 1] (x, y) → 1 - (1 -x)(1 -y) + √ xy 2
Let us omit the variables of ϕ +/-and rewrite

ϕ +/-= ϕ +/-(α, β) = α + β -2αβ ± 4αβ(1 -α)(1 -β)
It follows then from [START_REF] Voiculescu | Free random variables[END_REF], Example 3.6.7, that

µ 1 ⊠ µ 2 = [1 -min(α, β)]δ 0 + [max(α + β -1, 0)]δ 1 + (ϕ + -x)(x -ϕ -) 2πx(1 -x) 1 [ϕ -,ϕ + ] dx
The proof relies on a technique introduced by Voiculescu to compute µ 1 ⊠ µ 2 in general, called the S-transform. For more details, we refer the interested reader to [START_REF] Voiculescu | Free random variables[END_REF]. Since we are only interested in ϕ + , we consider the two-variable function ϕ

: [0, 1] 2 → [0, 1] ϕ(x, y) =      0 if x = 0 or y = 0; ϕ + (x, y) if x, y > 0 and x + y 1; 1 if x + y > 1.
In the case where α + β < 1, the ranges of π n and π ′ n do not (generically) overlap and ϕ(α, β) < 1. The previous asymptotic freeness results imply that almost surely, lim inf

n ||π n π ′ n π n || ∞ ϕ(α, β).
We are interested in whether we actually have

lim n ||π n π ′ n π n || ∞ = ϕ(α, β) < 1.
This turns out to be true. This is an involved result whose proof we won't discuss here. We just recall the result below as a theorem, following [START_REF] Collins | Product of random projections, Jacobi ensembles and universality problems arising from free probability Probab[END_REF] (Theorem 4.15), see also [START_REF] Ledoux | Differential operators and spectral distributions of invariant ensembles from the classical orthogonal polynomials part I: the continuous case[END_REF].

Theorem 2.2. In C n , choose at random according to the Haar measure two independent subspaces V n and V ′ n of respective dimensions q n ∼ αn and q ′ n ∼ βn where α, β ∈ (0, 1). Let π n (resp. π ′ n ) be the orthogonal projection onto V n (resp. V ′ n ). Then,

lim n π n π ′ n π n ∞ = ϕ(α, β).
3. Quantum channels and additivity conjectures 3.1. Rényi entropies and minimum output entropies.

Let ∆ k = {x ∈ R k + | k i=1
x i = 1} be the (k -1)-dimensional probability simplex. For a positive real number p > 0, define the Rényi entropy of order p of a probability vector x ∈ ∆ k to be

H p (x) = 1 1 -p log k i=1
x p i .

Since lim p→1 H p (x) exists, we define the Shannon entropy of x to be this limit, namely:

H(x) = H 1 (x) = - k i=1 x i log x i .
We extend these definitions to density matrices by functional calculus:

H p (ρ) = 1 1 -p log Tr ρ p ; H(ρ) = H 1 (ρ) = -Tr ρ log ρ.
Given a vector x ∈ C n , x = 1, we call P x the rank one orthogonal projection onto the span of x. Using Dirac's bra-ket notation, P x = |x x|. More generally, for a subspace V ⊂ C n , we denote by P V the orthogonal projection onto V in M n (C).

A quantum channel is a linear completely positive trace preserving map Φ :

M n (C) → M k (C).
The trace preservation condition means that density matrices are mapped to density matrices, and the complete positivity reads:

∀d 1, Φ ⊗ I d : M nd (C) → M kd (C) is a positive map.
We recall that according to Stinespring theorem, a linear map Φ :

M n (C) → M k (C
) is a quantum channel if and only if there exists a finite dimensional Hilbert space K = C d , and a partial isometry

V ∈ End(C n , C kd ) (satisfying V * V = I n ) such that (2) Φ(X) = Tr K [V XV * ] , ∀X ∈ M n (C).
For a quantum channel Φ : M n (C) → M k (C), we define its minimum output Rényi entropy (of order p) by

H p min (Φ) = min ρ∈Mn(C) ρ 0,Tr ρ=1 H p (Φ(ρ)).
Since the Rényi entropies are concave functions, their minima are attained on the extremal points of the set of density matrices and hence

H p min (Φ) = min x∈C n x =1
H p (Φ(P x )).

3.2.

The random quantum channel model. We fix an integer k and a real number t ∈ (0, 1). For each n, let U n ∈ M nk (C) be a random unitary matrix distributed according to the Haar measure, and q n be a projection of M nk (C) of trace p n such that p n /(kn) ∼ t as n → ∞. To q n we associate a non-unital matrix algebra map χ n : M pn (C) → M nk (C) satisfying χ n (1) = q n . The choice of χ n is unique up to unitary conjugation, and the actual choice of χ n is irrelevant for the computations we want to perform -in the sense that any choice will yield the same results.

We study the sequence of random channels

Φ n : M pn (C) → M k (C)
given by

(3) Φ n (X) = Tr n (U n (χ n (X))U * n ). Remark 3.1.
In our previous paper [START_REF] Collins | Random quantum channels I: Graphical calculus and the Bell state phenomenon[END_REF], we considered exactly the same model of random quantum channels, with one small difference: the partial trace was taken with respect to C k . However, it is well-known that, when partial tracing a rank one projector, the non-zero eigenvalue of the resulting matrix do not depend on which space is traced out. Hence, from the point of view of eigenvalue statistics, the model we consider here is identical with the one in [START_REF] Collins | Random quantum channels I: Graphical calculus and the Bell state phenomenon[END_REF], Section 6.2.

Graphically, our model amounts to Figure 1. We refer to the first paper of this series, [START_REF] Collins | Random quantum channels I: Graphical calculus and the Bell state phenomenon[END_REF] for details about this graphical notation.

U U * Φ(X) = X Figure 1. Diagram for Φ(X)
We are interested in the random process given by the set of all possible eigenvalues of Φ(X) as n → ∞. In our setup, we deal with k eigenvalues.

Let V n be the image of U χ n U * . This is a random vector space in C n ⊗ C k of dimension p n distributed according to the uniform measure on the Grassmannian space Gr pn (C nk ).

If we can ensure that the entanglement of every norm one vector x ∈ V n in C n ⊗ C k is large with high probability for the uniform measure on V n ∈ Gr pn (C nk ), this will yield new entropy bounds. The entanglement is always a concave function of the principal values of x. We recall that for an element x ∈ C n ⊗ C k we denote λ(x) and rk(x) the singular values and the rank of x, when viewed as a matrix x ∈ M n×k (C). In quantum information theory, these quantities are also called the Schmidt coefficients and the Schmidt rank of x respectively:

x = rk(x) i=1 λ i (x)e i ⊗ f i ,
where {e i } and {f i } are orthonormal families from C n and C k respectively. Both quantities can also be expressed as the rank and respectively the spectrum of the reduced density matrix Tr n P x . The strategy adopted in this paper is to describe a convex polyhedron such that with high probability, for a vector subspace V chosen at random, for all input x ∈ V , the eigenvalue vector λ(x) belongs to a neighborhood of this convex set.

3.3. Known bounds. Some results are already available in order to quantify the entanglement of generic spaces in Gr pn (C n ⊗ C k ). The best result known so far is arguably the following theorem of Hayden, Leung and Winter in [START_REF] Hayden | Aspects of generic entanglement Comm[END_REF]: 

d ∼ d A d B Γα 2.5 (log d A ) 2.5
such that all states x ∈ S have entanglement satisfying

H(P x ) log d A -α -β, where β = d A /(d B log 2) and Γ = 1/1753.
To prove this result, the authors require sophisticated methods from asymptotic geometry theory. In particular, they need estimates on the covering numbers of unitary groups by balls of radius ε and results of concentration of measure. The results of concentration of measure are applied to a specific measure of entanglement (e.g. one entropy H p ), therefore the measure of entanglement does not deal directly with the behavior of the Schmidt coefficients, but rather with the behavior of a function of them.

Confining the eigenvalues almost surely

4.1. Main result. Our strategy is to describe a convex polyhedron K inside the probability simplex ∆ k with the property that, for all ε > 0, almost surely when n goes to infinity, all input density matrices ρ 0, Tr(ρ) = 1, are mapped to output states Φ(ρ) whose spectra are contained K + ε, the ε-neighborhood of K.

For t ∈ (0, 1), let us first define the vector

β (t) ∈ R k , where (4) β (t) 
j = ϕ j k , t -ϕ j -1 k , t , ∀ 1 j k.
One can check directly that β (t) is a probability vector and that it is a non-increasing sequence. Moreover, β

1 = ϕ(1/k, t) and β (t) j = 0 for j ⌊k(1t)⌋ + 2. Since the majorization partial order plays an important role in this situation, let us remind here the definition and some basic properties of this relation. For two probability vectors x, y ∈ ∆ k , we say that x is majorized by y (and we write x ≺ y) iff for all j ∈ {1, . . . , k}

(5) s j (x) = j i=1 x ↓ i j i=1 y ↓ i = s j (y),
where x ↓ and y ↓ are the decreasing rearrangements of x and y; note that for j = k we actually have an equality, since x and y are probability vectors. We extend the functions s j , by functional calculus, to selfadjoint matrices X ∈ M k (C). The majorization relation can also be characterized in the following way: for a probability vector y and a permutation σ ∈ S k , denote by σ.y the vector obtained by permuting the coordinates of y along σ : (σ.y) i = y σ(i) . Then

x ≺ y iff. x ∈ S(y),

where S(y) is the convex hull of the set {σ.y | σ ∈ S k }. Moreover, the extremal points of S(y) are exactly y and its permutations σ.y. In Figure 2, we plot ∆ 3 , the 2-dimensional simplex together with the sets S(β (t) ), for t = 1/k ′ and k ′ = 2, 3, 4, 5, 10, 20, 50, 100. Notice that for k ′ = 2, 3, the set S(β (1/k ′ ) ) touches the triangle ∆ 3 , because of the fact that β (t) has in this case a zero coordinate.

We can now state the main result of this section: Theorem 4.1. Let t be a parameter in (0, 1) and ε > 0. Let S(β (t) ) + ε be the ε-ball around S(β (t) ) in ∆ k . Then, almost surely when n → ∞, for all input density matrix ρ,

(6) spec(Φ(ρ)) ∈ S(β (t) ) + ε.
Moreover, β (t) is optimal: a probability vector β ∈ ∆ k such that, with positive probability,

(7) spec(Φ(ρ)) ∈ S(β) + ε ∀ρ must satisfy β (t) ≺ β.
We split the proof of Theorem 4.1 into several lemmas. The first one is an easy consequence of the definition of the operator norm. Proof. Since QRQ is a self adjoint operator, we have:

QRQ ∞ = sup y 1 QRQy, y = sup y 1 RQy, Qy = sup x∈Im Q x 1 Rx, x = max x∈Im Q Tr(P x R).
The following lemma is a reformulation of the min-max theorem:

Lemma 4.3. Let λ 1 λ 2 • • • λ k be the Schmidt coefficients of a vector x ∈ C nk . Then, for all 1 j k, s j (x) = λ 1 + λ 2 + • • • + λ j = max F ∈Gr j (C k ) Tr(P x P C n ⊗F ).
Proof. Since λ i are the eigenvalues of Tr n P x ∈ M k (C), the min-max theorem for Tr n P x can be stated as:

s j (x) = max F ∈Gr j (C k )
Tr(P F Tr n P x ).

The conditional expectation property of the partial trace implies that

s j (x) = max F ∈Gr j (C k ) Tr(P x • I n ⊗P F ) = max F ∈Gr j (C k ) Tr(P x • P C n ⊗F ).
We are interested in majorization inequalities which hold uniformly for all norm one elements of a subspace V . In other words, we are interested in the quantity max

x∈V x =1 s j (x) = max x∈V x =1 max F ∈Gr j (C k ) Tr(P x P C n ⊗F ).
Since k is a fixed parameter of our model, in order to compute the maximum over the Grassmannian, it suffices to consider only a finite number of subspaces F : Lemma 4.4. For all ε > 0, for all j, there exists a finite number of j-dimensional subspaces

F 1 , . . . , F N ∈ Gr j (C k ) such that, for all x ∈ C nk , N max i=1 Tr(P x P C n ⊗F i ) s j (x) N max i=1 Tr(P x P C n ⊗F i ) + ε.
Note that in Lemma 4.4, N does depend on ε but can be chosen to be finite for any ε > 0.

Proof. We only need to prove the second inequality. Since the Grassmannian Gr j (C k ) is compact and metric for d(E, F ) = P E -P F ∞ , for all ε > 0 there exists a covering of Gr j (C k ) by a finite number of balls of radius ε centered in F 1 , . . . , F N . Fix some x ∈ C nk and consider the element F ∈ Gr j (C k ) for which the maximum in the definition of s j (x) is attained. F is inside some ball centered at F i and we have Proof of Theorem 4.1. First, notice that it suffices to show (6) holds for rank one projectors ρ = P x . The general case follows from the convexity of the functions s 1 , . . . , s k .

Tr(P x P C n ⊗F ) Tr(P x P C n ⊗F i ) + |Tr(P x (P C n ⊗F ) -P C n ⊗F i ))| = = Tr(P x P C n ⊗F i ) + P F -P F i ∞ Tr(P x P C n ⊗F i ) + ε,
Let ε > 0 and j ∈ {1, . . . , k}. For a random subspace V ⊂ C nk of dimension p n ∼ tnk,

max x∈V x =1 s j (x) = max x∈V x =1 max F ∈Gr j (C k )
Tr(P x P C n ⊗F ).

Using the compactness argument in Lemma 4.4, one can consider (at a cost of ε) only a finite number of subspaces F :

max x∈V x =1 s j (x) N max i=1 max x∈V x =1
Tr(P x P C n ⊗F i ) + ε.

According to Theorem 2.2, for all i ∈ {1, . . . N }, almost surely when n → ∞,

lim n P V P C n ⊗F i P V ∞ = ϕ(j/k, t).
Since N is finite, with probability one, the above equality is true for all i. Next, using Lemma 4.2, one has that, almost surely, lim sup

n max x∈V x =1 s j (x) ϕ(j/k, t) + ε,
which concludes the proof of the direct implication.

Conversely, let β ∈ ∆ k be a probability vector which satisfies Equation [START_REF] Collins | Product of random projections, Jacobi ensembles and universality problems arising from free probability Probab[END_REF]. For j ∈ {1, 2, . . . , k} fixed, let F 0 be a subspace of C k of dimension j. We have max

x∈V x =1 s j (x) = max x∈V x =1 max F ∈Gr j (C k ) Tr(P x P C n ⊗F ) max x∈V x =1 Tr(P x P C n ⊗F 0 ) = P V P C n ⊗F 0 P V ∞ a.s. ---→ n→∞ ϕ(j/k, t).
Since, with positive probability, max x∈V x =1 s j (x) s j (β) + ε, we conclude that s j (β) ϕ(j/k, t) = s j (β (t) ) and the proof is complete.

The interest of Theorem 4.1 in comparison to Theorem 3.2 is that it does not rely specifically on one measurement of entanglement, as we are able to confine almost surely the eigenvalues in a convex set. Also, our argument relies neither on concentration inequalities nor on net estimates, as we fix k. However, unlike Theorem 3.2, Theorem 4.1 does not give explicit control on n. It is theoretically possible to give an explicit control on n (using techniques introduced in [START_REF] Ledoux | Differential operators and spectral distributions of invariant ensembles from the classical orthogonal polynomials part I: the continuous case[END_REF]), but this would lead to considerably involved technicalities.

Application to Entropies.

Once the eigenvalues of the output of a channel have been confined inside a fixed convex polyhedron, entropy inequalities follow easily. Indeed, the confining polyhedron is defined in terms of the majorization partial order, and thus the notion of Schur-convexity (see [START_REF] Bhatia | Matrix Analysis[END_REF]) is crucial in what follows.

A function f : R k → R is said to be Schur-convex if x ≺ y implies f (x) f (y). The Rényi entropies H p are Schur-concave, and thus majorization relations x ≺ y imply H p (x) H p (y) for all p 1. The reciprocal implication has been studied in [START_REF] Aubrun | Catalytic majorization and lp norms[END_REF][START_REF] Aubrun | Stochastic domination for iterated convolutions and catalytic majorization[END_REF]: entropy inequalities H p (x) H p (y) (for all p 1) characterize a weaker form of majorization called catalytic majorization, which has applications in LOCC protocols for the transformation of bipartite states.

For the purposes of this paper, the main corollary of Theorem 4.1 is the following Theorem 4.5. For a fixed parameter t, almost surely, when n → ∞, for all input ρ ∈ D tnk ,

lim inf n H p min (Φ U ) H p (β (t) ).
Proof. This follows directly from Theorem 4.1 and from the Schur-concavity of the Rényi entropies.

New examples and counterexamples of superadditive channels

Since our main result, Theorem 4.1, is valid almost surely in the limit n → ∞, the limiting objects depend only on the (a priori fixed) parameters k and t. In what follows, we consider large values of the parameter k, and introduce the "little-o" notation o(•) with respect to the limit k → ∞.

5.1. Superadditivity. We start with a crucial recent series of result, which we summarize into the following theorem: Theorem 5.1. For all p 1, there exist quantum channels Φ 1 and Φ 2 such that

(8) H p min (Φ 1 ⊗ Φ 2 ) < H p min (Φ 1 ) + H min (Φ 2
). This theorem results mainly from the papers [START_REF] Hastings | A Counterexample to Additivity of Minimum Output Entropy[END_REF][START_REF] Hayden | The maximal p-norm multiplicativity conjecture is false[END_REF][START_REF] Hayden | Counterexamples to the maximal p-norm multiplicativity conjecture for all p > 1[END_REF]. Note that the equality

H p min (Φ 1 ⊗ Φ 2 ) = H p min (Φ 1
) + H min (Φ 2 ) for any Φ 1 and Φ 2 and any p > 1 was a conjecture until 2007, and that even nowadays, no concrete counterexamples are known for p small or p = 1.

The Bell phenomenon.

In order to provide counterexamples for the additivity conjectures, one has to produce lower bounds for the minimum output entropy of single copies of the channels (and this is where Theorem 4.1 is useful) and upper bounds for the minimum output entropy of the tensor product of the quantum channels. The latter task is somewhat easier, since one has to exhibit a particular input state such that the output has low entropy.

The choice of the input state for the product channel is guided by the following observation. It is clear that if one chooses a product input state ρ = ρ 1 ⊗ ρ 2 , then the output state is still in product form, and the entropies add up:

H p ([Φ 1 ⊗ Φ 2 ](ρ 1 ⊗ ρ 2 )) = H p (Φ 1 (ρ 1 ) ⊗ Φ 2 (ρ 2 )) = H p (Φ 1 (ρ 1 )) + H p (Φ 2 (ρ 2 )).
Hence, such choices cannot violate the additivity of Rényi entropies. Instead, one has to look at entangled states, and the maximally entangled states are obvious candidates.

All our examples rely on the study of the product of conjugate channels

Φ n ⊗ Φ n where Φ n (X) = Tr n (U n χ n (X)U * n ), Φ n (X) = Tr n (U n χ n (X)U t n
) have been introduced in subsection 3.2. Our task is to obtain a good upper bound for

lim sup n H p min (Φ n ⊗ Φ n ).
Our strategy is systematically to write

lim sup n H p min (Φ n ⊗ Φ n ) H p min (Φ n ⊗ Φ n (E tnk ))
where E tnk is the maximally entangled state over the input space (C tnk ) ⊗2 . More precisely, E tnk is the projection on the Bell vector

Bell tnk = 1 √ tnk tnk i=1 e i ⊗ e i ,
where {e i } tnk i=1 is a fixed basis of C tnk . Using the graphical formalism of [START_REF] Collins | Random quantum channels I: Graphical calculus and the Bell state phenomenon[END_REF], we are dealing with the diagram in Figure 3 (recall that square symbols correspond to C k , round symbols correspond to C n , diamond ones to C tnk and triangle-shaped symbols correspond to C 1/t ).

U U * Z = Φ U ⊗ Φ Ū (E tnk ) = Ū Ū * 1 tnk U Ū = Ū U 1 tnk Figure 3. Z n = Φ U ⊗ Φ Ū (E tnk )
The random matrix Φ n ⊗ Φ n (E tnk ) was thoroughly studied in our previous paper [START_REF] Collins | Random quantum channels I: Graphical calculus and the Bell state phenomenon[END_REF] and we recall here one of the main results of this paper: Theorem 5.2. Almost surely, as n → ∞, the random matrix

Φ n ⊗ Φ n (Bell tnk ) ∈ M k 2 (C) has eigenvalues γ (t) =     t + 1 -t k 2 , 1 -t k 2 , . . . , 1 -t k 2 k 2 -1 times     .
From this we deduce the following corollary, which gives an upper bound for the minimum output entropy for the product channel Φ ⊗ Φ:

Corollary 5.3. Almost surely, as n → ∞, lim sup n H p min (Φ n ⊗ Φ n ) 1 1 -p log t + 1 -t k 2 p + (k 2 -1) 1 -t k 2 p
In the case p = 1 the upper bound simplifies to

lim sup n H min (Φ n ⊗ Φ n ) -t + 1 -t k 2 log t + 1 -t k 2 -(k 2 -1) 1 -t k 2 log 1 -t k 2 .
5.3. Macroscopic counterexamples for the Rényi entropy. In this section, we start by fixing t = 1/2. We assume that k is even, in order to avoid non-integer dimensions. A value of 1/2 for t means that the environment to which the input of the channel is coupled is 2-dimensional, i.e. a single qubit. The main result of this section is that we obtain a violation of the Rényi entropy in this simplest purely quantum case, k ′ = 2. Using Theorem 5.2, the asymptotic eigenvalue vector for the output of the product channel is

γ = γ (1/2) = 1 2 + 1 2k 2 , 1 2k 2 , . . . , 1 2k 2 .
The series expansion for H p (γ) when k → ∞ and the Corollary 5.3 imply that, almost surely, [START_REF] Collins | Integration with respect to the Haar measure on unitary, orthogonal and symplectic group[END_REF] lim sup

n H p min (Φ ⊗ Φ) p p -1 log 2 + o(1).
In the case of a single channel, since ϕ(x, 1/2) = 1/2 + x(1x), the vector β = β (1/2) is has a particularly simple form in this case:

β 1 = 1 2 + √ k -1 k , β j = ψ j k -ψ j -1 k , ∀ 2 j k/2, β j = 0, ∀ k/2 < j k,
where ψ(x) = x(1x). Note that the first eigenvalue is large (of order 1/2) and that the others are small:

β j 1 k ψ ′ 1 k 1 √ k , ∀ 2 j k/2. Theorem 5.4. Almost surely as n → ∞, lim inf n H p min (Φ) = lim inf n H p min (Φ) p p -1 log 2 + o(1). Since lim sup n H p min (Φ ⊗ Φ) p p -1 log 2 + o(1),
the additivity of the Rényi p-norms is violated for all p > 1.

Proof. We shall provide a lower bound for H p (β). Notice that the main contribution is given by the largest eigenvalue:

β p 1 = 2 -p + o(1)
. Next, we show that the contribution of the smaller eigenvalues is asymptotically zero. We consider three cases: p > 2, p = 2 and 1 < p < 2. If p > 2, then

j 2 β p j j 2 k -p/2 k 1-p/2 = o(1).
For p = 2, one has:

j 2 β 2 j = k/2 j=2 ψ( j k ) -ψ( j -1 k ) 2 k/2 j=2 1 k • sup (j-1)/k x j/k ψ ′ (x) 2 = k/2 j=2 1 k ψ ′ j -1 k 2 = 1 k k/2-1 j=1 (1 -2j/k) 2 4j(1 -j/k) = o(1).
The case 1 < p < 2 is more involved:

j 2 β p j k/2 j=2 1 k ψ ′ j -1 k p k 1-p 1/2 0 ψ ′ (t) p dt = o(1).
Hence, in all three cases, H p (β) p p-1 log 2 + o(1). This inequality and Eq. ( 9) provide the announced violation of the additivity conjecture for Rényi entropies.

H p min (Φ n ⊗ Φ n ) p p -1 log 2 < 2 • p p -1 log 2 + o(1) 2H p min (Φ n ).
Let us now come back to the more general case of arbitrary t ∈ (0, 1) fixed. It is natural to ask whether the bound H p (β (t) ) is optimal. Even though this is an open question for fixed k, the corollary below implies that it is asymptotically optimal for large k. More precisely, let Φ k,n be the random quantum channel Φ n introduced in Section 3.2 (since k will vary in the statement below, we need to keep track of it). We can then state the following Corollary 5.5. For all p > 1, there exists a sequence n k tending to infinity as k tends to infinity, such that, almost surely

lim k H p min (Φ k,n k ⊗ Φ k,n k ) = lim k H p min (Φ k,n k ) = p 1 -p log t.
In particular this means that we can almost surely estimate the Schatten S 1 → S p norm of that quantum channel:

lim k ||Φ k,n k ⊗ Φ k,n k || S 1 →Sp = lim k ||Φ k,n k || S 1 →Sp = t
Proof. For t = 1/2, this follows directly by a diagonal argument from Theorem 5.4 and Equation ( 9) together with the simple fact that the entropy increases when one takes tensor products:

H p min (Φ k,n k ) H p min (Φ k,n k ⊗ Φ k,n k ).
The asymptotic estimates of Theorem 5.4 are readily adapted to arbitrary t ∈ (0, 1). As for the norm estimate, it follows from the definition of the Schatten norm and the Rényi entropy, as well as the fact that the S 1 → S p norm is attained on density matrices.

It is remarkable that the norm estimate for ||Φ ⊗ Φ|| S 1 →Sp given by ||Φ ⊗ Φ(E tnk )|| Sp is actually optimal. The above corollary stands as a mathematical evidence that the Bell states asymptotically maximize the S 1 → S p norm of Φ ⊗ Φ.

The first example of 'Rényi superadditive' quantum channel was obtained by Holevo and Werner in [START_REF] Werner | Counterexample to an additivity conjecture for output purity of quantum channels[END_REF] using a deterministic channel. However, their example violated the additivity conjecture only for p > 4.79. Hayden and Winter found a class of random counter examples for the whole range of parameters p > 1 in [START_REF] Hayden | The maximal p-norm multiplicativity conjecture is false[END_REF]. Our being able to prescribe t in the counterexample of Theorem 5.4 is an improvement to the counterexamples provided in the paper [START_REF] Hayden | Counterexamples to the maximal p-norm multiplicativity conjecture for all p > 1[END_REF] (even though there is evidence that the very recent techniques of [START_REF] Fukuda | Entanglement of random subspaces via the Hastings bound[END_REF][START_REF] Brandao | On Hastings's counterexamples to the minimum output entropy additivity conjecture[END_REF] could be applied for p > 1 and finite t -yet perhaps not as big as 1/2 or 1/3).

Physically, this means that to obtain a counterexample, it is enough to couple randomly the input to a qubit (k ′ = 1/t = 2) to obtain a counterexample. The above reasoning applies actually for any t. In the following corollary we focus on the case t = 1/k ′ for integer k ′ , as it is more relevant physically.

Corollary 5.6. For each p > 1 and each integer k ′ 2, let t = 1/k ′ . There exists an integer k 0 such that for all k k 0 , one has almost surely

lim sup n H p min (Φ ⊗ Φ) < 2 lim inf n H p min (Φ)
Since the proof is very similar to the case k ′ = 2, instead of providing the details, we plot in Figure 4 acceptable values for k 0 as functions of p, for several values of k ′ = 1/t:

k 0 (t, p) = min{k ∈ N | lim sup n H p (Φ ⊗ Φ)(E tnk ) < 2H p (β (t) )}.
Note that k 0 as defined above may note be the smallest dimension yielding a violation of p-Rényi additivity. It may be that a better choice for the input state of the product channel could yield a smaller value for H p min (Φ ⊗ Φ). As the plots suggest, the values of k 0 are not bounded when p → 1. This fact is independent on the choice of the parameter t = 1/k ′ . The results of [START_REF] Brandao | On Hastings's counterexamples to the minimum output entropy additivity conjecture[END_REF][START_REF] Fukuda | Entanglement of random subspaces via the Hastings bound[END_REF] suggest that there should be a k ′ large enough for which it is possible to keep k 0 bounded as p → 1. This improvement is due to their better bounds on H p min (Φ), obtained using the techniques developed by Hastings in [START_REF] Hastings | A Counterexample to Additivity of Minimum Output Entropy[END_REF]. We finish this section by a computation showing that the above bounds are not good enough to obtain the violation of the additivity conjecture in the case p = 1. We start with the entropy of the product channel:

H(γ) = log k + log 2 + o(1).
For the case of the single channel, we need an upper bound for H(β (1/2) ) (recall that h(x) = -x log x):

H(β) = h(β 1 ) + k/2 j=2 h(β j ) = log 2 2 + k/2 j=2 h ψ j k -ψ j -1 k + o(1) log 2 2 + k/2 j=2 h 1 k • sup (j-1)/k x j/k ψ ′ (x) + o(1) = log 2 2 + k/2 j=2 h 1 k ψ ′ j -1 k + o(1). Using h 1 k ψ ′ j k = log k k ψ ′ j k + 1 k [h • ψ ′ ] j k and 1/2 0 [h • ψ ′ ](t) dt = - log 2 2 ,
we obtain

H(β (1/2) ) log 2 2 + k/2-1 j=1 log k k ψ ′ j k + k/2-1 j=1 1 k [h • ψ ′ ] j k + o(1) = log 2 2 + 1 2 log k - log 2 2 + o(1) = log k 2 + o(1).
At the end, the entropy deficit is

H(γ) -2H(β) log 2 + o(1) > 0,
which does not yield a violation of the minimum output von Neumann entropy.

5.4.

The case t = k -α . We conclude this paper with the study of the case t = k -α , where α > 0 is a fixed parameter. This corresponds to an exploration of a larger environment size C k α . To simplify the computations, we consider only the case of the minimum output von Neumann entropy. As before, we provide estimates, when k is fixed but large, for the minimum output entropies of Φ ⊗ Φ and Φ. We start with the simpler case of the product channel Φ ⊗ Φ. Theorem 5.2 provides the almost sure eigenvalues of [Φ ⊗ Φ](E tnk ):

γ = γ (k -α ) =     1 k α + 1 k 2 - 1 k α+2 , 1 k 2 - 1 k α+2 , . . . , 1 k 2 - 1 k α+2 k 2 -1 times     .

Using the series expansion

h(1 -x) = x -x 2 /2 + o(x 2
), one can compute the asymptotics for the minimum output entropy: Proposition 5.7. For the product channel Φ ⊗ Φ, the following upper bounds hold almost surely:

(10) H min (Φ ⊗ Φ) H(γ) =      2 log k -(2-α) log k k α + o log k k α if 0 < α < 2; 2 log k -2 log 2-1 k 2 + o 1 k 2 if α = 2; 2 log k -1 2k 2α-2 + o 1 k 2α-2 if α > 2.
Our estimate for the single channel case is as follows: Proposition 5.8. For all α > 0, the following lower bound holds true almost surely:

H min (Φ) H min (β) = log k - log k k α + o log k k α .
For the purposes of this proof, we define ϕ

k : [0, 1 -k -α ] → [0, 1], ϕ k (x) = ϕ(x, k -α ) and h(x) = -x log x. We have ∂ ∂x ϕ(x, y) = 1 -2y + y(1 -y) √ 1 -x √ x - √ x √ 1 -x = (1 -2y) 1 + g(x) g(y) ,
where the function g : (0, 1) → R is defined by

g(x) = √ 1 -x √ x - √ x √ 1 -x .
Proof. According to Theorem 4.5, for all ε > 0,

H min (Φ) H(β) -ε, where β = β (k -α )
is the k-dimensional vector defined by

β 1 = ϕ k 1 k ; β j = ϕ k j k -ϕ k j -1 k = 1 k ϕ ′ k ξ j k , ∀ 2 j J; β j = 0 ∀ J < j k.
The index J is the number of non-trivial inequalities we get by using Theorem 4.1, and it is equal to k -1 if α 1 and to ⌊k -

k 1-α ⌋ if α < 1.
Our purpose in what follows is to provide a "good" estimate for H(β). We start by rescaling the eigenvalues: H(β) = log k + 1 k H(kβ). In this way, we can focus on the "entropy defect" log k -H(β) and reduce our problem to showing that The next step in our asymptotic computation is to replace the unknown points ξ j by simpler estimates of the type j/k. Notice that the largest eigenvalue β 1 is of order k -1 . By the continuity of the function h, there exists a constant C > 0 such that |h(kβ j )| C and thus, individual terms in the sum [START_REF] Haagerup | A new application of random matrices: Ext(C * red (F2)) is not a group[END_REF] have no asymptotic contribution. Moreover, we can assume J = k -1, ignoring at most k 1-α terms which have again no asymptotic contribution. It is clear that the function x → ϕ ′ k (x) is decreasing at fixed k and since the entropy function h is increasing for x ∈ (0, e -1 ) and decreasing for x e -1 ,we can bound h(ϕ ′ k (ξ j /k)) by h(ϕ ′ k (j/k)), and we reduce our problem to showing that (12)

k α-1 log k k-1 j=1 h ϕ ′ k j k ---→ k→∞ -1,
or, equivalently,

k α-1 log k ⌊k/2⌋ j=1 h ϕ ′ k j k + h ϕ ′ k 1 - j k ---→ k→∞ -1.

Now,

h (1 -2y) 1 + g(x) g(y) + h (1 -2y) 1 -g(x) g(y) = = 2h(1 -2y) + (1 -2y) h 1 + g(x) g(y) + h 1 -g(x) g(y) .

The term 2h(1 -2y) = 2h(1 -2k -α ) ∼ 4k -α has no asymptotic contribution and, using h(1 + t) + h(1t) = -t 2 + O(t 4 ), we are left with computing the limit of the main contribution k α-1 log k (1 -2j/k) 4 (1j/k) 2 converges to zero. In conclusion, we have shown that Equation ( 11) holds and we deduce that

H(β) = log k - log k k α + o log k k α .
. The bounds obtained in this section do not yield a violation of the Holevo additivity conjecture. However, after the first version of this paper was released, Brandao-Horodecki [START_REF] Brandao | On Hastings's counterexamples to the minimum output entropy additivity conjecture[END_REF] and Fukuda-King [START_REF] Fukuda | Entanglement of random subspaces via the Hastings bound[END_REF] used the same model as ours and adapted original ideas from Hastings [START_REF] Hastings | A Counterexample to Additivity of Minimum Output Entropy[END_REF] to prove that this model can also lead to a violation of the minimum output entropy additivity.

The techniques in [START_REF] Brandao | On Hastings's counterexamples to the minimum output entropy additivity conjecture[END_REF][START_REF] Fukuda | Entanglement of random subspaces via the Hastings bound[END_REF] yield more information on the possibility of large values of the minimum output entropy for the model under discussion. However, our proofs are of free probabilistic nature and yield results of almost sure nature. In addition, [START_REF] Brandao | On Hastings's counterexamples to the minimum output entropy additivity conjecture[END_REF][START_REF] Fukuda | Entanglement of random subspaces via the Hastings bound[END_REF] rely very much on the actual properties of Shannon's entropy function, whereas our techniques attack directly the question of the behavior of the eigenvalues.

We conjecture that the set S(β (t) ) (having the property that for any ε > 0, S(β (t) ) + ε contains almost surely the eigenvalues of outputs of random quantum channels) can be made smaller and actually optimal, thus yielding as a byproduct that all the values H min (Φ) converge almost surely. However, the results of this paper show that the notion of majorization is not sufficient to achieve this goal.
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 32 Hayden, Leung, Winter, [15], Theorem IV.1). Let A and B be quantun systems of dimesion d a and d B with d b d A 3 Let 0 < α < log d A . Then there exists a subspace S ⊂ A ⊗ B of dimension

Figure 2 .

 2 Figure 2. The 2-dimensional probability simplex with the sets S(β (t) ), for t = 1/k ′ and k ′ = 2, 3, 4, 5, 10, 20, 50, 100.

Lemma 4 . 2 .

 42 Let Q, R be two selfadjoint projections in M n (C). Then QRQ ∞ = max x∈Im Q Tr(P x R).

  and the conclusion follows. Now we are ready to prove Theorem 4.1.

Figure 4 .

 4 Figure 4. Plots of k 0 , i.e. acceptable values of k for which we get an asymptotic additivity violation, in function of p, for different values of k ′ = 1/t. Two ranges for p are plotted separately: p ∈ [1.1, 2] in (a) and p ∈ [2, 5] in (b).
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