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Abstract: We empirically estimate the impact of hurricane strikes on local crop productivity in the 
Caribbean region. To this end we first identify local cropland at 1km2 geographical units via 
Global Land Cover data. We then employ a windfield model combined with a power 
dissipation equation on hurricane track data to arrive at a scientifically based index of 
potential local destruction along these 1km2 cropland grid cells for landfalling and passing 
hurricanes. Cropland productivity at the local level is approximated by annual net primary 
production values derived from satellite spectral reflectance data. This provides us with a 
panel of over 150,000 potentially affected cropland areas in the Caribbean over the period 
2000-20006. Our econometric results indicate that cropland productivity is substantially 
reduced after a hurricane strike. 
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Section I: Introduction 

Natural disasters are generally associated with considerable 

economic losses.  Particularly alarming in this regard is not only the fact 

that the last three and a half decades have witnessed an increase in the 

number of such occurrences, but also that developing countries seem to 

be those bearing the brunt of these events and ultimately the economic 

consequences, thus possibly further adding to the perceived gap 

between the ‘rich’ and the ‘poor’.  For example, between 1970 and 2002 

out of a total number of 6436 natural disasters, 77 per cent have taken 

place in the developing world.   Moreover, the reoccurrence of such 

extreme events often tends to be concentrated in particular geographic 

areas, striking certain countries again and again, often with great severity.  

For instance, since 1984 Dominica has been struck by 9 different 

hurricanes, while Hurricane Georges caused losses of around 400 million 

US$, constituting over 140 per cent of GDP, in the Caribbean islands of St. 

Kitts and Nevis in 1998.1   

  Importantly, natural disasters such as hurricanes can be particular 

damaging to agriculture. Since many developing countries tend to be 

relatively specialized in production, with particular emphasis on 

agricultural activities, understanding how such events affect the 

agricultural sector is arguably of upmost importance and of policy 

                                                 
1 See Rasmussen (2004). 
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relevance.2  Surprisingly, however, there is to the best of our knowledge 

specifically trying to quantify the effect of natural disasters on the 

agricultural sector in developing countries.    

In this paper we just specifically set out to rectify this paucity by 

investigating the effect of hurricane strikes on cropland productivity in the 

Caribbean.  In this regard, arguably focusing on hurricanes’ impact on the 

Caribbean agricultural sector serves as an insightful case study.  For one, 

over the last 50 years over 80 hurricanes made landfall in the region.   

Moreover, many of the small Caribbean islands and countries rely heavily 

on the agricultural sector to generate earnings.    

Our approach relies heavily on non-economic data sources that we 

translate into economic measures in order to achieve the paper’s goal.  

Firstly, we identify cropland within the Caribbean at a spatially extremely 

disaggregated level (1km2 cells) via satellite derived spatial land cover 

data.  Secondly, we resort to actual historical data tracking the 

movement of tropical storms across the affected region and employ a 

wind field model on the hurricane `tracks’ that allows us to calculate an 

approximation of the severity of winds experienced at this detailed 

geographical level.  These local wind estimates are then used in 

conjunction with a power dissipation index to proxy local potential 

destructiveness of hurricanes.  Finally, we construct measures of cropland 

                                                 
2 See Albala-Bertrand, J.M. (1993).   
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productivity at the local level is by using annual net primary production 

values derived from satellite spectral reflectance data.     

All our data sources combined allow us to construct a panel of over 

150,000 cropland areas for which we can calculate the annual impact on 

cropland productivity of hurricane strikes over the 2000-2006 period.   Our 

results show that the effect is rather short-lived, lasting about a year.  

Quantitatively, the effects on overall cropland productivity tend to be 

moderate, although over our sample period the impact was on occasion 

as large as a 8 per cent reduction in cropland productivity.    

 The remainder of the paper is as follows. In the next section we 

briefly describe the basic nature of hurricanes and their potential 

destructiveness.  In Section III we outline the wind field model and power 

dissipation equation used to derive a local index of local destructiveness.  

Section IV describes our data sources.  Some  destruction estimates using 

our proxy are given in Section V.  We econometrically investigate the 

impact of hurricanes on cropland productivity in the region in Section VI.  

Finally, concluding remarks are provided in the last section.   

 

Section II: Some Basic Facts about Hurricanes and their Destructive Power 

A tropical cyclone is a meteorological term for a storm system, 

characterized by a low pressure system center and thunderstorms that 

produces strong wind and flooding rain, which forms almost exclusively, 
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and hence its name, in tropical regions of the globe.3 Depending on their 

location and strength, tropical cyclones are referred to by various other 

names, such as hurricane, typhoon, tropical storm, cyclonic storm, and 

tropical depression.  Tropical storms in the North Atlantic and the North 

East Pacific region, as we study here, are generally termed hurricanes if 

they are of sufficient strength.4 In terms of its structure, a hurricane will 

typically harbor an area of sinking air at the center of circulation, known 

as the ‘eye, where weather in the eye is normally calm and free of clouds, 

though the sea may be extremely violent.5  Outside of the eye curved 

bands of clouds and thunderstorms move away from the eye wall in a 

spiral fashion, where these bands are capable of producing heavy bursts 

of rain, wind, and tornadoes.  The typical structure of a hurricane is 

depicted in Figure 1.  Hurricane strength tropical cyclones are typically 

about 483 km wide, although they can vary considerably.  The season for 

hurricanes in the two regions can start as early as the end of May and last 

until the end of November.   

Hurricane damages in terms of agriculture typically take a number 

of forms.  Firstly, the strong winds associated with hurricanes may cause 

considerable structural damage to crops.  Secondly, strong rainfall can 

result in extensive flooding and, in sloped areas, landslides.  Finally, the 

                                                 
3 The term "cyclone" derives from cyclonic nature of such storms, with counterclockwise 
rotation in the Northern Hemisphere and clockwise rotation in the Southern Hemisphere. 
4 Generally at least 119 km/hr. 
5 National Weather Service (October 19, 2005). Tropical Cyclone Structure. JetStream - 
An Online School for Weather. National Oceanic & Atmospheric Administration. 
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high winds pushing on the ocean’s surface cause the water near the 

coast to pile up higher than the ordinary sea level combined with the low 

pressure at the center of the weather system and the bathymetry of the 

body of water results in storm surges.   Storm surges can cause severe salt 

contamination of agricultural areas, where flooding on the coast may 

occur 3-5 hours before the arrival of the center of the hurricane.6     

 

Section III: Hurricane Wind Damage Index 

While the extent of potential damages caused by hurricanes may 

depend on many factors, such as slope of the continental shelf and the 

shape of the coastline in the landfall region in the case of storm surges, it is 

typically measured in terms of wind speed, and we similarly follow this 

approach.  More specifically, our hurricane wind damage index is based 

on being able to estimate local wind speeds at any particular locality 

where a hurricane strength tropical storm passes over or nearby.  To do so 

we rely on the meteorological wind field model developed by Boose et al 

(2004).7, which provides estimates of wind field velocity of any point 

relative to the ‘eye’ of the hurricane.    This model is based on Holland’s 

well known equation for cyclostrophic wind8 and sustained wind velocity 

at any point P is estimated as: 

                                                 
6 Yang (2007).    
7 This wind field model was, for instance, verified by the authors on data for Puerto Rico.   
8 See Holland (1980).  One may want to note that Holland’s model is an axisymmetric 
model in that the true asymmetric nature of a hurricane cannot be represented.  There is, 
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where Vm is the maximum sustained wind velocity anywhere in the 

hurricane , T is the clockwise angle between the forward path of the 

hurricane and a radial line from the hurricane center to the point of 

interest, P, Vh is the forward velocity of the hurricane, Rm is the radius of 

maximum winds, and R is the radial distance from the center of the 

hurricane to point P.  The relationship between these parameters and P 

are depicted in Figure 2.  Of the remaining ingredients F is the scaling 

parameter for effects of surface friction, S the scaling parameter for 

asymmetry due to the forward motion of the storm, and B the scaling 

parameter controlling the shape of the wind profile curve.  The peak wind 

gust velocity at point P can then be estimated via: 

Sg GVV =           (2) 

where G is the gust wind factor.    

The next step entails translating these wind field calculations into 

potential damage estimates.  As noted by Emanuel (2005), both the 

monetary losses in hurricanes as well as the power dissipation of these 

storms tend to rise roughly as the cube of the maximum observed wind 

speed rises.  Consequently, he proposes a simplified power dissipation 

                                                                                                                                                 
however, no consensus on how such asymmetry should be modeled; see Bao et al 
(2005). 
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index that can serve to measure the potential destructiveness of 

hurricanes as9: 

PDI = ∫
τ

0

3dtV           (3) 

where V is the maximum sustained wind speed, and τ is the lifetime of the 

storm as accumulated over time intervals t.  Here we modify this index to 

obtain an index of potential damage of a hurricane at a particular spatial 

locality.   More precisely, the total destruction due to a storm r in country i 

at locality j in year t is: 

HDi,j,r,t =∑
τ

0

3
,,, srjiV    if V≥119 km/jr               

 (4) 

The index in (4) can then be used to calculate annual total 

destruction in local j by aggregating all its values over a year t.   

 

Section III: Data Sources 

Our geographical region of focus are the 25 countries/territories of 

the Caribbean, where we depict these in Figure 3.  To construct our panel 

of localities we rely on a number of data sources, as described below. 
                                                 
9 This index is a simplified version of the power dissipation equation 

rddtVCPD
r

D

t 3

00

02 ∫∫= ρπ where the surface drag (CD), surface air density (ρ), and the 

radius of the storm (r0) are taken as given since these are generally not provided in 
historical track data.  Emanuel (2005) notes that assuming a fixed radius of a storm is likely 
to introduce only random errors in the estimation.  He similarly argues that surface air 
density varies over roughly 15%, while the surface drag coefficient levels off at wind 
speeds in excess of 30m/s, so that assuming that their values are fixed is not 
unreasonable.   
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A. Hurricane Data   

For data on hurricanes in the Central American and Caribbean 

region we rely on the North Atlantic Hurricane database (HURDAT), 

maintained by the National Hurricane Center (NHC).  The HURDAT 

database consists of six-hourly positions and corresponding intensity 

estimates in terms of maximum wind speed of tropical cyclones in the 

North Atlantic Basin since 1851 and is the most complete and reliable 

source of North Atlantic hurricanes.10  We depict all tropical storm tracks in 

the region since 1997 in Figure 4, where the segments in red signify the 

part of tropical storms that reached at least hurricane level of strength.   

As can be seen, throughout the region there has been considerable 

tropical storm activity with ??? tropical storms having navigated the 

region.  However, one may want to note that a large part of this activity 

has been at a level deemed not (relatively) important in terms of potential 

damages caused as suggested by speeds of at least hurricane strength. 

B. Cropland Productivity   

Unsurprisingly, agricultural measures of cropland productivity, such 

as crop yields, at a fine spatial data over any meaningfully large space 

and time are essentially non-existent, particularly for developing countries.  

In order to obtain a proxy of cropland productivity we instead resort to the 

concept of ‘net primary production’ (NPP).   ‘Production’ in this regard 

                                                 
10 Elsner and Jagger (2004). 
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refers to the creation of new organic matter. For example, when a crop of 

wheat grows, new organic matter is created by the process of 

photosynthesis, where light energy is converted to energy stored in plants, 

in turn spurning plant growth. ‘Gross primary production’ (GPP) thus refers 

to the rate at which an ecosystem’s producers convert solar energy into 

chemical energy as biomass.  Since plants use some of their energy for 

respiration, the amount of energy available for energy consumption by 

consumers is just gross primary production minus respirations costs, i.e., 

NPP, usually measured in terms of kcal/m2/year.  In essence NPP quantifies 

the conversion of atmospheric CO2 into plant biomass.  As noted by Hicke 

et al. (2004), NPP can change in response to shifts in different crops, 

changes in crop management practices (ex: fertilization, irrigation, pest 

management etc.), and climate (ex: precipitation, temperature, solar 

radiation).  One may also want to note that one of the advantages for 

using NPP to proxy cropland productivity over large areas and over time is 

that it, unlike economic data, provides a common metric among different 

crop types, thereby facilitating comparisons and aggregation over all 

crop types. As a matter of fact, there numerous studies have used yield 

data to derive NPP estimates in order to assess cropland productivity 

across areas; see, for instance, Monfreda et al (2008) and Veron (2002) to 

name a few. 
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The most natural starting point to try and estimate NPP for a 

particular spatial location would theoretically of course seem to be 

through actual ground level measurement.  However, even part from 

questions of cost and organizational feasibility, using ground data to 

measure local NPP is exceedingly difficult over large geographical areas 

because of the spatial variability of environmental conditions and the 

limitations in direct measurement techniques; see Goetz and Prince 

(1999).  An attractive alternative in this regard is to instead use NPP 

measurements derived from satellite data on spectral reflectance.   More 

precisely, in contrast to NPP measures based on interpolations from widely 

separated ground point observations, remotely sensed data are spatially 

contiguous and relatively frequent (generally daily).  The physical basis for 

the observed correlation between spectral reflectance and NPP is the 

existence of a relationship between spectral reflectance and the 

absorption of solar radiation by vegetation canopies, and in turn the link 

between the amount of absorbed photosynthetically active radiation 

and its utilization for NPP.11   To then actually deriving NPP from APAR one 

needs an estimate of the production efficiency, ε.  ε can, however, 

potentially vary widely across different plant types and biomes for two 

reasons since respiration costs appear to increase with plant size and 

suboptimal climatic conditions can also attribute to its variability. The main 

                                                 
11 This relationship was first noted by Monteith (1972). 
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challenge to then actually deriving quantitative measures of NPP from 

satellite reflectance data is estimating this  ε.12  

In this paper we use the MOD17A2 NPP measures derived from 

images on spectral reflectances of terrestrial vegetation using the 

Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA 

Earth Observing System (ES) Terra satellite.   More precisely, the Earth 

Observing System Data Information System (EOSDIS) computes calibrated 

and atmospherically corrected reflectances from each spectral channel 

of the MODIS sensor for each cloud free pixel.  Daily GPP computation at 

the local level then rests additionally on the biome type, which is 

recomputed annually, the fraction of photosynthetically absorbed 

radiation, which can change weekly, and the daily surface climate 

conditions, which change diurnally.  GPP and NPP and are then 

calculated using these input variables and the complex ecosystem model 

BIOME-BGC.  Global data at the 1 km spatial level is calculated for GPP 

daily and summed every 8 days, while NPP measures are provided at an 

annuals basis at the end of the year since plants grow during different 

parts of the year. 

While NPP estimates in the MOD17A2 data set are provided for all 

land areas, we are for the purposes of the current paper only interested in 

                                                 
12 It is of course of interest to know how well satellite derived measures of NPP are able to 
approximate their from ground data computed alternatives.   In this regard, Lobell et al. 
(2002), for instance, have shown that there is good agreement between yield and 
satellite derived estimates of NPP for the US. 
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those pertaining to cropland areas.   To identify these we resort to the 

2000 Global Land Cover (GLC 2000) data set.     The GLC 2000 data 

classifies land across the globe into 22 distinct land cover categories 

based on 14 months (1 Nov. 1999 - 31 Dec. 200) of daily 1-km resolution 

satellite data acquired over the whole globe by the VEGETATION 

instrument on-board the SPOT 4 satellite and delivered as multi-channel 

daily mosaics ("S1" format).  We first overlaid the data into the grid format 

of the MOD17A2 via krigging.  We then used the land cover categories (i) 

cropland (upland cropland or inundated/flooded crops), (ii) mosaic of 

cropland / shrub or herbaceous cover, and (iii) mosaic of cropland / tree 

cover / other natural vegetation to identify those 1 km cells that are used 

for cropland.   We provide a graphical depiction of these croplands in 

Figure 5.   

One may want to note that our identification of cropland will 

necessarily suffer from two weaknesses. Firstly, we cannot take account of 

any changes in land cover over our sample period since the data is time 

invariant. Secondly, our identification crucially depends on the accuracy 

of the classification system of the GLC 2000.  In this regard, one would 

suspect that small scale farming may not be captured in our analysis. 

C. Other Data 

 As noted above, one of the factors that can affect NPP is the local 

climate, such as rainfall and temperature, that a region is exposed to.   To 
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control for such factors we climatic data from the Willmott, Matsuura and 

Collaborators’ Global Climate database at the University of Delaware.   

More specifically, this provides monthly time series over the 1900-2006 

period on precipitation and temperature at 0.5 times 0.5 degree cells of 

the global land area.  Since the grid classification is more aggregate than 

our 1km2 schemata used for our measures cropland productivity we 

interpolate values via distance weighting to arrive at measures at a similar 

spatial aggregation as our NPP data.      

 Overall the collection of our data sources above results in annual 

values of hurricane destruction, cropland productivity, and climatic 

variables for 157,116 local cropland regions at a 1km2 size over the 2000-

2006 period. Summary statistics of these are provided in Table 1.  

 

Section IV: Hurricane Destruction Estimates 

To calculate local and aggregate wind speed damage estimates 

due to hurricanes, we first need to estimate local wind speeds 

experienced by relevant localities.  One should note that of all the 

parameters necessary to estimate (1) and (2) some are given by the 

hurricane best track data, while for others values need to be assumed as 

in Boose et al (2004).  In particular, the raw hurricane data set provides 

values for maximum sustained wind velocity, Vm, at particular locations at 

particular time intervals and from these one can then estimate Vh, the 
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forward velocity, and, relative to the point of interest P, the clockwise 

angle between the forward path of the hurricane T, and, R, the radial line 

from the hurricane center.   

The scaling parameters, F, S, B, and G in (1) and (2) control for 

surface friction, forward motion of the hurricane, the shape of the 

hurricane, and the gust factor, respectively.  Here we use the figures as 

suggested by Boone et al (2005).  In particular, F is assumed to take on 

values of 1.0 and 0.8 for points on water and land respectively, while G 

uses respective values of 1.2 and 1.5 for these surface types.  S and B are 

assumed to be 1.0 and 1.3, respectively.   Finally, one should note that 

while the radius of maximum winds, Rm, i.e., the distance between the 

center of the cyclone and its band of strongest winds, is considered to be 

an important parameter in tropical cyclone forecasting, historical 

hurricane best track data generally do not provide estimates of this 

parameter.13 We thus assume this to take on the value of 50 (km), which 

corresponds to its average value found for hurricanes with central 

pressures falling between 909 and 993 hPa.14 

With these parameter inputs in hand the wind field model in (1)-(2) 

enables us to estimate the wind intensity experienced by any location 

relative to the position and maximum wind speed of a hurricane (as given 

                                                 
13 This parameter is traditionally measured by reconnaissance aircraft in the Atlantic 
basin, so that there is no information in this regard for older hurricanes.   
14 See Hsu and Yana (1998). This roughly corresponds to the central pressures of tropical 
storms of hurricane strength, where central pressure is inversely related to strength.   
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by the best track data). However, one may want to note that while the 

raw cyclone data provides six hourly positions of tropical cyclones, these 

storms may travel considerable distance within six hours.  Thus in order to 

ensure that we do not neglect areas that may be affected but do not fall 

within any significant distance (in the sense of experiencing severe winds) 

in our six hour windows, we linearly interpolated the positions P and wind 

speeds between the six hourly data to obtain three hourly track data.15  In 

choosing all possible positions for which to calculate wind speeds 

experienced, we compiled the location of the center of each grid cell 

used for the population data within our region of interest.   

In terms of applying our wind field model to obtain local wind 

intensity estimates for the Caribbean region, we then followed each 

tropical cyclone over each point of the interpolated track and 

calculated the wind intensity relative to the center of each grid cells in 

the schemata provided by the population data as long as these fell within 

500 km of the hurricane’s location.16  This provided us with a complete set 

of estimates of wind fields experienced by all spatially relevant localities 

relative to each position of each tropical cyclone.  We were then able to 

calculate local destruction according to our index of (4).   

                                                 
15 One should note that interpolating the track data to obtain more frequent 
observations of the tropical cyclone is standard in the literature; see, for instance, Jagger 
and Elsner (2006). 
16 Hurricanes have been observed to reach up to a maximum of size of 1000km in 
diameter.   
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 We first depict all hurricane tracks that according to our wind 

damage index were associated with at least some damage in one of the 

countries in the CAC region in Figure 6, where the red portions of the 

tracks indicate when these reached hurricane strength.  Accordingly, only 

??? storms, i.e., ?? per cent of all tropical storms that occurred since 1999 

in the North Atlantic and Eastern North Pacific, came within close enough 

distance and reached high enough strength to affect  local areas of the 

countries in the Caribbean region according to our HD index.    

As a demonstration of how our HD index translates into estimates of 

local destruction for individual hurricane occurrences we next calculated 

and plotted its value over all affected localities for Hurricanes David in 

Figure 7, where shading moving from yellow to red indicates the rising 

scale of damages (measured in terms of their contribution on a national 

scale because of the population weights).  One may want to note that 

Hurricane Dennis was an early-forming major hurricane in the Caribbean 

and Gulf of Mexico during the very active 2005 Atlantic hurricane season. 

Dennis was the fourth named storm, second hurricane, and first major 

hurricane of the season. In July, the hurricane set several records for early 

season hurricane activity, becoming both the earliest formation of a 

fourth tropical cyclone and the strongest Atlantic hurricane ever to form 

before August.  Dennis hit Cuba twice as a Category 4 hurricane on the 

Saffir-Simpson Hurricane Scale, and made landfall on the Florida 
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Panhandle in the United States as a Category 3 storm less than a year 

after Hurricane Ivan did so. Dennis caused at least 89 deaths (42 direct) in 

the U.S. and Caribbean and caused approximately  $2.23 billion (2005 US 

dollars) in damages in the Caribbean, primarily on Cuba. 

As can be seen from Figure 8, Hurricane Dennis only made landfall 

at hurricane strength in Cuba, causing damages throughout the island.   

Noteworthy in this regard is that the extent of damages differed widely, 

where being close to the actual traveled track does not necessarily mean 

large destruction in terms of national importance because of a non-even 

spread of population densities.17  One may also want to take note that 

while no other islands were directly struck in terms of landfall, Hurricane 

Dennis’ winds were strong enough to affect Haiti, Jamaica and small parts 

of the Bahamas.   

 In Figure 9 we plot the average degree of destruction suffered by 

individual localities in the region over our sample period  – where the 

scale increases as colors change from yellow to red.  As can be seen, the 

potential damage to croplands even with countries is not evenly 

distributed.  For instance, north eastern Cube suffered to a much greater 

extent than other parts of the countries.   

  Averaging the values calculated from the HD proxy over all 

hurricanes r can also serve to compare the destructiveness of hurricanes 

                                                 
17 Most obviously, some areas, despite being very close to the actual track, were 
estimated to have zero damages because the local population was zero.   
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relative to each other in terms of the damages done across economies.   

We show a ranking of these in terms of average destruction in Table 3.  As 

can be seen, croplands in the Cayman Islands were potentially the most 

affected, followed by Jamaica, Anguilla, and the Virgin Islands.  In 

contrast, over our sample period Costa Rica experienced no potential 

hurricane destruction to its croplands.   Comparing the actual damage 

index figures across countries, one may want to note the large dispersion, 

with the top affected having values multiple times those at the lower half 

of the table.   

 

Section V: Econometric Analysis 

Our main econometric task is to investigate the macroeconomic 

impact of hurricane strikes in the Central American and Caribbean region 

using our index of destruction.  To do so we take our panel of countries for 

which we also have macroeconomic data and specify a simple growth 

equation: 

log(NPP)i,j,t = α + β1RAINi,j,t + β2TEMPi,j,t + β3HDi,j,t + εi,t    

 (5) 

where NPP is net primary production, RAIN precipitation, TEMP 

temperature, HD our index from (4) summed over a year, and ε is an error 

term.   One worry with estimating is that we do not control for the different 

types of crops and that some crops may be more affected by hurricane 
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strikes than others.  If the choice of crops depends at least to some extent 

on the probability that a hurricane strikes the area, then this could bias our 

estimate of the coefficient on HD.  We assume here that this effect is time 

invariant and control for it by running a fixed effects estimator, which 

purges all time invariant unobservables from the equation.   Another 

concern is that, particular due to our use of spatially very disaggregated 

data, that there may be spatial dependence across localities, causing 

spatial correlation among the error terms.  To take account of this we 

employ the nonparametric covariance matrix estimator proposed by 

Driscoll and Kray (1998), which produces heteroskedasticity consistent 

standard errors that are robust to very general forms of spatial and 

temporal dependence.    

Our results of estimating (4) are given in Table 3, where year specific 

time dummies are included but not reported.  In the first column we only 

include our climatic variables.  As can be seen, while rain has a positive 

impact on NPP, the is no such effect in terms of temperature.  This may be 

because of the interpolation procedure underlying fitting the climatic 

data onto our 1km2 grid cells.   However, more likely this is in large part 

due to the fact that temperature tends, in contrast to rainfall, vary much 

less locally, and thus that any effect of temperature is captured by our 

time dummies.   
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In the second column we include our HD index, which turns out to 

be negative but insignificant.   In contrast, the t-1 lag of the index, as 

shown in the third column, is statistically significant. We suspect this to be 

due firstly because most hurricanes take place in the third and fourth 

quarter of any calendar year and hence their effect may only be picked 

up in the NPP measures of the following calendar year.  Additionally, it 

could also be that calendar years and growing seasons of crops are 

unlikely to perfectly overlap.    

As can be seen including further lags (up to t-3) produces no 

additional long term effect of a hurricane strike on cropland productivity.  

As a robustness check we re-ran (5) only including our significant 

variables, namely HD at t-1 and RAIN at t, but the coefficient on HD 

remains significant and of similar size.  One possibility may also be that 

RAIN is picking up some of the damage due to hurricanes since these 

tend to be heavily correlated with strong rainfall particularly in the outer 

wind bands of a hurricane.  However, as shown in the last column, 

excluding RAIN changes little in terms of the coefficient on HD.   

 We can also use our results to gain some insight into the economic 

significance of hurricane strikes on cropland productivity.  More 

specifically, our estimated coefficient on the HD at t-1 suggests that the 

average hurricane reduces cropland productivity by about 0.7 
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percentage points.  In contrast, the largest annual exposure could reduce 

productivity of croplands up to 6.1 percentage points.   

 

Section VI: Concluding Remarks 

In this paper we investigated the impact of hurricane strikes on local 

cropland productivity in the Caribbean region using non-economic data 

and methods to construct economic measures.  Our results show that the 

impact has been unevenly distributed across the regions, with 

countries/territories like Cayman Islands and Jamaica having been 

potentially most affected over our sample period (2000-2006). Our 

econometric analysis demonstrates that hurricane strikes have indeed 

had a statistically significant impact on cropland productivity. More 

specifically, our estimates suggest that the average hurricane reduces 

cropland productivity by about 0.7 percentage points, but that local 

cropland may experience a loss of up to over 6 percentage points.   
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Table 2: Mean Hurricane Destruction experienced in Croplands by 
Country/Territory 

 
Country/Territory Wind Destruction 
CAYMAN ISLANDS 347.0138 
JAMAICA 213.4461 
ANGUILLA 178.8457 
VIRGIN ISLANDS 161.7454 
SAINT KITTS AND NEVIS 145.892 
BELIZE 119.5626 
TURKS AND CAICOS ISLANDS 108.6281 
CUBA 99.56162 
ANTIGUA AND BARBUDA 79.38261 
ARUBA 75.60234 
BAHAMAS 74.66311 
MONTSERRAT 69.56258 
NETHERLANDS ANTILLES 69.23227 
PUERTO RICO 66.95869 
GUADELOUPE 42.64012 
DOMINICA 20.62569 
SAINT VINCENT AND THE GRENADINES 19.85767 
TRINIDAD AND TOBAGO 19.23702 
HAITI 13.73098 
DOMINICAN REPUBLIC 11.39064 
BARBADOS 11.02453 
SAINT LUCIA 6.029252 
MARTINIQUE 0.189819 
COSTA RICA 0.000000 
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Table 2: Econometric Results 

 
 (1) (2) (3) (4) (5) (6) (7) 
RAIN 1.669* 1.630* 2.518** 2.814* 2.927** 2.435**  
 (0.849) (0.753) (0.652) (1.228) (1.109) (0.903)  
TEMP -6.050 -6.284 -5.288 -6.003 -6.540   
 (8.958) (8.711) (8.192) (6.853) (7.064)   
HD  -4.551 -5.372 -5.373 -6.129   
  (11.229) (8.395) (8.395) (8.054)   
HDt-1   -35.542* -36.213* -36.841* -35.820* -35.500* 
   (16.183) (14.699) (14.506) (16.420) (16.569) 
HDt-2    12.037 12.830   
    (29.219) (28.985)   
HDt-3     15.701   
     (14.306)   
Grids 157116 157116 157116 157116 157116 157116 157116 
Obs. 1099812 1099812 1099812 1099812 1099812 1099812 1099812 
F(β) 4.25** 7.47** 52.54** 98.39** 214.28** 13.45** 4.59** 
R2 0.05 0.05 0.06 0.06 0.06 0.06 0.06 
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Figure 1:  The Typical Structure of a Hurricane 
 

 
Source: http://www.angryconservative.com/home/Portals/0/Blog/GlobalWarming 

 

Figure 2: Wind Field Model Structure 

 

 
Source: Boose et al (2001) 
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Figure 3: Caribbean and Central American (CAC) Region 
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Figure 4: All Tropical Cyclone Activity Since 1999 

 
Notes: The red portion of the tracks constitute the segments of tropical storm tracks that 
reached at least hurricane intensity. 
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Figure 5: Cropland Areas in the Caribbean Region 
 

 
Notes: Green colored areas depict cropland. 

 
 
 
 

Figure 6:  Relevant Hurricanes  
 
Notes: The red portion of the tracks constitute the segments of tropical storm tracks that 
reached at least hurricane intensity. 
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Figure 7:  Hurricane Dennis (2005)  
 

 

Notes: The red portion of the tracks constitute the segments of tropical storm tracks that 
reached at least hurricane intensity. 
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Figure 8:  Hurricane Dennis’ (2005) Destruction Path 
 

 
Notes: The degree of destruction increases as the colour scheme changes from yellow to 
red.  
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Figure 9:  Average Local Degree of Destruction, 2000-2006 
 

 
Notes: The degree of destruction increases as the color scheme changes from yellow to 
red. 

  
 




