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Abstract: This paper addresses production systems optimisation in uncertain context. A
standard framework for solving such type of problem is depicted in a 3-step approach. The two
first steps consist of off-line characterisation of the problem and calculation of solutions with
some desired performance. A generic approach to implement these off-line steps is introduced
in this paper. This approach relies on calculation of robust off-line solutions. First a generic
framework of robustness is defined. Then five standard optimisation problems are derived and
related to the so called stability and sensitivity analysis. This generic approach is then applied
to a multi-purpose machines problem.
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1. INTRODUCTION

For a long time, works made in optimisation field assumed
that optimisation problem data were known and sure. The
goal of the optimisation exact methods was to build an
optimal solution for a given instance that was supposed
to represent the state of the real system (modelled by the
optimisation problem).

However, optimisation problems are only imperfect models
which do not always fit reality. Model accuracy is often
put in question because of input data deviation. In such a
context, putting a so called “optimal solution” in practice
(calculated for a forecast instance) can lead to poor per-
formance. The solution may even no longer be admissible
because some constraints may be violated. This is why
the general problem of model parametrisation is particu-
larly relevant for combinatorial optimisation. Indeed such
problem aims at finding the best solution among a set of
unrelated solutions.

Taking uncertainties into accounts in optimisation is a
real challenge and a lot of works can give this evidence
(see (Aubry, 2007) for a commented survey of robustness
approaches). Developing robustness features has appeared
to be an efficient way to cope with uncertainties (Kou-
velis and Yu, 1997; Vincke, 1999; Perny and Spanjaard,
2006) even though researchers do not agree on its defini-
tion. Roughly speaking, robustness measures the solution
ability to remain “good” despite uncertainties. What is
exactly a so called good solution and the considered class

of uncertainties is strongly application-dependent, and has
led researchers to develop a large variety of approaches.
The goal of this paper is to present a generic off-line
approach to deal with uncertainty in optimisation. In
section 2, the usual approach for dealing with optimisation
problem when data numerical values are supposed to be
known is recalled, and its limits are highlighted if the
approach is to be applied in uncertain context. A Three
steps resolution process of optimisation problems under
uncertainty is shown in section 3. In section 4, a generic off-
line approach is proposed. A robustness definition is given
and five robustness issues, which are highlighted by the
robustness definition, are detailed, discussed, compared
with existing literature and finally illustrated through an
example in section 5.

2. THE LIMITS OF OPTIMISATION IN CERTAIN
CONTEXT

Classically, solving an optimisation problem P consists in
building a solution S that optimises a criterion z (that will
be considered as a minimisation criterion without loss of
generality) and satisfies some constraints provided that the
problem data are known and sure. A forecast instance Iref

is used to compute S and the obtained optimal solution
is applied to this instance. Getting an optimal solution is
yet a problem that is often hard.

An optimal solution to the problem P for an instance I
is denoted S∗I and its performance is denoted z∗I . The



performance of a solution S applied to an instance I
relatively to an optimisation criterion z is denoted zI(S).

The classic way to solve an optimisation problem without
uncertainty is the predictive approach. An off-line algo-
rithm builds an optimal solution S∗Iref

for the forecast
instance Iref , and guarantees an optimal performance for
this instance only, valued by z∗Iref

. In practice, the real sys-
tem is subject to perturbations such that the solution S∗Iref

is applied to the actual instance I that may be different
from the forecast instance Iref , and S∗Iref

may even not
be admissible. In the most optimistic scenario (when the
solution remains admissible for I), the actual performance
zI(S∗Iref

) can be “far” from the forecast performance z∗Iref
,

leading a costly resolution step to return a poor actual
performance solution.

The limits of the classic approach are clearly appearing: it
does not ensure any performance for the actual problem
instance. Consequently, taking the uncertain context into
account is necessary for addressing optimisation problems
that model real-life production systems.

In the following of the paper, uncertainty and perturba-
tions are considered as synonyms.

3. A FRAMEWORK FOR DEALING WITH
UNCERTAIN CONTEXT

In (Billaut et al., 2005), the authors propose a complete
framework for addressing scheduling problems under un-
certainty that can be generalised to optimisation under
uncertainty. This framework is split into three steps:

(1) Step 0: static problem definition
Classic specifications of the optimisation problem

without considering perturbations are given with the
optimisation criterion z. Moreover, perturbations are
specified with their model (P is no more defined by
just one instance but by a risk to be covered: a set of
instances in this paper). The notion of performance of
a solution must be defined by answering the question:
“what must be guaranteed despite perturbations?”

(2) Step 1: calculation of a set of solutions by an off-line
algorithm

The off-line algorithm uses available knowledge
about perturbations (the risk to be covered defined in
step 0), to build a set of robust solutions guarantying
a performance on the considered instances (as defined
in step 0). Instead of computing an optimal solution
for a single forecast instance, a global performance
on a set of instances is preferred. Such solutions if
there exist, are said to be robust on the considered
instances.

(3) Step 2: calculation of a single solution by an on-line
algorithm

The on-line algorithm uses the progressive knowl-
edge about reality to build a single solution. This
solution is either chosen among the set of solutions
calculated in step 1 or is the result of a reparation of
the current solution or the calculation of a new solu-
tion because an unexpected scenario has occurred.

The approach that is presented in this paper covers steps
0 and 1.

4. A GENERIC OFF-LINE APPROACH TO DEAL
WITH PERTURBATIONS

In this section, we present a generic off-line approach
to solve an optimisation problem under uncertainty by
splitting it into several relevant robustness issues. This
approach is based on the following robustness definition.

4.1 Robustness of a solution

Many robustness definitions can be found in the literature
as shown in (Aubry, 2007). The robustness definition given
in (Rossi, 2003) generalises many other ones and is used
in this paper: robustness is defined as the ability for a
solution to guarantee a performance level Lλ, according
to a robustness criterion λ, for each instance belonging to
a risk to be covered P. The robustness criterion λ evaluates
a global performance on the set P. The usual robustness
criteria have been defined in (Kouvelis and Yu, 1997) as
follows:

• Absolute robustness: λ1 (S, z,P) = max
I∈P

zI(S)

• Robust deviation: λ2 (S, z,P) = max
I∈P

(zI(S)− z∗I)

• Relative robustness: λ3 (S, z,P) = max
I∈P

(zI(S)−z∗I)
z∗I

It is recalled that one purpose of a robustness criterion is
to assess global performance (i.e. on a set of instances).

Robustness mathematical formulation.
Definition 1. In (Rossi, 2003), a solution S is said to
be Lλ-robust on the set of instances P relatively to the
robustness criterion λ if it satisfies the following inequality:

λ (S, z,P) ≤ Lλ (1)

Lλ-robustness and step 0. Step 0 in the resolution frame-
work is completed by stating the optimisation problem un-
der uncertainty using the Lλ-robustness. In fact, defining
z is specifying the optimisation criterion, and defining P
is modelling the perturbations that should be taken into
account. Choosing λ and setting Lλ is answering the ques-
tion: “what must be guaranteed despite perturbations?”
as λ evaluates the global performance of S on the set of
instances P and Lλ gives the level of performance to be
guaranteed by the solution on P (as a risk to be covered).

4.2 Some robustness issues

The Lλ-robustness highlights five robustness issues. These
issues are identified by their input data or decisions vari-
ables in the definition of Lλ-robustness. In the following
of the paper λ and z are assumed to be given.

First robustness issue: stability analysis. It is assumed
that in step 0, only a forecast instance Iref , a performance
level Lλ and a solution S can be defined to characterise the
optimisation problem. Then, the first robustness issue can
be stated as follows: “knowing a solution S and given an
expected performance level Lλ, what is the neighbourhood
P of Iref such that λ (S, z,P) ≤ Lλ?”.



This question can be seen as a stability analysis problem.
Addressing this problem means finding the neighbourhood
P in which solution S remains stable in the sense of
the performance level Lλ. This problem includes the first
and second questions of sensitivity analysis defined in
(Mahjoub et al., 2005):

(1) What is the neighbourhood P of Iref in which the
solution S∗Iref

remains optimal?
Using the Lλ-robustness formalism, S = S∗Iref

, λ =
λ3 and Lλ = 0%.

(2) What is the neighbourhood P of Iref in which the
solution S remains admissible with an acceptable
performance?
Now S is supposed to be given, λ = λ3 and the
value of Lλ defines what is a so-called acceptable
performance.

It must be stressed that these questions can also be stated
using the stability radius introduced by (Sotskov et al.,
1998).
Definition 2. In (Sotskov et al., 1998), given an instance
I and its optimal solution S∗I , the stability radius ρ(S∗I) is
the maximum radius of a ball with centre I in which the
solution S∗I remains optimal.

Second robustness issue: sensitivity analysis. It is as-
sumed that in step 0, only a forecast instance Iref , a
neighbourhood P of Iref and a solution S can be defined
to characterise the optimisation problem. Then, the second
robustness issue can be stated as follows: “knowing a
solution S and given a neighbourhood P of Iref , what
is the performance level Lλ that is guaranteed by S such
that λ (S, z,P) ≤ Lλ?”.

This question can be seen as a sensitivity analysis problem
where the sensitivity is measured by Lλ on the set of
instances P. This problem generalises the third question
of sensitivity analysis defined in (Mahjoub et al., 2005):

3. Given I a neighbour of Iref , is the solution S∗Iref

still admissible and, if it is, what is the performance
deviation?
Using the Lλ-robustness formalism, S = S∗Iref

, λ =
λ2 and P = {I}.

In our problem, the instance I is generalised by the neigh-
bourhood P, and the performance deviation is assessed in
the worst case on the neighbourhood.

Third robustness issue: finding a robust solution. It is
assumed that in step 0, only a forecast instance Iref ,
a neighbourhood P of Iref and a performance level Lλ

can be defined to characterise the optimisation problem.
Then, the third robustness issue can be stated as follows:
“knowing a performance level Lλ that must be guaranteed
on a given neighbourhood P of Iref , what is a robust
solution S such that λ (S, z,P) ≤ Lλ?”.

Fourth robustness issue: maximising stability. It is as-
sumed that in step 0, only a forecast instance Iref and
a performance level Lλ can be defined to characterise
the optimisation problem. Then, the fourth robustness
issue can be stated as follows: “knowing a performance
level Lλ that must be guaranteed what is a solution S

that maximises the neighbourhood P of Iref such that
λ (S, z,P) ≤ Lλ?”.

To answer this question, the neighbourhood P covered
by the solution S must be measurable. For example, the
neighbourhood P can be measured by the stability radius
(see definition 2). That means that the first issue must be
addressed beforehand.

Fifth robustness issue: minimising sensitivity. It is as-
sumed that in step 0, only a forecast instance Iref and a
neighbourhood P of Iref can be defined to characterise the
optimisation problem. Then, the fifth robustness issue can
be stated as follows: “giving a neighbourhood P of Iref

that must be covered, what is a solution S that minimises
the performance level Lλ such that λ (S, z,P) ≤ Lλ?”.

To answer this question the performance level Lλ must be
measurable. That means that the second robustness issue
must be addressed beforehand.

5. CONFIGURATION OF A PARALLEL
MULTI-PURPOSE MACHINES WORKSHOP WITH

UNCERTAINTY

The aim of this section is to illustrate the previously pre-
sented robustness approach towards a manufacturing sys-
tem application: a parallel multi-purpose machines work-
shop.

5.1 Configuration of a parallel multi-purpose machines
workshop: step 0

Multi-purpose machines are used to model industrial work-
shops composed of parallel machines subject to constraints
which prevent some machines from processing some prod-
uct types (Brucker et al., 1997). These constraints may
be technical and economical; they may be strict structural
inability or be the result of a strategic choice. The config-
uration of such workshops is a key decision, the impact of
which is significant on performance. The considered perfor-
mance in this paper is the completion time (also referred to
as the makespan). Thus, it is often observed that a human
decision-maker designs or updates the workshop configu-
ration manually, without having a quantitative measure of
the configuration performance when unexpected demands
have to be dealt with.

While initially designed to address the problem in the field
of the semiconductor industry, the present work provides
a theoretical framework that can be generalised to any
workshop modelled as a set of multi-purpose machines
(MPM) subject to demand uncertainty.

A model for the MPM workshop and the attached schedul-
ing problem. In a multi-purpose machines workshop
(Brucker et al., 1997), m machines and n types of products
are considered, but all the machines cannot necessarily
process all the product types: e.g., any machine can only
process a subset of product types. The set of machines
{1, . . . ,m} is denoted M . The set of the product types
{1, . . . , n} is denoted N .



The workshop machines are regarded as parallel machines
and some technological constraints are used to prevent
assigning products to a machine that cannot process them
for technological reasons. All the technological constraints
are modelled by a n-by-m binary technological matrix T .
Moreover, to be able to process one type of products,
the machine must be qualified for the product type by
undergoing a specific adjustment. The set of qualifications
is modelled by a n-by-m binary configuration matrix S. S
is defined as follows: S(i, j) = 1 if machine j is qualified
to process product type i, otherwise S(i, j) = 0. A non-
qualification may be the result of:

(1) Technology: for some technological or physical rea-
sons, machine j cannot process any product of type
i. This information is given by T when T (i, j) = 0
(T (i, j) = 0⇒ S(i, j) = 0).

(2) Cost control: for economic reasons, all the machines
may not be qualified for all the product types because
this would be too expensive, and often useless (Aubry
et al., 2008a).

To process the different product types, machines may have
different speeds. A n-by-m real speed matrix V is defined.
V (i, j) is the number of products of type i that machine j
is able to process during one unit of time.

The product types are the jobs to be processed by the
machines. They are also referred to as the demand. The
actual demand is modelled as a real n-column vector I.
I(i) is the total amount of products of type i to be
processed by the workshop for all i in N .

Scheduling the production in the workshop requires as-
signing the products to the machines. The result of the
scheduling problem defines a production plan that can
be modelled by a n-by-m real matrix R. R(i, j) is the
total amount of time that machine j spends processing
products of type i. Furthermore, preemption and split-
ting are assumed: several machines may be working on
the same product type at the same time. The order of
the jobs on the machines does not matter, only the al-
location matters. Given a demand I, the speed data V ,
and the configuration S, the scheduling problem consists
in finding a production plan R such that the makespan
Cmax is minimised. Using the three fields notation in-
troduced by (Graham et al., 1979), this problem can be
stated as RMPM |split|Cmax. RMPM stands for unre-
lated multi-purpose machines. split means that splitting
is allowed. Cmax means that the makespan (or the max-
imum completion-time of the machines) must be min-
imised. This problem is an easy problem (in the sense
of the NP-completeness theory) as it can be solved by
the following linear program denoted LP which is inspired
from the linear program of (Lawler and Labetoulle, 1978)
used to solve R|pmtn|Cmax:

LP



min(Cmax)∑
j∈M

V (i, j)×R(i, j) = I(i) ∀i ∈ N (a)∑
i∈N

R(i, j) ≤ Cmax ∀j ∈ M (b)

(1− S(i, j))×R(i, j) = 0 ∀(i, j) ∈ N ×M (c)
R(i, j) ≥ 0 ∀(i, j) ∈ N ×M (d)

(2)

The speed V (i, j), the configuration matrix S(i, j) and
the demand I(i) are given data whereas R(i, j) and Cmax

are decision variables. The set of constraints (2a) enforces
that the demand is exactly met for any type of products
whereas the set of constraints (2b) enforces that Cmax

is greater than or equal to the completion-time of any
machine in the shop. The set of constraints (2c) ensures
that product type i cannot be assigned to machine j (e.g.,
R(i, j) = 0) if the machine is not qualified for this product
type (e.g., S(i, j) = 0 ). The last constraints define the
variation domains of the variables R(i, j).

In the following, we will denote the optimal value of the
objective function of LP (V,S, I) by CS,V

max(I).

Perturbations modelling. It is first assumed that a fore-
cast demand Iref is available. However, the actual demand
(for the considered workshop) may be different because
of unexpected events like production ratio deviation in
upstream workshops, production losses and so on. The
actual demand I is regarded as the result of a variation ∆I
around Iref : I = Iref + ∆I. We define a neighbourhood
Pa1,...,an(Iref ) around Iref by:

Pa1,...,an
(Iref ) =

{
I|I = Iref +

∑
k∈N

αk.ak.ek ∧

∑
k∈N

αk ≤ 1 ∧ αk ≥ 0,∀k ∈ N

} (3)

with (ek)k∈N the canonical basis of R+
n and ak the positive

variation magnitude on the product type k.

It is assumed that the perturbations occur such that
the actual instance belongs to a set of instances like
Pa1,...,an

(Iref ).

What must be guaranteed despite perturbations? A dead-
line d̃ is provided, assigning a maximum amount of time
for completing any demand in the risk Pa1,...,an

(Iref ) to be
covered. In this context, the robustness of a configuration
can be defined as follows.
Definition 3. Given the speed matrix V and the forecast
demand Iref , a configuration S is said to be robust on the
set of demands Pa1,...,an(Iref ) if for all I in Pa1,...,an(Iref ),
CS,V

max(I) ≤ d̃

The last definition means that the robustness criterion
which can be used is the absolute robustness λ1, after
having set Lλ = d̃. In other words, S is said to be robust
on Pa1,...,an

(Iref ) if:

λ1

(
S, CS,V

max,Pa1,...,an
(Iref )

)
≤ d̃

5.2 Preliminary result

Definition 4. Let Pd̃(S) be the set of demands that can
be completed by the configuration S in less than d̃ units
of time.

More formally, Pd̃(S) can be defined as:

Pd̃(S) =
{
I
∣∣∣CS,V

max(I) ≤ d̃
}

Theorem 1. (Aubry et al., 2008c) Pd̃(S) is a convex set.



5.3 Stability analysis

In the addressed problem, the stability analysis prob-
lem consists in finding the largest set of demands
Pa1,...,an

(Iref ) that can be completed in less than d̃ units
of time by a given configuration S. The resolution of this
problem has been presented in (Aubry et al., 2008c). The
resolution process relies on solving n linear programs, each
one for determining the maximal value of ak, 1 ≤ k ≤ n.
Moreover, it is shown in (Aubry et al., 2008c) that the
value defined by min

k∈N
ak is the stability radius defined by

(Sotskov et al., 1998).

5.4 Sensitivity analysis

For the considered example, the sensitivity analysis prob-
lem consists in finding the completion time d̃ guaran-
teed by the configuration S on the set of demands
Pa1,...,an

(Iref ). In other words, d̃ measures the completion
time in the worst case on Pa1,...,an

(Iref ).
Definition 5. Let us denote Iak

ref the demand such that:

Iak

ref = Iref + ak.ek

Note that each demand Iak

ref belongs to Pa1,...,an
(Iref ).

Theorem 2. d̃ is equal to max
k∈N

CS,V
max(Iak

ref )

Proof. Let set d̃ to max
k∈I

CS,V
max(Iak

ref ). By definition of d̃,

each demand Iak

ref , 1 ≤ k ≤ n, is such that the following
inequality holds:

CS,V
max(Iak

ref ) ≤ d̃ (4)

That means that each demand Iak

ref belongs to Pd̃(S).

Let I be in Pa1,...,an
(Iref ). There is a family (αk)k∈N of

positive real numbers such that
I = Iref +

∑
k∈N

αk.ak.ek and
∑

k∈N

αk ≤ 1.

Let β be the real positive number such that β = 1−
∑

k∈N

αk.

I can be written as follows:

I =

(
β +

∑
k∈N

αk

)
.Iref +

∑
k∈N

αk.ak.ek

⇒ I = β.Iref +
∑
k∈I

αk. (Iref + ak.ek)

⇒ I = β.Iref +
∑
k∈I

αk.Iak

ref

According to inequality (4) each demand Iak

ref belongs
to Pd̃(S). Moreover, by definition, the demand for each
product type in Iref is less than the corresponding one in
Iak

ref , 1 ≤ k ≤ n, so the completion time to process Iref is
less than d̃. That means that Iref belongs to Pd̃(S) too.
I is thus a convex combination of elements belonging to
Pd̃(S). According to the convex property of Pd̃(S) (see
theorem 1), I belongs to Pd̃(S) and so Pa1,...,an

⊆ Pd̃(S).
That means that each demand I of Pa1,...,an

(Iref ) is such
that CS,V

max(I) ≤ d̃. And by definition, d̃ is reached for at

[Initialisation]
test,k : Integer
test← 1
k ← 1
[Testing configuration S = T ]
While (test = 1 AND k < n) do

[Evaluating the makespan for demand Iak

ref ]

CS,V
max(Iak

ref )← LP (V, T, Iak

ref )
If (CS,V

max(Iak

ref ) ≤ d̃) then
k ← k + 1

else
test← 0

end If
done
If (test = 1) then

[Configuration S = T is robust]
S ← T

else
There is no robust configuration

end If

Algorithm 1: Algorithm for finding a robust config-
uration

least one demand Iak

ref of Pa1,...,an
(Iref ). 2

5.5 Finding a robust configuration

In the context of multi-purpose machines, looking for a
robust solution consists in finding a configuration S such
that each demand of Pa1,...,an

(Iref ) can be completed
in less than d̃ units of time. If such a configuration
exists, algorithm 1 yields one of them: S = T . In fact
the configuration having the largest slack time is the
configuration S = T : the machines are qualified for all
the possible product types. This configuration is also the
one that maximises the set of demands Pa1,...,an

(Iref ) and
minimises the deadline d̃. Thus if S = T is not robust then
there is no robust configuration.
Algorithm 1 uses the fact that Pd̃(S) is convex for any S.
Thus only the extreme points of Pa1,...,an

(Iref ) (i.e. the
demands Iak

ref ) have to be tested: if each demand Iak

ref is
completed in less that d̃ units of time then all the demands
in Pa1,...,an(Iref ) can be completed in less than d̃ units of
time.

If algorithm 1 does not return any robust configuration,
that means that either d̃ is too small or new efficient
machines are needed. Identifying the characteristics of
these machines is an interesting problem that remains
open.

If configuration S = T is an admissible configuration,
it must be noted that it is also the most expensive one
since it is the one having all the possible qualifications.
That means that finding a trade-off between cost and
robustness is a more relevant problem. This problem has
been addressed in (Aubry, 2007). After having proved



that this problem is NP-hard in the strong sense, the
author proposes a Mixed-Integer Linear Program (MILP)
to model it. Finally, the results found by solving this
MILP with the free package GNU Linear Programming
Kit (GLPK) are presented in (Aubry et al., 2008b).

5.6 Stability maximisation

For the considered example, maximising the stability con-
sists in finding a configuration S that covers the largest
set of demands Pa1,...,an(Iref ) such that each one can be
completed in less than d̃ units of time.
The solution to this problem is easy to find. Once again,
the configuration having the largest slack time is config-
uration S = T . This configuration is also the one that
maximises the set of demands that can be completed in
less than d̃ units of time. The largest set Pa1,...,an

(Iref ) is
thus defined by solving the stability analysis problem for
S = T .
As previously, it can be noted that configuration S = T is
also the most expensive one. That means that the trade-
off between cost and stability is a more relevant problem.
This problem remains open in the general case. How-
ever, performing an ε-constraint approach (lower bounding
Pa1,...,an(Iref ) and minimising the cost of the configura-
tion) is solving the third problem.

5.7 Sensitivity minimisation

For the considered example, minimising sensitivity consists
in finding a configuration S that guarantees the shortest
deadline d̃ on the given set of demands Pa1,...,an

(Iref ).
As for the previous problem, the configuration having the
largest slack time is S = T . This configuration is also
the one that minimises the deadline d̃ on the given set
of demands Pa1,...,an

(Iref ). The value for the minimal
deadline d̃ is thus returned by solving the sensitivity
analysis problem for S = T . That means that d̃ =
max
k∈N

CT,V
max(Iak

ref ).

As previously, the trade-off between cost and sensitivity is
a more relevant problem. This problem also remains open
in the general case. However, performing an ε-constraint
approach (upper bounding d̃ and minimising the cost of
the configuration), is solving the third problem.

6. CONCLUSION

Taking uncertainty into account in optimisation problems
has been dealt with in this paper. A generic off-line
approach has been proposed and illustrated through an
example. This example shows that the five robustness
problems that are highlighted by the approach are relevant
for industrial applications. This approach seems to be an
interesting decision-aid tool for the production managers
who want to face perturbations.
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