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Abstract. For Γ1-structures on 3-manifolds, we give a very simple proof of Thurston’s regular-
ization theorem, first proved in [13], without using Mather’s homology equivalence. Moreover,
in the co-orientable case, the resulting foliation can be chosen of a precise kind, namely an
“open book foliation modified by suspension”. There is also a model in the non co-orientable
case.

1. Introduction

A Γ1-structure ξ, in the sense of A. Haefliger, on a manifold M is given by a line bundle
ν = (E → M), called the normal bundle to ξ, and a germ of codimension-one foliation F along
the zero section, which is required to be transverse to the fibers (see [8]). To fix ideas, consider
the co-orientable case, that is, the normal bundle is trivial: E ∼= M × R; for the general case
see section 7. The Γ1-structure ξ is said to be regular when the foliation F is transverse to the
zero section, in which case the pullback of F to M is a genuine foliation on M . A homotopy of
ξ is defined as a Γ1-structure on M × [0, 1] inducing ξ on M × {0}. A regularization theorem
should claim that any Γ1-structure is homotopic to a regular one. It is not true in general.
An obvious necessary condition is that ν must embed into the tangent bundle τM . When ν is
trivial and dimM = 3 this condition is fulfilled.

The C∞ category is understood in the sequel, unless otherwise specified. In particular M is
C∞. One calls ξ a Γr

1-structure (r ≥ 1) if it is tangentially C∞ and transversely Cr, that is,
the foliation charts are Cr in the direction transverse to the leaves. We will prove the following
theorem.

Theorem 1.1. If M is a closed 3-manifold and ξ a Γr
1-structure, r ≥ 1, whose normal bundle

is trivial, then ξ is homotopic to a regular Γr
1-structure.

Moreover, the resulting foliation of M may have its tangent plane field in a prescribed
homotopy class (see proposition 6.1).

This theorem is a particular case of a general regularization theorem due to W. Thurston (see
[13]). Thurston’s proof was based on the deep result due to J. Mather [9], [10]: the homology
equivalence between the classifying space of the group Diffc(R) endowed with the discrete
topology and the loop space ΩB(Γ1)+. We present a proof of this regularization theorem which
does not need this result. A regularization theorem in all dimensions, still avoiding any difficult
result, is provided in [12]. But there are reasons for considering the dimension 3 separately.
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Our proof provides models realizing each homotopy class of Γ1-structure. The models are
based on the notion of open book decomposition. Recall that such a structure on M consists
of a link B in M , called the binding, and a fibration p : M r B → S1 such that, for every
θ ∈ S1, p−1(θ) is the interior of an embedded surface, called the page Pθ, whose boundary is
the binding. The existence of open book decomposition could be proved by J. Alexander when
M is orientable, as a consequence of [1] (every orientable closed 3-manifold is a branched cover
of the 3-sphere) and [2] (every link can be braided); but he was ignoring this concept which
was introduced by H. Winkelnkemper in 1973 [16]. Henceforth, we refer to the more flexible
construction by E. Giroux, which includes the non-orientable case (see section 3). An open
book gives rise to a foliation O constructed as follows. The pages endow B with a normal
framing. So a tubular neighborhood T of B is trivialized: T ∼= B × D2. Out of T the leaves
are the pages modified by spiraling around T ; the boundary of T is a union of compact leaves;
and the interior of T is foliated by a Reeb component, or a generalized Reeb component in the
sense of Wood [17]. For technical reasons in the homotopy argument of section 4, the Reeb
components of O, instead of being usual Reeb components, will be thick Reeb components in
which a neighborhood of the boundary is foliated by toric compact leaves. We call such a
foliation an open book foliation.

The latter can be modified by inserting a so called suspension foliation. Precisely, let Σ be
a compact sub-surface of some leaf of O out of T and Σ× [−1,+1] be a foliated neighborhood
of it (each Σ × {t} being contained in a leaf of O). Let ϕ : π1(Σ) → Diffc(] − 1,+1[) be
some representation into the group of compactly supported diffeomorphisms; ϕ is assumed to
be trivial on the peripheral elements. It allows us to construct a suspension foliation Fϕ on
Σ × [−1,+1], whose leaves are transverse to the vertical segments {x} × [−1,+1] and whose
holonomy is ϕ. The modification consists of removing O from the interior of Σ × [−1,+1]
and replacing it by Fϕ. The new foliation, denoted Oϕ, is an open book foliation modified by
suspension. Theorem 1.1 can now be made more precise:

Theorem 1.2. Every co-orientable Γr
1-structure, r ≥ 1, is homotopic to an open book foliation

modified by suspension.

The proof of this theorem is given in sections 2 - 4 when r ≥ 2. In section 5, we explain
how to get the less regular case 1 ≤ r < 2. We have chosen to treat the case r = 1 + bv (the
holonomy local diffeomorphisms are C1 and their first derivatives have a bounded variation).
Indeed, Mather observed in [11] that Diff 1+bv

c (R) is not a perfect group and it is often believed
that the perfectness of Diff r

c (R) plays a role in the regularization theorem.
In section 6, the homotopy class of the tangent plane field will be discussed. Finally the case

of non co-orientable Γr
1-structure will be sketched in section 7 where the corresponding models,

based on twisted open book, will be presented.
We are very grateful to Vincent Colin, Étienne Ghys and Emmanuel Giroux for their com-

ments, suggestions and explanations.

2. Tsuboi’s construction

A Γ1-structure ξ on M is said to be trivial on a codimension 0 submanifold W when, for
every |t| small enough, W × {t} lies in a leaf of the associated foliation.
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Every closed 3-manifold M has a so-called Heegaard decomposition M = H− ∪
Σ
H+, where

H± is a possibly non-orientable handlebody (a ball with handles of index 1 attached) and Σ is
their common boundary. A thick Heegaard decomposition is a similar decomposition where the
surface is thickened:

M = H ′
− ∪

Σ×{−1}
Σ × [−1,+1] ∪

Σ×{+1}
H ′

+.

The following statement is due to T. Tsuboi in [14] where it is left to the reader as an exercise.

Proposition 2.1. Given a Γ1-structure ξ of class Cr, r ≥ 2, on a closed 3-manifold M , there
exists a thick Heegaard decomposition and a homotopy (ξt)t∈[0,1] from ξ such that:

1) ξ1 is trivial on H ′
±;

2) ξ1 is regular on Σ × [−1,+1] and the induced foliation is a suspension.

Proof. With ξ and its foliation F defined on an open neighborhood of the zero section M × 0
in M ×R, there comes a covering of the zero section by boxes, open in M ×R , bi-foliated with
respect to F and the fibers. We choose a C1-triangulation Tr of M so fine that each simplex
lies entirely in a box. With Tr comes a vector field X defined as follows.

First, on the standard k-simplex there is a smooth vector field X∆k , tangent to each face,
which is the (descending) gradient of a Morse function having one critical point of index k at
the barycenter and one critical point of index i at the barycenter of each i-face. When ∆i ⊂ ∆k

is an i-face, X∆i is the restriction of X∆k to ∆i. Now, if σ is a k-simplex of Tr, thought of as
a C1-embedding σ : ∆k →M , we define Xσ := σ∗(X∆k). The union of the Xσ’s is a C0 vector
field X which is uniquely integrable. After a reparametrization of each simplex we may assume
that the stable manifold W s(b(σ)) of the barycenter b(σ) is C1.

The Γ1-structure ξ (co-oriented by the R factor of M × R) is said to be in Morse position
with respect to Tr if:

(i) it has a smooth Morse type singularity of index k at the barycenter of each k-simplex
and it is regular elsewhere;

(ii) X is (negatively) transverse to ξ out of the singularities.

Lemma 2.2. Let F be the foliation associated to ξ. There exists a smooth section s such that
s∗F is in Morse position with respect to Tr.

Note that, as s is homotopic to the zero section, the Γ1-structure s∗F on M is homotopic to ξ.

Proof. Assume that s is already built near the (k − 1)-skeleton. Let σ be a k-simplex. We
explain how to extend s on a neighborhood of σ. After a fibered isotopy of M × R over the
identity of M , we may assume that F is trivial near {b(σ)} × R. Now, near b(σ), we ask s
to coincide with the graph of some local positive Morse function fσ whose Hessian is negative
definite on Tb(σ)σ and positive definite on Tb(σ)W

s(b(σ)). This function is now fixed up to a
positive constant factor. We will extend s as the graph of some function h in the F -foliated
chart over a neighborhood of σ. This function is already given on a neigborhood N(∂σ) of ∂σ
where it is Cr, the regularity of ξ, and satisfies X.h < 0 except at the barycenter of each face.

On the one hand, choose an arbitrary extension h0 of h to a neighborhood of σ vanishing
near b(σ). On the other hand, choose a nonnegative function gσ such that:
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- gσ = 0 near ∂σ;
- gσ = fσ near b(σ);
- X.gσ < 0 when gσ > 0 except at b(σ).

Then, if c > 0 is a large enough constant, h := h0 + cgσ has the required properties, except
smoothness. Returning to M ×R, the section s we have built is Cr, smooth near the singular-
ities, and X is transverse to s∗ξ except at the singularities. Therefore, there exists a smooth
Cr-approximation of s, relative to a neighborhood of the barycenters which meets all the re-
quired properties. �

Thus, by a deformation of the zero section which induces a homotopy of ξ, we have put
ξ in Morse position with respect to Tr. In the same way, applying lemma 2.2 to the trivial
Γ1-structure ξ0, we also have a Morse function f such that X.f < 0 except at the barycenters.

Let G− (resp. G+) denote the closure of the union of the unstable (resp. stable) manifolds
of the singularities of X of index 1 (resp. 2). The following properties are clear:

(a) In M , the subset G− (resp. G+) is a C1-complex of dimension 1.
(b) It admits arbitrarily small handlebody neighborhoods H ′

− (resp. H ′
+) whose boundary

is transverse to X.
(c) Every orbit of X outside H ′

± has one end point on ∂H ′
− and the other on ∂H ′

+. This also

holds true for any smooth C0-approximation X̃ of X (in particular X̃ is still negatively
transverse to ξ).

Given a (co-orientable) Γ1-structure ξ on a space G, by an upper (resp. lower) completion
of ξ one means a foliation F of G × (−ǫ, 1] (resp. G × [−1, ǫ)), for some positive ǫ, which is
transverse to every fiber {x} × (−ǫ, 1] (resp. {x} × [−1, ǫ)), whose germ along G × {0} is ξ,
and such that G× {t} is a leaf of F for every t close enough to +1 (resp. −1).

Lemma 2.3. Every co-orientable Γr
1-structure on a simplicial complex G of dimension 1, r ≥ 2 ,

admits an upper (resp. lower) completion of class Cr .

Proof. One reduces immediately to the case where G is a single edge. In that case, using a
partition of unity, one builds a line field which fulfills the claim. This line field is integrable.

�

By (a), the Γ1-structure ξ admits an upper (resp. lower) completion over G+ (resp. G−),
and thus also over an open neighborhood N+ (resp. N−) of G+ (resp. G−). By (b), there is a
handlebody neighborhood H ′

± of G± contained in N± and whose boundary is transverse to X.
So we have a foliation F defined on a neighborhood of

(M × {0}) ∪ (H ′
− × [−1, 0]) ∪ (H ′

+ × [0, 1])

which is transverse to X on M r (H ′
− ∪H ′

+) and tangent to H ′
± × {t} for every t close to ±1.

By (c), there is a diffeomorphism F : M r Int(H ′
− ∪ H ′

+) → Σ × [−1,+1] for some closed

surface Σ, which maps orbit segments of X̃ onto fibers.
For a small ǫ > 0, choose a function ψ : R → [−1,+1] which is smooth, odd, and such that:

- ψ(t) = 0 for 0 ≤ t ≤ 1 − 3ǫ and ψ(1 − 2ǫ) = ǫ;
- ψ is affine on the interval [1 − 2ǫ, 1 − ǫ];



5

- ψ(1 − ǫ) = 1 − ǫ and ψ(t) = 1 for t ≥ 1;
- ψ′ > 0 on the interval ]1 − 3ǫ, 1[.

Let s : M → M × R be the graph of the function whose value is ±1 on H ′
± and ψ(t) at the

point F−1(x, t) for (x, t) ∈ Σ × [−1,+1]. When ǫ is small enough, it is easily checked that,
for every x ∈ Σ, the path t 7→ s ◦ F−1(x, t) is transverse to F except at its end points. Then,
ξ1 := s∗F is homotopic to ξ and obviously fulfills the conditions required in proposition 2.1. �

3. Giroux’s construction

We use here theorem III.2.7 from Giroux’s article [5], which states the following:

Let M be a closed 3-manifold (orientable or not). There exist a Morse function f :
M → R and a co-orientable surface S which is f -essential in M .

Giroux says that S is f -essential when the restriction f |S has exactly the same critical points
as f and the same local extrema. In the sequel, we call such a surface a Giroux surface.

Giroux explained to us [6] how this notion is related to open book decompositions. In the
above statement, the function f can be easily chosen self-indexing (the value of a critical point
is its Morse index in M). Thus, let N be the level set f−1(3/2). The smooth curve B := N ∩S
will be the binding of the open book decomposition we are looking for. It can be proved that
the following holds for every regular value a, 0 < a ≤ 3/2 :

- the level set f−1(a) is the union along their common boundaries of two surfaces, Na
1

and Na
2 , each one being diffeomorphic to the sub-level surface Sa := S ∩ f−1([0, a]);

- the sub-level Ma := f−1([0, a]) is divided by Sa into two parts P a
1 and P a

2 which are
isomorphic handlebodies (with corners);

- Sa is isotopic to Na
i through P a

i , for i = 1, 2, by an isotopy fixing its boundary curve
Sa ∩ f−1(a).

This claim is obvious when a is small and the property is preserved when crossing the critical
level 1. In this way the handlebody H− := f−1([0, 3/2]) is divided by S3/2 into two diffeomor-

phic parts P
3/2
i , i = 1, 2, and we have N = N

3/2
1 ∪N

3/2
2 . We take S3/2, which is isotopic to N

3/2
i

in P
3/2
i , as a page. The figure is the same in H+ := f−1([3/2, 3]). The open book decomposition

is now clear.

Proposition 3.1. Let K ⊂M be a compact connected co-orientable surface whose boundary is
not empty. Then there exists an open book decomposition whose some page contains K in its
interior.

Proof. (Giroux) According to the above discussion it is sufficient to find a Morse function f
and a Giroux surface S (with respect to f) containing K. Let H0 be the quotient of K× [−1, 1]
by shrinking to a point each interval {x} × [−1, 1] when x ∈ ∂K × [−1, 1]. After smoothing,
it is a handlebody whose boundary is the double of K. On H0 there exists a standard Morse
function f0 which is constant on ∂H0, having one minimum, the other critical points being of
index 1. The surface K × {0} can be made f0-essential. This function is then extended to a
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global Morse function f̃0 on M . At this point we have to follow the proof of Theorem III.2.7
in [5]. The function f̃0 is changed on the complement of H0, step by step when crossing its
critical level, so that K × {0} extends as a Giroux surface in M . �

Let now ξ be a Γ1-structure meeting the conclusion of proposition 2.1, up to rescaling the
interval to [−ε,+ε]. Let Fϕ be the suspension foliation induced by ξ on Σ × [−ε,+ε]. Choose
x0 ∈ Σ × {0}; the segment x0 × [−ε,+ε] is transverse to Fϕ. Let K be the surface obtained
from Σ×0 by removing a small open disk centered at x0. The foliation Fϕ foliates K× [−ε,+ε]
so that K × {t} lies in a leaf, when t is close to ±ε, and ∂K × [−ε,+ε] is foliated by parallel
circles. We apply proposition 3.1 to this K.

Corollary 3.2. There exists an open book foliation O of M inducing the trivial foliation on
K × [−ε,+ε] (the leaves are K × {t}, t ∈ [−ε,+ε]).

Therefore, we have an open book foliation modified by suspension by replacing the above

trivial foliation of K× [−ε,+ε] by F̃ϕ, the trace of Fϕ on K× [−ε,+ε]. Let Oϕ be the resulting
foliation of M and ξϕ be its regular Γ1-structure. For proving theorem 1.2 (when r ≥ 2) it is
sufficient to prove that ξ and ξϕ are homotopic. This is done in the next section.

4. Homotopy of Γ1-structures

We are going to describe a homotopy from ξϕ to ξ. Recall the tube T around the binding.
For simplicity, we assume that each component of T is foliated by a standard Reeb foliation;
the same holds true if T is foliated by Wood components (in the sense of [17]). Let T ′ be a
slightly larger tube.

Lemma 4.1. There exists a homotopy, relative to M r int(T ′), from ξϕ to a new Γ1-structure
ξ1 on M such that:
1) ξ1 is trivial on T ;
2) ξ1 is regular on T ′

r int(T ) with compact toric leaves near ∂T and spiraling half-cylinder
leaves with boundary in ∂T ′ (as in an open book foliation).

Proof. Recall from the introduction that we only use thick Reeb components. So there is a
third concentric tube T ′′, T ⊂ int(T ′′) ⊂ int(T ′), so that T ′′

r int(T ) is foliated by toric leaves;
and int(T ) is foliated by planes.

On each component of ∂T we have coodinates (x, y) coming from the framing of the binding,
the x-axis being a parallel and the y-axis being a meridian. Let γ be a parallel in ∂T . The
Γ1-structure which is induced by ξϕ on γ is singular but not trivial and the germ of foliation G
along the zero section in the normal line bundle A ∼= γ × R is shown on figure 1.

The annulus A is endowed with coordinates (x, z) ∈ γ × R. The orientation of the z-axis,
which is also the orientation of the normal bundle to the foliation Oϕ along γ, points to the
interior of T . So the leaves of G are parallel circles in {z ≤ 0} and spiraling leaves in {z > 0}.
Take coordinates (x, y, r) on T where r is the distance to the binding; say that r = 1 on ∂T ′′

and r = 1/2 on ∂T . Let λ(r2) be an even smooth function with r = 0 as unique critical point,
vanishing at r = 1/2 and λ(1) < 0 < λ(0). Consider g : T ′′ → A, g(x, y, r) =

(
x, λ(r2)

)
.
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z = 0

Figure 1

It is easily seen that ξϕ|int(T
′′) ∼= g∗G. Let now λ̄(r2) be a new even function coinciding with

λ(r2) near r = 1, having negative values everywhere and whose critical set is {r ∈ [0, 1/2]}. Let
ḡ : T ′′ → A, ḡ(x, y, r) =

(
x, λ̄(r2)

)
. A barycentric combination of λ and λ̄ yields a homotopy

from g to ḡ which is relative to a neighborhood of ∂T ′′. The Γ1-structure ξ1 we are looking for
is defined by ξ1|int(T

′′) = ḡ∗(G) and ξ1 = ξϕ on a neighborhood of M r int(T ′′). �

Recall the domain K× [−ε,+ε] from the previous section. After the following lemma we are
done with the homotopy problem.

Lemma 4.2. There exits a homotopy from ξ1 to ξ relative to K × [−ε,+ε].

Proof. Let us denote M ′ := M r int(K × [−ε,+ε]) which is a manifold with boundary and
corners. It is equivalent to prove that the restrictions of ξ1 and ξ to M ′ are homotopic relatively
to ∂M ′. Consider the standard closed 2-disk D = D2 endowed with the Γ1-structure ξD which
is shown on figure 2.

d Im(i)

Figure 2
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It is trivial on the small disk d and regular on the annulus D r int(d). In the regular part,
the leaves are circles near ∂d and the other leaves are spiraling, crossing ∂D transversely. One
checks that the restrition of ξ1 to M ′ has the form f ∗ξD from some map f : M ′ → D. We
take f |T : T → d to be the open book trivialization of T (recall the binding has a canonical
framing); f |∂K × [−ε,+ε] to be the projection pr2 onto [−ε,+ε] composed with an embedding
i : [−ε,+ε] → ∂D and f maps each leaf of the regular part of ξ1 to a leaf of the regular part of
ξD. As K does not approach T , we can take f(∂M ′) = i([−ε,+ε]); actually, except near T , f
is given by the fibration over S1 = ∂D2 of the open book decomposition.

Once ξ has Tsuboi’s form (according to proposition 2.1), the restrition of ξ to M ′ has a
similar form: ξ = k∗ξD for some map k : M ′ → D2. Recall that M ′ is the union of two
handlebodies and a solid cylinder D2 × [−ε,+ε]. Take k to be i ◦ pr2 on the cylinder and k
to be constant on each handlebody. Observe that f and k coincide on ∂M ′. As D retracts
by deformation onto the image of i, one deduces that f and k are homotopic relatively to ∂M ′.�

This finishes the proof of theorem 1.2 when r ≥ 2.

5. The case C1+bv

A co-oriented Γr
1-structure ξ on M can be realized by a foliation F defined on a neighborhood

of the 0-section in M × R; it is made of bi-foliated charts which are C∞ in the direction of
the leaves and Cr in the direction of the fibers. Consider such a box U over an open disk D
centered at x0 ∈ M ; its trace on the x0-fiber is an interval I. Each leaf of U reads z = f(x, t),
x ∈ D, for some t ∈ I. Here f is a function which is smooth in x and Cr in t, with f(x0, t) = t;
the foliating property is equivalent to ∂f

∂t
> 0. When r = 1 + bv, there is a positive measure

µ(x, t) on I, without atoms and depending smoothly on x, such that:

(∗)
∂

∂t
f(x, t) −

∂

∂t
f(x, t0) =

∫ t

t0

µ(x, t).

Proposition 5.1. Theorem 1.2 holds true for any class of regularity r ≥ 1 including the class
r = 1 + bv.

Proof. The only part of the proof which requires some care of regularity is section 2, especially
the proof of lemma 2.3. Indeed, we have to avoid integrating C0 vector fields. For proving
lemma 2.3 with weak regularity we use the lemmas below which we shall prove in the case
r = 1 + bv only.

Lemma 5.2. Let f : D × I → R be a Cr-function as above. Assume I =] − 2ε,+ε[ and
f(x,−2ε) > −1 for every x ∈ D. Then there exists a function F : D× [−1, 0] → R of class Cr

such that:

1) F (x, t) = f(x, t) when t ∈ [−ε, 0],
2) F (x, t) = t when t is close to −1,

3)
∂F

∂t
> 0.
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Proof. Let µ(x, t) be the positive measure whose support is [−ε, 0] such that formula (∗) holds
for every (x, t) ∈ D× [−ε, 0] and t0 = 0. There exists another positive measure ν(x, t), smooth
in x and whose support is contained in ] − 1,−ε], such that

(∗∗) f(x,−ε) = −1 +

∫ −ε

−1

(∫ t

−1

ν(x, τ)

)
dt.

Then a solution is

F (x, t) = −1 +

∫ t

−1

(∫ s

−1

(
µ(x, τ) + ν(x, τ)

))
ds.

�

Lemma 5.3. Let A1 and A2 two disjoint closed sub-disks of D. Let F1 and F2 be two solutions
of lemma 5.2. Then there exists a third solution which equals F1 when x ∈ A1 and F2 when
x ∈ A2.

Proof. Both solutions F1 and F2 differ by the choice of the measure ν(x, t) in formula (∗∗),
which is νi for Fi. Choose a partition of unity 1 = λ1(x) + λ2(x) with λi = 1 on Ai. Then
ν(x, t) = λ1(x)ν1(x, t) + λ2(x)ν2(x, t) yields the desired solution. �

The proof of proposition 5.1 is now easy. As already said, it is sufficient to prove lemma 2.3
in class Cr, r ≥ 1. It is an extension problem of a foliation given near the 1-skeleton Tr[1]×{0}
to Tr[1] × [−1, 0]. One covers Tr[1] by finitely many n-disks Dj . The problem is solved in each
Dj × [−1, 0] by applying lemma 5.2. By applying lemma 5.3 one makes the different extensions
match together. �

6. Homotopy class of plane fields

It is possible to enhance theorem 1.1 by prescribing the homotopy class of the underlying
co-oriented plane field (see proposition 6.1 below). The question of doing the same with respect
to theorem 1.2 is more subtil (see proposition 6.3).

Proposition 6.1. Given a co-oriented Γ1-structure ξ on the closed 3-manifold M and a ho-
motopy class [ν] of co-oriented plane field in the tangent space τM , there exists a regular
Γ1-structure ξreg homotopic to ξ whose underlying foliation Freg ∩M has a tangent co-oriented
plane field in the class [ν].

Before proving it we first recall some well-known facts on co-oriented plane fields (see [4]).
Given a base plane field ν0, a suitable Thom-Pontryagin construction yields a natural bijection
between the set of homotopy classes of plane fields on M and Ων0

1 (M), the group of (co)bordism
classes of ν0-framed and oriented closed (maybe non-connected) curves in M . A ν0-framing of
the curve γ is an isomorphism of fiber bundles ε : ν(γ,M) → ν0|γ, whose source is the normal
bundle to γ in M . We denote γε the curve endowed with this framing. Moreover, given γε, if
γ′ is homologous to γ in M there exists a ν0-framing ε′ such that (γ′)ε′ is cobordant to γε.
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Proof of 6.1. We can start with an open book foliation Oϕ yielded by theorem 1.2. Let ν0 be
its tangent plane field. Near the binding, the meridian loops (out of T ) are transverse to Oϕ

and homotopic to zero in M . As a consequence, each 1-homology class may be represented as
well by a (multi)-curve in a page or by a connected curve out of T positively transverse to all
pages. We do the second choice for γε, the ν0-framed curve whose cobordism class encodes [ν]
with respect to ν0.

Hence we are allowed to turbulize Oϕ along γ. In a small tube T (γ) about γ, we put a
Wood component. Outside, the leaves are spiraling around ∂T (γ). Let Oturb

ϕ be the resulting

foliation. Whatever the chosen type of Wood component is, the Γ1-structures of Oturb
ϕ and

Oϕ are homotopic by arguing as in section 4. But the framing ε tells us which sort of Wood
component will be convenient for getting the desired class [ν] (see lemma 6.1 in [17]). �

In the previous statement, we have lost the nice model we found in theorem 1.2. Actually,
thanks to a lemma of Vincent Colin [3], it is possible to recover our model, at least when M is
orientable (see below proposition 6.3).

Lemma 6.2. (Colin) Let (B, p) be an open book decomposition of M and γ be a simple con-
nected curve in some page P . Assume γ is orientation preserving. Then there exist a positive
stabilization (B′, p′) of (B, p) and a curve γ′ in B′ which is isotopic to γ in M . When γ is a
multi-curve, the same holds true after a sequence of stabilizations.

The positive Hopf open book decomposition of the 3-sphere is the one whose binding is made
of two unknots with linking number +1; a page is an annulus foliated by fibers of the Hopf
fibration S3 → S2. A positive stabilization is a “connected sum” with this open book. The
new page P ′ is obtained from P by plumbing an annulus A whose core bounds a disk in M (see
[7] for more details and other references).

Proof. If γ is connected, only one stabilization is needed. We are going to explain this case
only. A tubular neighborhood of γ in P is an annulus.

Choose a simple arc α in P joining γ to some component β of B without crossing γ again.
Let γ̃ be a simple arc from β to itself which follows α−1 ∗ γ ∗ α. The orientation assumption
implies that the surgery of β by γ̃ in P provides a curve with two connected components, one
of them being isotopic to γ in P . Let Pπ be the page opposite to P and R : P → Pπ the time
π of a flow transverse to the pages (and stationary on B). The core curve C of the annulus A
that we use for the plumbing is the union γ̃ ∪ R(γ̃). And A is (+1)-twisted around C (with
respect to its unknot framing) as in the Hopf open book. Let H be the 1-handle which is the
closure of A r P . Surgering B by H provides the new binding. By construction, one of its
components is isotopic to γ. �

Proposition 6.3. Let Oϕ be an open book foliation modified by suspension, whose its underlying
open book is denoted (B, p). Let ν0 be its tangent co-oriented plane field. Let γε be a ν0-framed
curve in M and [ν] be its associated class of plane field. Assume γ is orientation preserving.
Then there exists an open book foliation O′

ϕ with the following properties:
1) its tangent plane field is in the class [ν];
2) the suspension modification is the same for O′

ϕ as for Oϕ and is supported in K× [−ε,+ε];
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3) as Γ1-structures, Oϕ and O′
ϕ are homotopic.

Proof. As said in the proof of 6.1, up to framed cobordism, γε may be chosen as a simple
(multi)-curve in one page P of (B, p). Applying Colin’s lemma provides a stabilization (B′, p′)
such that, up to isotopy, γ lies in the new binding. Observe that, if K is in P , K is still in the
new page P ′; hence 2) holds for any open book foliation carried by (B′, p′). Once γε is in the
binding, for a suitable Wood component foliating a tube about γε, item 1) is fulfilled. Finally
item 3) follows from item 2) and the proofs in section 4. �

7. Case of a Γ1-structure with a twisted normal bundle

What happens when the bundle ν normal to ξ is twisted? It is known that a necessary
condition to regularization is the existence of a fibered embedding i : ν → τM into the tangent
fiber bundle to M . Conversely, assuming that this condition is fulfilled, we are going to state
a normal form theorem analogous to theorem 1.2. Since no step of the previous proof can be
immediately adapted to this situation, we believe that it deserves a sketch of proof.

7.1. In the first step (Tsuboi’s construction), we do not have “Morse position” with respect to
a triangulation, since index and co-index of a singularity cannot be distinguished. Instead of
lemma 2.2, we have the following statement.

After some homotopy, ξ has Morse singularities and admits a pseudo-gradient whose
dynamics has no recurrence (that is, every orbit has a finite length).

Here, by a pseudo-gradient, it is meant a smooth section X of Hom(ν, τM), a twisted vector
field indeed, such that X · ξ < 0 except at the singularities (this sign is well-defined whatever
a local orientation of ν, or co-orientation of ξ, is chosen); such a pseudo-gradient always exists
by using an auxiliary Riemannian metric.

Sketch of proof. Generically ξ has Morse singularities. Let X0 be a first pseudo-gradient,
which is required to be the usual negative gradient in Morse coordinates near each singular-
ity. Finitely many mutually disjoint 2-disks of M are chosen in regular leaves of ξ such that
every orbit of X0 crosses one of them. Following Wilson’s idea [15], ξ and X0 are changed in
a neighborhood D2 × [−1,+1] of each disk into a plug such that every orbit of the modified
pseudo-gradient X is trapped by one of the plugs. The plug has the mirror symmetry with
respect to D2 × {0}. In D2 × [0, 1] we just modify ξ by introducing a cancelling pair of singu-
larities, center-saddle. �

Let G be the closure of the one-dimensional invariant manifold of all saddles. It is a graph.
We claim: ν|G is orientable. Indeed, we orient each edge from its saddle end point to its center
end point. This is an orientation of ν|G over the complement of the vertices. It is easily checked
that this orientation extends over the vertices. Thus X becomes a usual vector field near G
and we have an arbitrarily small tubular neighborhood H of G whose boundary is transverse
to X, and X enters H . Now, the negative completion of ξ|H can be performed as in lemma
2.3.

The complement M̂ of intH in M is fibered over a surface Σ, the fibers being intervals
(∼= [−1, 1]) tangent to X. By taking a section we think of Σ as a surface in M r H . Since
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ξ is not co-orientable, Σ is one-sided and G is connected. Arguing as in section 2, after some
homotopy, ξ becomes trivial on H and transverse to X on M̂ , hence a suspension foliation
corresponding to a representation ϕ : π1(Σ) → Diffc(] − 1, 1[).

7.2. In the second step (Giroux’s construction), we have to leave the open books and we need
a twisted open book. It is made of the following:

- a binding B which is a 1-dimensional closed co-orientable submanifold in M ;
- a Seifert fibration p : M r B → [−1,+1] which has two one-sided exceptional surface

fibers p−1(±1) and which is a proper smooth submersion over the open interval;
- when t goes to ±1, p−1(t) tends to a 2-fold covering of p−1(±1);
- near B the foliation looks like an open book.

The exceptional fibers are compactified by B as smooth surfaces with boundary. But, for
t ∈ ]−1,+1[, p−1(t) is compactified by B as a closed surface showing (in general) an angle along
B. Notice that, since B is co-orientable, a twisted open book gives rise to a smooth foliation
where each component of the binding is replaced by a Reeb component, the pages spiraling
around it.

Such an open book is generated by a one-sided Giroux surface, which is the union of the
compactified exceptional fibers. Abstractly, a one-sided Giroux surface in M with respect to
a Morse function f : M → R is a one-sided surface S such that f |S has the same critical
points and the same extrema as f and fulfills the extra condition: for every regular value
t ∈ R, f−1(t) ∩ S is a two-sided curve in the level set f−1(t). Starting with (S, f) where f is
a self-indexing Morse function, a twisted open book is easily constructed. Its binding is the
co-orientable curve f−1(3/2) ∩ S. In general such a one-sided Giroux surface (or twisted open
book) does not exist on M ; the obstruction lies in the existence of a twisted line subbundle of
τM . Nevertheless, with a suitable assumption, we have an analogue of proposition 3.1:

Let i : ν → τM be an embedding of a twisted line bundle. Let K ⊂ M be a compact
connected one-sided surface whose boundary is not empty. Assume the following: ν|K
is twisted, ν|∂K is trivial and the normal bundle ν(K,M) is homotopic to i(ν)|K. Then
there exists a twisted open book with one exceptional page containing K in its interior.

Sketch of proof. We give the proof only in the setting of 7.1 by taking K to be the closure
of Σ r d0 where d0 is a small closed 2-disk in Σ. Recall the fibration ρ : M̂ → Σ. Let H ′ be
the handlebody made of H to which is glued the 1-handle ρ−1(d0). Let M ′ be the complement
of intH ′. Consider a minimal system of mutually disjoint compression disks d1, ..., dg of H , so
that cutting H along them yields a ball; g is the genus of H . Thus d0, d1, ..., dg is a minimal
system of mutually disjoint compression disks of H ′.

We claim: g + 1 is even. Indeed, by assumption there exists a non vanishing section of the
bundle Hom(ν, τM). Thus, the number of zeroes of the pseudo-gradient X is even and the
Euler characteristic χ(G) of the graph G is even. As G is connected, the genus g is odd, which
proves the claim.

Now, one follows Giroux’s algorithm for completing K to a closed Giroux’s surface. On the
surface ∂M ′ the union of the attaching curves ∂d0, ∂d1, ..., ∂dg is not separating. Then, after
some isotopy, for each i = 0, ..., g, ∂di crosses ∂K in exactly two points ai, bi linked by an arc αi
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(resp. α′
i) in ∂di (resp. ∂K), so that αi ∪ α

′
i bounds a disk in ∂M ′. Moreover, one can arrange

that all the arcs α0, ..., αg are parallel. Also we link ai, bi by a simple arc in di. Now, each
compression disk defines, simultaneously, a 1-handle which is glued to K and a 2-handle which
is glued to M ′, yielding a proper surface K1 in some 3-submanifold M ′′ of M , whose comple-
ment is a ball. The boundary of K1 is made of g + 2 parallel curves in the sphere ∂M ′′. As
this number is odd, Giroux described a process of adding cancelling pairs of 1- and 2- handles
whose effect is to change K1 into K2 ⊂ M ′′ such that ∂K2 is made of one curve only ([5], p.
676-677). Hence, K2 can be closed into a Giroux’s surface. �

Theorem 7.3. Let ξ be a non co-orientable Γ1-structure on M3 whose normal bundle ν embeds
into τM . Then ξ is homotopic to a twisted open book foliation modified by suspension.

Sketch of proof. Let K = Σ r int D2 be the surface with a hole, where Σ was built in the
first step 7.1; it meets the required assumptions for building a twisted open book.

The twisted open book built in the second step gives rise to a foliation O. Indeed, as the
binding B is co-orientable, it is allowed to spiral the pages around a tubular neighborhood of
B. The tube itself is foliated by thick Reeb components. As in the co-orientable case, we can
modify the open book foliation in a neighborhood of K using the representation ϕ, yielding
the foliation Oϕ and its associated regular Γ1-structure ξϕ. We have to prove that ξ and ξϕ are
homotopic. We may suppose that ξ is in Tsuboi form (7.1).

We observe that the total space of ν has a foliation F0 (unique up to isomorphism) trans-
verse to the fibers, having the zero section as a leaf and whose all non trivial holonomy elements
have order 2. It defines the trivial Γ1-structure ξ0 in the twisted sense. Using notation of 7.2,
one can prove that ξ|H ′ and ξϕ|H

′ are both homotopic to ξ0|H
′. Moreover, both homotopies

coincide on the boundary ∂H ′ (on H ′, it is sufficient to think of the case when ϕ is the trivial
representation. Thus ξ|H ′ and ξϕ|H

′ are homotopic relative to the boundary. �

7.4. Plane field homotopy class. By turbulizing Oϕ, it it possible to have the normal field in
any homotopy class of embeddings ν → τM .

Indeed, a curve in M is homotopic to a curve transverse to Oϕ if and only if it does not twist
ν. But these homology classes are exactly those which appear as a first difference homology
class when comparing two embeddings j1, j2 : ν → τM , since a closed curve which twits ν is
not a cycle in H1(M,Zor(ν)) ∼= H2(M,Zor(ν∗⊗τM)).
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Université de Nantes, UMR 6629 du CNRS, 44322 Nantes, France

E-mail address : francois.laudenbach@univ-nantes.fr
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