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ABSTRACT

Viscoelastic materials are known for their ability to dissipate energy. This property has been successfully used by
the author and his colleagues to produce effective passive structural control for column and plate creep buckling, various
vibratory modes, and aero-viscoelastic phenomena, such as torsional divergence, lifting surface and panel flutter, and
attenuation of aerodynamic noise in panels. In self-excited systems the application of increased dissipation may stabilize
or destabilize such systems depending on the influence of damping and all other forces on phase relations. Conventional
design and analysis formulations call for use of the best available “off the shelf” materials. On the other hand, the optimum
designer material protocols based on calculus of variation principles developed in [1] are formulated to determine the global
best elastic or viscoelastic properties for specified service conditions. It has been previously established in [2] that in isotropic
and anisotropic viscoelastic materials the shape of the relaxation curve is a major contributor to the material ;s response
performance. In particular, it has been shown that Region C and the ratio E0 / E∞ of the relaxation modulus, as seen
in Fig.1, are the most influential in dictating material dissipation rates. Consequently, such relaxation modulus functions
are tailored through prescriptions of appropriate functionally graded viscoelastic materials to produce the desired designer
material performance. Relaxation moduli are, of course, highly temperature sensitive and performances must be evaluated
relative to operational demands. In this paper, an analytical study presents optimal sandwich combinations of high shear
modulus auxetic [3] webs with composite faceplates of proper number of stacking sequences and fibers as well as their
orientations, and their viscoelastic material properties. The constraints that can be imposed consist of one or more selected
from weight, dimensions, cost, deformations, failure probabilities, survival / life-times, etc. Some preliminary results are
presented. The delamination failure analyses are based on uniaxial viscoelastic experimental data found in [4] and the
theoretical stochastic failure criteria developed in [5]. For the same structural weight, the optimized designer viscoelastic
sandwich composite plate clearly shows substantial longer survival times and orders of magnitude smaller probabilities of
delamination. Extensions of these analyses to multi-element structures, i. e. entire structures, are also presented.

Key Words : aero-servo-viscoelasticity, designer viscoelastic materials, functionally graded materials, failure proba-
bility, servo controls, structural control, survival times, torsional creep divergence, viscoelasticity

INTRODUCTION

Viscoelastic mechanical properties of existing materials, such as metals, concrete, polymers, cheeses and human
and animal tissue, are extensively described in [6 – 10] while relations between their chemistry and such properties are
only now starting to be understood [11]. Current conventional wisdom and practice in structural analysis of air, space,
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naval and land vehicles call for use of the best “off the shelf” available materials. Novel and unconventional analytical
direct and inverse protocols have been previously successfully formulated [1], [12 – 14] through computer simulations in
a number of pilot studies seeking to determine the best designer viscoelastic material properties and their spatial non-
homogeneous distributions (viscoelastic functionally graded materials, i.e. VFGM) throughout structural members tailored
and engineered to specific tasks, such as beam bending, column and plate buckling, thermal stresses, structural survival
times, aero-viscoelastic flutter and aero-acoustics, to mention a few.

The term “composites” is generically used to denote any substance made of two or more materials with distinct
properties. Notable examples are textiles, reinforced concrete, polymer or ceramic matrices with polymer or metal fibers
[15 – 27] . Another example is a plasma sprayed five-layer functionally graded ZrO2 / Ni Co Cr AlY thermal barrier coating
of a µ–meter scale thickness described in [28] and shown in Fig. 2 .

ANALYSIS

Viscoelastic Constitutive Relations

Consider an anisotropic, isothermal, composite, rectangular plate with dimensions a⊗b⊗h in a Cartesian coordinate
system x = {xi} with i = 1, 2, 3, with x3 normal to the plane of the plate. All materials, i.e. fibers and matrix, obey linear
viscoelastic constitutive relations of the type [29 – 31]

σij(x, t) =
tZ

−∞

Eijkl

264t− t,′
= Ξ1(x)z }| {
x,F(x)| {z }

= Ξ(x,t−t′)

375 εkl(x, t′) dt′ (1)

where F(x) represents the relation describing the distribution of fiber orientation θor(x), number of plies Npl(x), number
of fibers per ply Nfp(x), volume fractions vfr(x) and stacking sequences st(x), or

F(x) = F [θor(x), Npl(x), Nfp(x), vfr(x), st(x)] (2)

This function may also be thought of as defining functionally graded material (FGM) properties. The various roles of these
functions in relation to optimum material performance (designer materials) will be analyzed in subsequent sections. Due to
the complexity and number of variables some a priori specifications of these functions may be necessary and practical. For
instance, some variables may not be independent of each other. If the stacking sequence is to be optimized or prescribed
because of manufacturing dictates, then only one of the θors can be an independent variable. The Npl and Nfp determine
the vfr. As a simple example one can consider a configuration where the the number of fibers is constant and the stacking
sequence is repeated such that ply angles are θn = θ1 + (n− 1)∆θ for n = 1, 2, . . . , Npl and

F(x) = F(θ1,∆θ,Npl, Nfp) (3)

The integrals always reduce to convolution ones with E = E(x, t − t′) whenever the F is time independent and and no
transient temperatures are present to modify viscoelastic material properties. The spatially non-homogeneous anisotropic
relaxation modulus functions are definable in terms of Prony series [32], such that

Eijkl(x, t) = E∞ijkl [Ξ1(x)] +
NijklX
n=1

Eijkln [Ξ1(x)] exp
 
− t

τijkln [Ξ1(x)]

!
= (4)

where the instantaneous elastic modulus E0
ijkl is given by

E0
ijkl(x) = Eijkl(x, 0) = E∞ijkl [Ξ1(x)] +

NijklX
n=1

Eijkln [Ξ1(x)] (5)
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The underscored indices indicate no summations.

Governing Relations, Constraints and Designer Composite Materials

In general terms the problem can be stated in the following manner. The viscoelastic composite plate obeys depending
on loading conditions (tractions, moments, etc.) one or up to LL number of differential-integral relations, which can be
expressed in general terms as

L`
“
x, t,F(x), Eijkln [Ξ1(x)] , τijkln [Ξ1(x)]| {z }

= ΞL(x)

”
= 0 ` = 1, 2, . . . ,LL (6)

subject to P℘ number of boundary conditions (BC)

BC℘
“
x, t,ΞL(x)

”
= 0 ℘ = 1, 2, . . . ,P℘ (7)

with a pre-determined constraint function C based on weight ρ, maximum deflections wmax, structural lifetime tLF , failure
probability PF , cost COST , etc., given by

C
“
x, t,F(x), Eijkln [Ξ1(x)] , τijkln [Ξ1(x)] , ρ, wmax, COST , tLF , PF , . . .| {z }

= ΞC(x)

”
= 0 (8)

A number of protocols for determining the various parameters are presented and analyzed in [1]. Let Sp be the
general designation for each individual parameter in Eqs. (6) to (8) with a total number κ. Selecting, for instance, a
Lagrangian multiplier (λ`) approach one obtains after applying Galerkin’s method to eliminate all x-dependencies

∂

∂Sp

n
L`(t,Ξ∗L) + λ` C (t,Ξ∗C)

o
= 0 (9)

` = 1, 2, . . . ,LL and p = 1, 2, . . . , κ+ LL

The time dependence in (9) is removed through the use of the least squares method with at least 25(κ+LL) time values.
Specifically, a plate under aerodynamic loading has a governing relation for the mid-plane deflection w(x, t) which

reads

L1

n
w(x1, x2, t)

o
=

tZ
−∞

∂2

∂x2
1

„
D1(x, t− t′)

∂2w(x, t′)
∂x2

1

«
dt′

| {z }
viscoelastic bending resistance (T1)

+
tZ

−∞

»
2 ∂2

∂x1∂x2

„
D2(x, t− t′)

∂2w(x, t′)
∂x1∂x2

«
+ ∂2

∂x2
2

„
D3(x, t− t′)

∂2w(x, t′)
∂x2

2

«–
dt′

| {z }
viscoelastic bending resistance (T1)

−

26666664
tZ

−∞

Z a

0
D4(x1, x2, t− t′)

„
∂w(x1, x2, t

′)
∂x1

«2

dx1 dt
′

| {z }
in plane force due to length change in x1 direction (T2)

+NEX
11 (x2, t)| {z }

external force
(T3)

37777775
∂2w

∂x2
1

+ mp
∂2w(x, t)
∂t2| {z }

inertia effects
(T4)

+

26666664
tZ

−∞

Z b

0
D5(x1, x2, t− t′)

„
∂w(x1, x2, t

′)
∂x2

«2

dx2 dt
′

| {z }
in plane force due to length change in x2 direction (T5)

+ NEX
22 (x1, t)| {z }

external force
(T6)

37777775
∂2w

∂x2
2

3
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−

26666664
tZ

−∞

Z a

0
D6(x1, x2, t− t′)

∂w(x1, x2, t
′)

∂x1

∂w(x1, x2, t
′)

∂x2
dx1 dt

′

| {z }
in plane force due to angle change between x1 & x2 directions (T7)

+ NEX
12 (t)| {z }

external force
(T8)

37777775
∂2w

∂x1∂x2

−

26666664
tZ

−∞

Z a

0
D7(x1, x2, t− t′)

∂w(x1, x2, t
′)

∂x1

∂w(x1, x2, t
′)

∂x2
dx2 dt

′

| {z }
in plane force due to angle change between x1 & x2 directions (T9)

+ NEX
12 (t)| {z }

external force
(T10)

37777775
∂2w

∂x1∂x2

+ a0 q sin

8>>><>>>:
π

2αST

26664
wing contribution

Eq. (11)z }| {
AW (α, θ,W ) +

panel contributionz }| {
arctan

„
1
U∞

∂w(x, t)
∂t

+ ∂w(x, t)
∂x1

«
| {z }

combined angle due to attack of deformed wing and panel

37775
9>>>=>>>;| {z }

lift forces (T11)

+ NP
11(x, t)

∂2w

∂x2
1| {z }

x1 piezo force (T12)

+ NP
22(x, t)

∂2w

∂x2
2| {z }

x2 piezo force (T13)

+ NT
11(x, t)

∂2w

∂x2
1| {z }

x1 thermal force (T14)

+ NT
22(x, t)

∂2w

∂x1∂x2| {z }
x2 thermal force (T15)

+ 2 NT
12(x, t)

∂2w

∂x1∂x2| {z }
thermal shear
force (T16)

+ ∂MT
11

∂x2
2| {z }

x3load due
to MT

11(T17)

+ ∂MT
22

∂x2
1| {z }

x3load due
to MT

22(T18)

+ 2 ∂MT
12

∂x1∂x2| {z }
x3load due
to MT

12(T19)

=

∆p

0BBB@x, t, α,
panel contributionsz }| {
w,

∂w

∂x
,
∂w

∂t
,
∂2w

∂t2
,

wing contributionsz }| {
θ,W,

∂W

∂t
,
∂2W

∂t2

1CCCA
| {z }

aerodynamic noise pressure (T20)

(10)

where the plate w = w(x, t) = w(x1, x2, t) and the wing W = W (x2, t) unless otherwise indicated. In the absence of
chordwise bending the panel effective angle of attack due to wing contributions is

AW (α, θ,W ) =

fα(x2)=built in
rigid anglesz }| {

αr(x2)− α0(x2) +

angle of
attackz }| {
α(x2) +

wing angle
of twistz }| {
θ(x2, t) +

wing bending velocityz }| {
arctan

„
1
U∞

∂W (x2, t)
∂t

«
| {z }

wing aero−viscoelastic contributions

(11)

For elastic plates based on Eqs. (10) similar relations can be derived without the time integrals and with

DE
m(x) ≡ Dm(x, t, t′) (12)

If the elastic or viscoelastic material is isotropic then in terms T1, the bending rigidities become

D1 = D2 = D3 ≡ D (13)

and the T1 terms reduce to

Term T1 viscoelastic =⇒
tZ

−∞

D(x, t− t′)∇w(x, t′) dt′ or
tZ

−∞

D(x, t, t′)∇w(x, t′) dt′ (14)

Term T1 elastic =⇒ DE(x)∇wE(x, t) (15)

4
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with
∇ = ∂4

∂x4
1

+ 2 ∂4

∂x2
1 ∂x

2
2

+ ∂4

∂x4
2

(16)

It is to be noted that in corresponding elastic isotropic cases, the modulus DE is defined as

DE = EE h3

12 [1− (νE)2] (17)

whereas for equivalent isotropic viscoelastic materials the use of Poisson’s ratio is inappropriate and counter-indicated [33,
34], since there is no viscoelastic counterpart for the elastic expression (17), except under severely restricted conditions.
In all other more general cases, viscoelastic Poisson ratios are time, loading history and stress dependent [33], [34]. For
viscoelastic materials, therefore, only relaxation moduli or functions can be used to define bending rigidities, i. e.

Dijkl(t) = Eijkl(t)h3

12 (18)

The linearity or nonlinearity of terms in the governing relation of Eq. (10) is independently influenced by geometry
(size of deflections), material property characterizations. boundary conditions and failure conditions. It should be noted
that if a single term of the governing relations exhibits nonlinear properties, then integral transforms, such as Laplace and
Fourier, are inapplicable and solutions to the governing DEs or integral-differential relations must be obtained by other
means.

For nonhomogeneous materials Eqs. (18) must be returned to their fundamental roots and become

Dijkl(x1, x2, t) =
h/2Z
−h/2

Eijkl(x1, x2, x3, t) x2
3 dx3 (19)

rather than the simple moment and product of inertia expressions associated with homogeneous elastic and/or viscoelastic
material plates. For auxetic materials, quantities associated with shear, such as D2, D6.D7, can be orders of magnitude
larger than the corresponding bending stiffnesses, i.e. D2 � D1 ' D3, etc., [1], [3].

Stability and Failure Considerations

Viscoelastic plates are subject to two separate and unrelated failure modes : (1) creep buckling - stability criteria in
bending and/or twisting and (2) failures due to de-bonding and/or internal core cracks - material property induced failures
due to combined bending, compressive and shear stresses. In addition if they are subjected to aerodynamic loading such
as lift and/or aerodynamic noise they will subject to further modes of instability, such as panel flutter.

The classical elastic and creep buckling definitions are

elastic =⇒ lim
σ11→σcr11

n
wE(x, q)

o
→ ∞ or lim

σ11→σcr11


∂wE(x, q)
∂σ11

ff
→ ∞

σcr11 = π2 kc E
0

12(1− ν2
E)

„
h

b

«2

(20)

viscoelastic =⇒ lim
t→tcr

{w(x, t)} → ∞ or lim
t→t∗cr


∂w(x, t)
∂t

ff
→ ∞

σ11 < σcr11 (21)

However, in [35 – 37] it has been shown that small deflection linear viscoelastic analysis without any twisting results in finite
deflections for 0 < tcr and t∗cr <∞. This proof can be readily extended to the present coupled deformations. Consequently,
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alternate creep buckling definitions must be formulated. Two distinct types based on (1) strain reversal in time and on (2)
time dependent material failure criteria have been offered.

In [38] it has been proposed and successfully experimentally demonstrated that for elastic plates the buckling load
can be established by analyzing graphs of outer plate fiber strains where compressive strains due loads and tensile strains
due to bending take place. The elastic in-plane buckling load Ncr is then defined as

lim
N→Ncr

∂
ˆ
εEc (N) + εEt (N)

˜
∂N

→ 0 t = 0 (22)

This definition has been modified in [40] for creep buckling of columns and can now be applied to plates in the form

lim
t→t#cr

∂ [εc(t) + εt(t)]
∂t

→ 0 0 ≤ N11 < Ncr
11 and 0 < t#cr <∞ (23)

If thermal loads are present, then one needs to change the domain to 0 ≤ N11(t) +NT
11(t) < Ncr

11 in order to incorporate
in-plane thermal load NT

αβ effects.
Viscoelastic failure criteria, such as ultimate stresses, degrade in time independently of relaxation moduli and

failures may occur before or after any creep buckling instabilities manifest themselves. These are material failures which are
independent of creep buckling and define the life time of the structure designated as tLF . Consequently, tcr or t∗cr or t#cr
may be greater, smaller or equal than tLF [39], [40]. Indeed, in Refs. [35], [41] and [42] the Shanley & Ryder [43] interaction
or stress ratio curve approach has been used to estimate plate failures under combined inelastic deterministic stresses.

Some failure mechanisms observed in composites are substantially different from those seen in metals as for example
delamination which is a phenomenon unique to composites [4], [44] [45]. From an aerospace design analysis point of view,
one needs only to consider delamination onset because at that stage a structure has for all practical purposes failed,
particularly if it is a light weight flight structure. In [4] an expression has been formulated for the temperature, moisture
and time dependency of uniaxial composite failure stresses. An extensive review of available experimental composite failure
data is presented in [45] where such data is used to formulated deterministic and stochastic delamination failure analyses.
Experimental results indicate that uniaxial deterministic delamination onset stresses in tension and shear obey laws of the
type

σF
ij(t) =

8>>>><>>>>:
σF
ij0 −∞ ≤ t ≤ tF2

σF
ij0

"
1 −

˛̨̨̨
˛ log

`
t/tF4

´
log (tF3 /tF4 )

˛̨̨̨
˛
#

0 < tF2 ≤ t ≤ tF3

0 t ≥ tF3

(24)

where all parameters are material, temperature, moisture and uni-axial load (compression, shear, bending, etc.) dependent
(Fig. 3 ).

DISCUSSION and CONCLUSIONS

In Eq. (10) the input forces are Terms T11 (lift) and T20 (aerodynamic noise). Each force in its own right creates
a self-excited system and can result in time dependent viscoelastic panel instabilities, such as creep buckling and creep
flutter. Additionally and independently failures due to delamination, aging, cracks, etc., can take place. These failure modes
are illustrated in Figs. 4 and 5. The first plots indicate the importance of aerodynamic noise at lower flight velocities, while
flutter generally predominates at higher values. Fig. 5 shows the relative contributions to maximum panel deflections due
to aerodynamic noise, creep buckling and creep flutter. Each instability mode in turn provides limits on panel lifetimes or
survival times, unless preceded by delamination or other material failures, which have their own survival times.

As can be seen from the results displayed in the above Analysis Section, the number of candidate optimization
variables defining the designer material can be large. In Ref. [11], protocols for manufacturing polymers to order, i.e. to
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produce prescribed relaxation moduli, failure conditions, weight, cost, etc., are presented and it is shown that they still are
in their early development phase. Consequently, at this stage designer material properties serve as a guide for manufacturers
to plan for what material properties are needed to be engineered now and in the near future. In the meantime, results
obtained for designer materials serve to improve the design selection by helping to identify, based on their properties, the
“best” currently available materials to be used for particular service conditions.

Fig. 6 presents a typical example of the merits of the viscoelastic composite designer material protocols by selec-
ting proper values for the variables that produce lower delamination probabilities and longer life times than conventional
procedures based on catalogue available materials. Similar charts can be generated for optimal designer lifetimes governing
creep buckling and flutter conditions. Weibull failure probability distribution functions [46] were used in the analysis.
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Fig. 2. Five-layer functionally graded

ZrO2/Ni Co Cr AlY coating [28]
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Fig. 3. Delamination stresses [4]
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Fig. 4. Aerodynamic noise and flutter boundaries
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Fig. 5. Aerodynamic noise, panel flutter and buckling
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