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Hierarchic families of finite elements are widely used in higher order finite-element methods. Several hierarchic sets of basis functions
for nodal, edge, and face elements are proposed by different authors in scientific literature. However, no general methodology exists for
their construction. This paper presents an analysis of hierarchic families of finite elements which leads to the localization of their degrees
of freedom. From this localization, we derive an algebraic approach for the construction of hierarchic families of nodal, edge, and face
elements. The case of tetrahedral finite elements is discussed in detail.

Index Terms—Basis functions, degrees of freedom, hierarchic families, higher order finite-element methods.

I. INTRODUCTION

T HE use of hierarchic families in higher order finite-ele-
ment methods presents several advantages. First, they re-

duce the computational cost of the construction of sparse linear
systems of equations. Second, they also often lead to the setting
of better conditioned problems [13]. Third, they allow the use
of block linear solvers, such as hybrid and multilevel methods
[9], [14]. Unfortunately, the construction of such families is
not an easy task even if several sets of hierarchic basis func-
tions are proposed in the scientific literature. Most of them are
built from geometric properties of basis functions [15], [16]
or from three-term recurrences satisfied by orthogonal polyno-
mials [1], [13]. However, these approaches are heuristic ones.
Beside, some authors proposed to localize degrees of freedom
for the construction of hierarchic sets of basis functions [4]–[6],
[9]. Unfortunately, they do not provide any methodology for the
computation of these degrees of freedom. The work proposed
in this paper is directly inspired from this strategy but we derive
a simple methodology for the computation of hierarchic fam-
ilies of finite elements from it. The layout of this paper is the
following. In Section II, we recall some basic aspects of finite
elements and we explain in detail the motivations of our paper.
In Section III, an abstract theory of hierarchic families of finite
elements is proposed. We apply the results of our analysis to
the description of hierarchic families of nodal, edge, and face
finite elements on tetrahedra. Finally, we propose a symbolic
computing-based approach for the automatic generation of hi-
erarchic families of finite elements.

II. PRELIMINARIES

A. Basic Aspects of Finite Elements

Let be the set of positive integers, be a bounded do-
main in , , and be a conforming mesh of . A
unisolvent finite element [2] is a triple where is a
cell in , is a vector space of real-valued functions on of
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dimension , and is a basis of (the dual space of
). The duality product between and is denoted by .

The elements of are called the degrees of freedom of the finite
element (d.o.f. for short). We set

(1)

This definition implies the existence of a unique basis

(2)

in such that

if
otherwise

(3)

for . The elements of are called the basis func-
tions of . To each function of a functional space ,
one can associate a unique interpolate on so that

(4)

This interpolate is defined by

(5)

under the following assumptions:
1) ;
2) the definition of the d.o.f. in can be extended to .

This enables defining a global interpolate so that

(6)

for any function defined on . This global interpolate is said
to be conforming to a functional space (or -conforming for
short) if, for any two adjacent cells , , the function
defined by on and on belongs to

. We may give some precisions about the space . The space
of measurable functions satisfying

(7)

is denoted by . For , we use the notation
to denote the space . The use of nodal, edge, and face
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finite elements corresponds to different choices for the space
and different continuity properties between adjacent mesh cells.
Let be the interface between two adjacent cells and in

. The use of nodal finite elements corresponds to the choice

(8)

A function is in the space
if and only if is the same on each side of . The use

of edge finite elements corresponds to the choice

curl curl (9)

A function is in the space
curl if and only if the trace is

the same on each side of where is normal to and
denotes the cross product between vectors. Finally, the use of
face finite elements corresponds to the choice

(10)

A function is in the space
if and only if the trace is the

same on each side of where “ ” denotes the Euclidean scalar
product.

B. Motivations of This Work

Several families of finite elements in , curl and
exist in the literature [10]–[12] but they are not hi-

erarchic [7]. Several authors propose hierarchic sets of basis
functions for different types of cells in various functional
spaces. Some works are based on the combination of poly-
nomial and geometrical approaches [15], [16]. Other authors
build their basis functions from three-term recurrences satisfied
by some orthogonal polynomials [1], [13]. Unfortunately, the
genericity of nonhierarchic families is lost and these approaches
are only heuristic ones. The main reason for this is that these ap-
proaches are often dedicated to projection-based interpolations
[3]. In projection-based interpolation, finite elements are not
defined as triples but as triples . In other
words, the d.o.f. of hierarchic families of finite elements is not
described contrary to the case of classical families [10]–[12].
In addition, corresponding basis functions do not always lead
to optimally conditioned problems, and a supplementary nu-
merical orthogonalization of some higher order basis functions
is often necessary to minimize the condition number of linear
systems [17]. Nevertheless, in [4]–[6], some properties of the
d.o.f. of hierarchic families of finite elements are derived but
no technique for their computation is proposed. This method is
also used in [9]. Inspired from [4], our contribution provides a
general methodology for the computation of d.o.f. of hierarchic
families of finite elements. By identifying higher order d.o.f.
to some scalar products, we succeed in describing hierarchic
families of finite elements for the standard functional spaces

, curl and .

III. ABSTRACT THEORY OF HIERARCHIC FAMILIES

In this section, we propose localizing the d.o.f. of hierarchic
families of finite elements for any kind of conformity. For

, we consider a family of unisolvent finite elements

(11)

satisfying

(12)

We set , . The corre-
sponding d.o.f. is denoted by

(13)

The corresponding sets of basis of functions are

(14)

We assume that the family is hierarchic, that is, to say it
satisfies

(15)

In other words, first elements in are the elements of
since

(16)

for . We assume that a canonical basis
of is known. From (12), it is clear that

(17)

and any basis function can be uniquely written in the
form

(18)

Let . From (3) and (18), we obtain

(19)

for . This is equivalent to

(20)

for . This implies that the first d.o.f. of
are the respective extensions to of the d.o.f. in .
Therefore, we only need to describe the last d.o.f.
in . From (3) and (15), we obtain

(21)

for and . Since is a
basis of , (21) is equivalent to

(22)

. Thus, if a family of unisolvent
finite elements is hierarchic, conditions (20) and (22) are nec-
essarily satisfied. Conversely, it can be proved that conditions
(20) and (22) are sufficient for the hierarchy of . Condi-
tion (22) was already mentioned and used for the construction
of hierarchic families in [4]–[6], [9]. However, these authors do
not mention how to choose d.o.f. and they do not provide any
general definition of hierarchic families of finite elements in the
spaces , , and . In the next section, we give
a general description of each family by identifying the d.o.f. of
classical families of finite element to scalar products.
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IV. IMPOSING HIERARCHY TO EXISTING FAMILIES

For any open subset , , the scalar product in
, , is defined by

(23)

In the next subsection, we describe classical families of finite el-
ements by identifying their d.o.f. to such scalar products. They
exactly correspond to those described in [10]–[12]. We intro-
duce some notations for this task. Let be a mesh cell. The
d.o.f. of finite elements may be associated with each vertex ,
each edge , each face of , or itself. The length of an edge

is denoted by and the unit vector along is denoted by
. The area of a face is denoted by , and is the unit

outward normal vector on a face . Finally, the volume of is
denoted by .

A. Classical Families on Tetrahedra

Families of finite elements in the spaces , curl , and
can be described in a generic fashion. We only consider

some finite elements on tetrahedra but similar considerations
can be made for the families proposed in [10]–[12]. Let

be a tetrahedron in the mesh and ,
, be a unisolvent finite element belonging to a family

. The choice of the space depends on the choice of the
space . Following [10] and [11], we define several spaces of
polynomials. The space of polynomials of a degree less than or
equal to is denoted by , and is the space of homogene-
nous polynomials of a degree equal to . We set

(24)

and

(25)

where

(26)

Let . The d.o.f. of classical families in the spaces ,
, and will be described. They involve some

polynomial spaces which are given in Table I. If is -con-
forming, then and the d.o.f. in can be expressed in
the following form:

(27)

(28)

(29)

(30)

If is -conforming, then and the corre-
sponding d.o.f. are

(31)

(32)

(33)

TABLE I
CLASSICAL AND NEW HIGHER ORDER d.o.f. FOR TETRAHEDRA

Finally, if is -conforming, and its d.o.f. are

(34)

(35)

It is well known that these classical families are not hierarchic.
For example, the first higher order basis functions described by
the d.o.f. (31)–(33) are given explicitly in [7]. In the next sub-
section, we explain how to impose hierarchy to these families.

B. Hierarchic Families on Tetrahedra

The idea behind our approach is to modify the definition of
the classical d.o.f. in order to impose (21). Since we identified
these d.o.f. with scalar products in the space , we proceed by
orthogonalization to form new d.o.f. First, we consider nodal
finite elements. For , the d.o.f. in (27) are the same. For

and any subset of , we define as
the orthogonal space of in

(36)

Let . The restriction of on any edge (respectively,
face ) belongs to (respectively, ). Thus, choosing

, , and
, we satisfy (3), (20), and (22)

at any order : the resulting family is unisolvent, hier-
archic and -conforming on . The generalization of this
orthogonalization process in the spaces and
is obtained by following a similar approach. For example, let
us consider the case of finite elements in the space
and let . Of course, the first-order d.o.f. remain un-
changed. The restriction of (respectively, ) on any
edge (respectively, face ) belongs to (respectively,

). Thus, we choose and
, etc. The complete description

of our new d.o.f. is given in Table I. The construction process
for other mesh cells is exacly the same, except that the definition
of the space is different.

V. SYMBOLIC CONSTRUCTION

One difficulty in programming the finite-element method is
the complexity of generating higher order basis functions. In this
section, we explain how to generate them automatically. The
idea is to use the property of hierarchy to allow the symbolic
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computing of d.o.f.: it requires the implementation of an or-
thogonalization process. Then, the symbolic computing of basis
functions is straightforward considering (3) and only requires
the implementation of a dense direct linear solver.

A. Degrees of Freedom

The d.o.f. of hierarchic families of finite elements depend
on a polynomial , which belongs to the orthogonal of a poly-
nomial space in a -type scalar product. Thus, computing
d.o.f. is equivalent to computing a polynomial in an orthog-
onal space. For example, let be a set of linearly
independent polynomials in , . An orthogonal
basis of may be computed according
to the scalar product by applying the methods of
Gram–Schmidt or Householder to the set [8].
Assuming spans and

spans for some , it follows that
forms a basis of .

Thus, may be computed as a nontrivial linear combination of
the elements , . Let us remark that families of
orthogonal polynomials may also be used directly if some are
known.

B. Basis Functions

We use the notations introduced in Section III. Any basis
function , , can be uniquely
written in the form

(37)

where and . Considering (3),

we obtain that the coefficients appearing in functions are
the unique solution of the block linear system of equations

(38)

where

(39)

for , , for ,
and is the identity matrix. Then, coefficients appearing

in the functions are computed by solving another block
linear system of equations

(40)

where

(41)

for , , for and
. The block right-hand side is defined by

, for and
. In practice, basis functions are computed for a small

order . Then, they may be implemented in a finite-element code
by copying their respective expressions in a subprogram.

VI. CONCLUSION

In this paper, we describe hierarchic families of finite ele-
ments in a very general framework. Our analysis shows that hi-
erarchy is obtained from a judicious localization of the d.o.f.
of classical families of finite elements. As a consequence, the
construction of hierarchic families in the spaces , ,
and is simply performed by modifying the d.o.f. of the
corresponding nonhierarchic families previously proposed. The
localization of d.o.f. proposed in this paper leads to the setting of
a symbolic process for the explicit construction of higher order
basis functions. This process requires the implementation of an
orthogonalization method and a linear system solution only. The
characterization of d.o.f. satisfying additional properties (op-
timal conditioning, exact sequence property, etc.) is under study.
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