N

N

Identical coupled task scheduling: polynomial
complexity of the cyclic case

Vassilissa Lehoux-Lebacque, Nadia Brauner, Gerd Finke

» To cite this version:

Vassilissa Lehoux-Lebacque, Nadia Brauner, Gerd Finke. Identical coupled task scheduling: polyno-
mial complexity of the cyclic case. 2009. hal-00392744

HAL Id: hal-00392744
https://hal.science/hal-00392744

Preprint submitted on 8 Jun 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00392744
https://hal.archives-ouvertes.fr

Identical coupled task scheduling:
polynomial complexity of the cyclic case

Vassilissa Lehoux-Lebacque, Nadia Brauner and Gerd Finke

May 20, 2009

Abstract

Coupled task problems arise in connection with radar systems. For the trans-
mission and reception of an electromagnetic pulse the radar (the processor) has to
execute two tasks that are separated by some fixed time interval. Most of the com-
plexity issues for scheduling a set of such pairs of two-operation tasks have been
settled. However, the complexity status is still unknown for the identical coupled
task problem, where multiple copies of a single coupled task are to be processed. The
purpose of this article is prove the polynomial complexity of this problem in the cyclic
case.

1 Introduction

Coupled tasks were introduced by Shapiro in 1980 for scheduling the operations of a
radar [19]. The radar emits a pulse that is transmitted to a target and reflected back
to the radar, which receives the pulse. Hence the radar must process two operations per
task (emission and reception), and those operations are separated by a fixed duration.

The coupled task scheduling problem is then to process tasks on a single machine (the
radar) with each task j composed of two operations of lengths a; and b; separated by
exactly L; time units. The objective is to minimize the makespan in the non-cyclic case
(given a fixed number of coupled tasks) or the throughput rate in the cyclic case (infinite
number of tasks).

Coupled task problems belong to the wider class of scheduling multi-operation tasks,
where consecutive operations are separated by a certain time interval. In manufacturing
processes, the time that has to elapse between operations (delays, time-lags) are often
lower bounded (see for instance [12]). We shall here consider only coupled tasks with
fixed separation intervals as they apply to radar systems. There is a vast literature on
this subject, treating offline and online cases and proposing various algorithms [19, 18,
17, 15, 11, 10, 9].

Let us now consider offline coupled task problems, where a set of tasks {a;; L;;b;} has
to be scheduled on a single processor (the radar) with interleaving the coupled tasks but
without overlapping the operations. In particular, the case a; = a, L; = L, b; = b for all
7 is called the identical coupled task problem.

Recently Brauner et al. [8] have described a new application of this coupled task model.
They show that this problem is equivalent to a no-wait one-machine robotic cell problem
usually studied in cyclic mode. In Figure 1, A; is the transportation time of part j from
the input station to the machine, « is the empty return time and similarly, from M to
the output station (B; and (). For details on the equivalence, see [8]. In particular,
producing a large number of single parts corresponds to the identical part production
cycle. For this case, studying cyclic identical coupled tasks scheduling problems becomes
a more relevant application.

> Bj:

IN ouT

4
a :ﬁ

<
<

Figure 1: 1-machine robotic cell

The complexity of minimizing the makespan has been described by Orman and Potts
[16]. Even the UET problem, a; =1, L;, b; = 1 for all j, is NP-hard and algorithms with
worst-case performance ratio have been developed [1, 4]. However, the complexity status
of the identical coupled task problem remains open for both the non-cyclic case (Table 1)
and also for the cyclic case (see [2]).

Table 1: Complexities for the coupled task problem from [16]

Complexity Case
Strongly NP-hard aj; Lj; b
aj = Lj = bj
aj; = a; Lj; bj =0
aj; = a; Lj:L; bj
Open aj=a; Ly =L;bj=b
Polynomial a; = L; = p; b
aj=bj=p;Li=1L

In this paper, we concentrate on the identical coupled task problem. Notice that the input
of this problem is composed of four integers (three in the cyclic case): n, the number of
tasks, a the duration of the first operation of a task, b the duration of the second operation
and L the distance between both operations. Hence, it is a high-multiplicity scheduling
problem [6, 7] for which even proving that it belongs to NP might be difficult. Indeed, a
description of a schedule (giving for instance the starting time of each of the n tasks) is
not polynomial in the input size (which is, in our case, logn + loga + logb + log L). Ahr
et al. [2] propose an algorithm linear in n but exponential in L. This algorithm has been
adjusted to the cyclic case in [2] showing that the cyclic problem corresponds to finding
the minimum mean cycle in a certain graph of 0-1 patterns (see also [14, 8]). This problem
is polynomial in the size of the underlying graph [13] which, however in our case, has an
exponential number of vertices. The computational experience in [8] shows, even with a
significant reduction of the number of vertices, that for a = 5, b = 3 and L = 41, we have
almost 9 000 vertices in the graph and the solution takes almost an hour computation
time on a standard PC. Increasing L to 43, results in more than 14 000 vertices and we
were not able to solve this instance with such an approach. In [3] it has been shown that
for fixed a, b and L the optimal solution can be found in constant time. The constant is

highly exponential in L and does not yield any practical computation. Note that one gets
an O(logn) algorithm, including the input, which improves the O(n) running time in [2].

We also want to mention that extensions of the identical coupled task problem turn out
to be NP-hard. In [5] it is shown that the addition of strict precedences of identical
coupled tasks {a = 1; L;b = 1}, i.e. ordered pairs of tasks are given that are not allowed
to interleave, makes the problem NP-hard. Similarly, the problem {a; L;b} becomes NP-
hard if one adds a task-compatibility graph where two coupled tasks are compatible if
they may interleave [20].

The identical coupled task problem is indeed very intriguing. It appears simple: a single
type of oriented geometric object (the coupled task) is to be packed linearly on the real
line in an optimal manner. The reason why the complexity status is still open after so
many years seems to be that one does not know enough about the structural properties
of the optimal solution patterns.

We first describe in Section 2 a class of solutions for the cyclic identical coupled task prob-
lem for which we determine the optimal solution in polynomial time. Then, in Section 3
we show that the optimal solution of this class is also optimal for our general problem.
The cyclic identical coupled task problem is therefore solvable in polynomial time.

2 A class of solutions

It is easy to construct feasible solutions for the cyclic identical coupled task problem with
given integers a, b, L. Take for instance a = 5, b = 3 and L = 43, a problem that could
not be solved by the graph method. One can always pack, as long as possible, coupled
tasks in succession without inserting unnecessary idle times. This would give the pattern
aaa . ..abbb...b, which can then be repeated. For the example, there would be 9 a’s, an
idle time of 3 units, followed by 9 b’s (which are separated by a — b = 2 units). We have
placed 9 coupled tasks on the length 91 (the ratio is then 10%).

The previous solution is working in both modes (cyclic and non cyclic). In Figure 2,
we give another solution that is rather surprising and very simple. It turns out later
that this is in fact an optimal solution. Note first that a cyclic solution is based on an
infinite number of tasks. One is therefore looking for a feasible pattern of a’s and b’s,
which can be attached identically and repeatedly to the left and the right to a copy of the
given pattern. Thus in the cyclic mode there is no particular starting and finishing phase
of the solution. The solution is somewhat unexpected since the placement is partially
at fractional starting times for the coupled tasks. It is interesting to notice that such
fractional placements cannot be detected by the graph methods in [2, 8, 14, 3]. Here we
have placed one coupled task in the cyclic sense on 8.5 units which is composed of ’a’, an
idle time of 0.5 units and 'b’ (ratio of 81).

In this section, we construct a class £ of schedules for which we determine the optimal
solution in polynomial time for given positive integers a, b and L.

Without loss of generality, we assume that a > b (the problem is trivial for a = b and
if b > a we can reverse the optimal cycle). Now consider a cyclic solution (in short, a
cycle) C. Each coupled task on C can be described by its window W = [a, L,b] giving
the sequence S of a-terms and b-terms that are placed in the L-section of W. We will

e -

Figure 2: A feasible cyclic solution for a =5, b =3 and L = 43

also assume that L > a + b since otherwise the problem is trivial: each task window can
contain at most one operation on its L-section.

As an illustration, let’s use S = aabbbabaaabbbbab. Notice that two consecutive b-terms
are at least separated by a — b time units. Equality with (a — b) occurs in fact if the
corresponding a-terms are consecutive without idle time. Therefore, the space utilization
of the first b-term of two consecutive b-terms is at least a on the L-section of the window.
Let us distinguish the two versions of the space length a: we keep the notation a for the
a-term of a starting coupled task and we use the notation a for the b-term of a coupled
task, followed by the idle time a — b. Then, our given sequence utilizes at least the space
aaaababaaaaaabaa. Notice that the final b transforms to the space a since it is followed
by the final b of the coupled task of W.

Writing the sequence for the space utilization in the form aaaa(ba)(ba)aaaaa(ba)a, we

first count the ba-terms. There are § = 3 such terms. Then we count the remaining

a-terms and a-terms. There are a = 10 such terms. In this way, we get, for each window

of C, a solution of the constraint set

{L:aa+ﬁ(a+b)+’y (1)
o, 0,720

The sequence S consists of a + 23 elements. We call («, 3,7), or in short («, 3), the
profile of window W (where ~ is the slack variable). Usually, different task windows of
a cycle will have different profiles. Let us define the initial window W{ of a given cycle
C as a window that contains the most a’s. Let Wi be the window that starts with the
last a-term in window Wjy. The intersection Wy N Wy can contain some idle time €, but
there is no additional b-term. Otherwise there would be a window with more a-terms
than in Wy. The union Wy U W has the total length of (2L + a + b — €) units.

It is somewhat remarkable that, for any feasible solution («, 3) of (1), one can construct
cycles so that every task window W of these solutions possesses the same profile («, 3).
We shall now describe in detail this construction.

2.1 Construction of the feasible cycle C(a, 3)

For a given profile (o,), we normalize the order of elements in the initial task window

as follows:
a a®(ba)’ b

We extend this sequence for Wy U W7 in the following way:

Z = a®*1(ba)’b* 1 (ab)?

Here the term a®*! is belonging to ¥**! and the a’s of (ba)? are combined with the b’s
of (ab)? to form the coupled tasks. This means that we try to place exactly (1 + a + 23)
coupled tasks, in the cyclic sense, in Wy U W;. As mentioned before, two consecutive b’s
are separated by at least (a — b) idle time units. The sequence hence transforms to

a®*(ba)®a (ba)’b

as far as space utilization is concerned. So far, we just defined the letter-pattern Z (also
called letter-cycle). To get a valid feasible cycle, if it exists, we have to insert idle times in
the right places and eventually use a succession of several of these letter-cycles for a single
cyclic solution. But we can already verify, from the last sequence, that every window does
in fact have the same profile (a, ().

Without any restriction, we can assume that all coupled tasks of our cycles are left-shifted
as much as possible. We will now give the construction of a cycle that has the same profile
(ar, B) in every window.

This cycle is denoted by C(«, 3,7) or in short C(«,), and may eventually be based on k
repetitions of the letter-cycle Z. The value of k has to be found. In order to get a correct
cycle, also the pattern of idle times has to repeat exactly. Let us now define the class
L of cycles that consists of the set {C(«, 3): (o, 3) is a profile}. We have assumed that
the placements are left-shifted as much as possible. When starting the cycle with the
first letter-cycle, we don’t know in advance the best placements of the b-terms since they
belong to earlier placed coupled tasks. We consider the initial window W, which by
definition contains the most a’s.

For the construction, we place the idle times in front of the ba-terms (e; to eg) in W,
and additionally an idle time (¢) in front of the b-term of the initial coupled task in order
to equilibrate correctly the total idle time to v as required. We assume that all a-terms
are scheduled without idle time.

With this assumption, the vector of idle times in the first window W} is of the form
[€1,€2,...,€83,€ :7—267;]

Remember that after W, all coupled tasks are systematically placed as early as possible.
Therefore, all following idle times in the sequence Z, Z, ... are uniquely determined as a
function of ¢; and e.

Now consider an arbitrary window in the sequence. We have the intrinsic idle time of
length (a — b) between two b-terms, which we write as ab. The other idle times may be
obtained as follows.

Rule 1 (idle time pattern) In the given window, one or several consecutive a appear
necessarily in the form ...aaa...a(ba).... With the earliest placement principle for all
a’s, the only (non-intrinsic) idle time in this sequence is located in front of the first a-term.
This idle time may be associated with the subsequent ba-term. Again, one obtains in this
way idle times €1,...,€g and e.

Using Rule 1, the idle times for the sequence Z, Z, ... take the following form

Ry = | e €& € ... € € €1 ... €3_2 €31 €3]

Ry = [€ € € ... €1 €3 € ... €3-3 €3-2 €3-1 |
R3 = [€ € € ... €32 €-1 €3 ... €3-4 €3-3 €3_2 |
Rgy1n = [€ € e ... ¢ €1 € ... €3-1 €3 €]
Rgo = Ry

We define the cycle time A(C) of a cycle as the ratio of the cycle length divided by the
number of coupled tasks in C. We obtain for C(«,) after (3 + 1) repetitions of Z the
cycle length

(B+1)(2L+a+b)—(e+eg+...+e)=(F+1)2L+a+b)—~
on which we have placed (8 + 1)(1 4+ o + 2(3) coupled tasks.

Proposition 1 The cycle time \(C(a, 3)) is given by the formula

(B+1)2L+a+bd) -~y
B+ 1)1+ a+20)

A(C(a,) =

independent of the choice of ¢;.

We call two cycles equivalent if they have the same cycle times. According to Proposition 1,
the cycles C(«, 3) are equivalent for all feasible ¢; (i.e. ¢; > 0 for all i and > €; < 7).

A special choice of ¢; is to set ¢, = € = # for all 5. Then we get Ro = R; and we
obtain the cycle C(«, 8) in compact form, based on a single letter-cycle Z, which requires
however a rational placement of the coupled tasks. Otherwise, we can use the equivalent
cycle C(a, B) above with (8 + 1) letter-cycles. This case is particularly interesting. It
allows the construction of different cycles, for instance € = v,e; = --- = eg = 0. This

gives an integer placement of all coupled tasks, but at the expense of very long cycles.

As shown in [3], using a linear programming formulation with a totally unimodular coef-
ficient matrix, one can always find the best solution for a given sequence of coupled tasks
with integer placements. For our example (a = 5,b = 3, L = 43), the profile (0,5) and
e=v7=3,¢=0(i=1,2...5), we get integer placements for all tasks, but the cycle
length increases already to 561. These rapidly increasing lengths are certainly one of the
reasons why their detection is so difficult if the graph approach is used [2, 14, 8, 3].

The particular cycle C(0, 3) possesses additional symmetries. Its letter-pattern is simply
a succession of ‘ab’. Starting again with window Wpy, we follow here the idle times in
the next (non overlapping) adjacent window W{. It is easy to see that the idle times
[€1,€2,...,€3, € of Wy repeat identically in W{. We get, therefore, additional equivalent
cycles of the length of a simple window, a + b+ L, where we have placed (5 + 1) coupled
tasks in the cyclic sense. Hence we can express the cycle time, equivalently to (2), in the
form

a+b+ L

NC©.8) =

Taking finally ¢; = ﬁ for all 4, one gets the most compact form of the cycle C(0, 3),
which is simply the pattern (a, #, b) as in Figure 2.

2.2 Finding an optimal solution in £

We say that cycle C; dominates Cs if the cycle times verify A(C1) < A(C2). The dominance
is strict if A(C1) < A(Ca).

Lemma 1 A cycle C(a, 3,7) is strictly dominated by the following cycles:

1. Cla+1,B8,y—a)ify>a
2. Cla—=1,8+1,v=b)ifa>1landa>~v>Db

Proof. In order to show [I], compare the cycle times of cycles C(«, 5) and C(a + 1, 3).
Likewise, [2] is obtained by comparing cycles C(a, 3) and C(aw — 1,5+ 1). O

Lemma 2 A cycle C(a, 3,7) is dominated by

5. Cla+2.6 -1y~ (a—b) i 621 and~r> (64 1)(a—b)
4. Cla—=2,0+1,y+(a=b)) ifa>2andy < (B+1)(a—0)

This dominance is strict if v > (84 1)(a —b) in [3] and v < (B4 1)(a —b) in [4].

Proof. Setting o' =a+2and f/=p—1andy =~ —(a—>b) in [3] and ¢/ = a — 2,
B =p3+1and v = v+ (a—0b) in [/], we have for both cases o/ + 20 = a+24. A
glance at the cycle time (equation (2)) shows that C(«, 3,7) is dominated by C(</, 5',7")
whenever

!/

T 7
g+17 6+1

This inequality is easily verified. For instance, for [3]/ we have

Y(B+1) =B +1) = (y—(a=b)(B+1) -1
= 7= (F+D(a-b)
0

v

g

The domination rules imply that all cycles C(«, 3) with o > 2 and > 1 are dominated.
Therefore, one can find an optimal cycle among the ones of the form C(¢, 3), ¥ € {0,1}
and C(«,0).

Let us denote by [u] and |u| the integer part of u rounded up and down, respectively.
We get immediately the following characterization.

Proposition 2 An optimal cycle CV = C(aN, BN, ~N) in L is one of the following

() ¥ = € {01}, BV = || 9 = L—va—(a+0) | Ly withw =1
L—(a+b) L%"‘I’J > a and ¢ = 0 otherwise, provided that v < (B~ +1)(a—b); else

(b) oV = L%J, BN =0, ’yN:Lfang with b > N > a —b.
We obtain directly the following result

Theorem 1 Cycle CV is optimal in the class £ and can be determined in polynomial
time.

Notice that the profile of CV is obtained by simple divisions, the cycle is presented in
compact form, and the cycle time is obtained by a simple formula. Hence they are
calculated in polynomial time in the input size.

So far, we have considered the particular letter-cycle Z, associated with the profile (o, 3).
Let us call in general a cycle that has the same profile (a, 3) in every window an («, [3)-
profile extension. Our cycle C(a,) is such a profile extension. Notice that, starting with
Z, the following windows of C(a, 3) follow different orders of the a-terms and ba-terms.
Of course, one may start the cycle with any of these windows. The resulting cycles are
all equivalent to C(a, 3).

A general realization of a window with profile («, 3) with & > 0 contains in some order
the terms {a®,@*2, (ba)’} where a; + ap = o and @ is a ‘b’ followed by the intrinsic idle
time (@ —b). One may define the corresponding letter cycle Z' as before and the previous
theory will be the same, since applying Rule 1 for the idle times does not depend on the
order of the different terms. Consequently, all these cycles are equivalent to C(«, [3).

Lemma 3 The cycle C(a, 3) is an optimal (o, B)-profile extension.

Proof. As explained, we can, without restriction, refer to the letter-cycle Z. It remains
to be shown that further idle times can not improve the cycle. There are two possible
additional idle time insertions.

1. Idle time between two consecutive a’s: Since the corresponding b-terms are already
separated by (a — b), the left-shift assumption implies that there must be at least
one additional ‘a’ between the two b-terms. This, however, is impossible, since the
profile would have changed.

2. Idle time inside a ba-term: Let C be any («, (3)-profile extension, based on the letter-
cycle Z. We compare C with C(«,), taking this time the cycle in the form with
integer placements (i.e. (54 1) repetitions of the letter cycle), setting all ¢; = 0 and
e = 7. The initial letter-cycle of C(a, 3) is left-shifted so that the first idle time of
size v occurs just before the end of the initial coupled task. Then all a’s are placed
as early as possible. Consequently, corresponding a’s of cycle C cannot occur earlier
than the a’s in C(«, 3). This implies the lemma.

3 Optimal solution of the identical coupled task scheduling
problem

From the dominance rules of Lemmas 1 and 2 and their proofs, we can see that the profile
(aN BN) is in fact an optimal solution of the integer program

max «+ 203
s.t. L=aa+ f(a+b)+ (3)
a,B8,7v>0 integer

This is true since every optimal solution C(c, 3) of (3) with # > 1 and o > 2 can be
reduced to CV without ever decreasing the number of elements o + 23 (i.e. by using
uniquely the dominance rules [3/ and [4)).

Consequently, each window W of CV with profile (o, 3V) contains the maximum possible
number of elements M = oY + 23, We call such windows tightly-packed and say that
a cycle is tightly-packed if all its windows are tightly-packed. Notice that there is always
such a cycle for given a, b and L since C is tightly-packed.

We also call a profile tight if it is an optimal solution of (3). Our cycles C(«, 3), whose
profile (v, 3) is tight, are tightly-packed cycles, and the cycle CV is the best tightly-packed
cycle in this set.

One may verify that a profile (o, 3) is tight if, and only if, it satisfies

a=M-—23 max{O, P{Ia__fugﬁg VjJ (4)

In particular, the profile (¢, [M/2]) is tight, where ¢ = 0 if M is even and ¢ = 1 if M is
odd. The profile of the form (a,0) may be tight or not.

Theorem 2 The cycle CN solves the cyclic identical coupled task problem, and this prob-
lem s therefore polynomially solvable.

The proof is based on several lemmas.

Lemma 4 All neighboring tightly-packed windows of a feasible cycle have necessarily the
same profile.

Proof. Consider two neighboring tightly-packed coupled tasks. Then we have two
consecutive a-terms that are only separated by a certain number = of b’s. Observe that
the cases ¢ > M + 1 and x = M cannot occur.

Let x = M + 1. The two coupled tasks are non-overlapping and the second must contain
exactly M = x — 1 a’s on its L-section. Both windows have the same profile.

If x = 0, then we know (from the proof of Lemma 3) that the two a-terms are following
each other without any idle time. Otherwise for left-shifted tasks, the second window
would contain more than M elements, which is impossible. Again, both windows have
the same profile.

Let 1 < 2 < M. Then we have two overlapping coupled tasks. The two windows are
tightly-packed. Hence we must also have exactly = elements between the ending b-terms
of these windows. By construction, these x elements can only be a’s. Then both windows
have necessarily the same profile: exactly one ba-term from the first window disappears
in the second window, but exactly one new ba-term is created. O

We get immediately the following result.
Corollary 1 All tightly packed cycles are necessarily profile extensions.

With Corollary 1, Theorem 2 seems to be quite natural since CV is the best tightly-
packed cycle. But to complete the proof one has to exclude all “irregular” cycles where
only pieces of tightly-packed cycles are patched together. The remainder of the article is
devoted to this issue.

Consider an arbitrary feasible cycle C. We define a block B of C as a sequence of exactly
2(M + 1) consecutive elements. The idle time following the last element of a block is
to be included. We call a block tight if its sequence of elements follows the pattern of
some («;, 3;)-profile-extension for a tight profile (o, 5;). Such a block contains exactly
(14 i +206;)) = M +1 terms ‘a’ and (1 4+ o; +205;) = M + 1 terms ‘b’. The length |B| of
a tight block B satisfies |B| < (2L + a + b). The actual length, based on the tight profile
(i, ;) may vary from 2L +a+b—; to 2L+ a+b. For the tightly-packed cycle C(«;, 5;)
in its compact form each block is a complete cycle of length 2L +a + b —~; /(58; + 1).

Conversely, suppose B is a block with length |B| < 2L+ a+b. 2(M + 1) is the maximal
number of elements that can be placed on (2L + a + b) units and this is only possible
if the windows of B are tightly-packed. But then these windows have the same tight
profile (Lemma 4) and B follows the pattern of some tight profile-extension. Note that
two consecutive tight blocks must have the same tight profile, using again Lemma 4. All
blocks B having length |B| > (2L + a + b) are called non-tight. For the following, we
reserve the index i = 0 for the tight profile of the cycle CV. We take C in its compact
form with the cycle and block length 2L +a + b —70/(f + 1). This ensures that C" is a
feasible cycle on any integer number of blocks. We also set C; = C(ay, 3;).

We call a cycle C compact with respect to some chosen starting window, if one cannot
take out a window and without any change and readjustment, insert it earlier in C. A
compact version of a cycle C is dominating C. Therefore, it is sufficient to consider only
compact cycles.

We want to consider the (compact) cycle C as a sequence of blocks. We take in general
the blocks, defined above, but with one exception. This is the case where CV possesses
the tight profile (0, 8y) and this profile also occurs in C. Note that in this case, we only
have 79 < a, whereas one has v; < b for all other cycles C;. The cycle Cy = C(0, By) may
appear in C with any idle time distribution €; and CV is the compact form of Cy, based
on the cycle pattern (a, (ﬂowiil)’ b). These cycles have additional properties. We know that
they possess a further cycle of the length of a single window, a + L 4+ b, where they place
exactly (M +2) elements. In this particular case, we use reduced blocks with only (M +2)
elements, and hence both cycles, CY and Cy, have the identical length (a + L + b) for such
reduced tight blocks. We may take, if necessary, a multiple of C to get an integer number
of complete standard and reduced blocks.

10

Proof of Theorem 2. Let a cycle C be given and let us consider the block decompositions
of C as defined above. A block decomposition is not unique since one can change the cut-off
points, which might modify its structure.

1. If there is a decomposition where all blocks are non-tight, then CV as well as all
other tightly-packed cycles C; are strictly dominating C. This class contains for
instance all cycles where none of the windows is tightly-packed.

2. If there is a block decomposition where all blocks are tight, then C is a tightly-packed
cycle and C is dominating C (Lemma 3, Corollary 1, Theorem 1).

3. Now suppose C is partially tightly-packed, which means that for all possible block
decompositions there are tight and non-tight blocks. Then decompose C into several
B-D-block sequences of the form By,...,By; D1,...,Dy, u > 1, and v > 1 where
all B-blocks are tight and all D-blocks are non-tight. The D-blocks are there to
carry out the transition from one tight profile to another tight profile. According
to Lemma 4, a direct transition is impossible. We also know that all windows of
the B-blocks have the same tight profile. For this case, there might be the chance,
although rather remote, to have very few B-blocks, much less than in a full cycle,
and gain - units, do a very efficient transition and beat this way the tightly-packed
cycles. The technical difficulty comes from the fact that the lengths of tight blocks
only possess an upper bound (2L + a + b).

Theorem 2 is established if the cycle CN performs better than C on each of the B-D-
block sequences. Although CV is the best tightly-packed cycle, these cycles have different
cycle lengths, which will influence their performance on the B-blocks, whose number
may vary. The standard blocks have the reference length (2L + a + b). Let us define the
deviation A(C,v) from the total reference length v(2L+a+b) of a cycle C on v blocks. By
definition, A(C,v) < 0 on v consecutive tight (standard) blocks and A(C,v) > 0 on v non-
tight blocks. In particular A(CN,v) = —v(ﬂgij’rl) and similarly A(CY,v) = A(Cg,v) = 0
on the reduced blocks for ag = a, = 0, where the reference length is (a + L + b).

Now consider any B-D-block sequence, where the B-blocks have the tight profile (ay, Gi)
for some k. Let us use the notation A(C,Tot) for the deviation of the total number of
blocks in the entire B-D-block sequence.

Theorem 2 is established if we can show that
A(CN, Tot) < A(C,Tot) (5)

for-each B-D-block sequence. To get this result, we shall compare with the deviation
A(Cg, Tot) which can only perform better than the actual (ay, B)-profile extension in C
on the B-blocks and then on the entire B-D-block i.e. A(Ck,Tot) < A(C,Tot).

Case 1 (Reduced blocks) This refers to the case ag = o = 0. We know that CV and
Cy, perform identically on the reduced B-blocks, i.e. A(CN,u) = A(Cg,u) = 0 and CV
performs better than C on the D-blocks, which implies directly inequality (5).

Case 2. Standard blocks (ag # 0 or a # 0). It remains to prove (5) for this case. First
it is shown that C"V is superior to C;, on a complete cycle of Cj.

11

Lemma 5 Suppose ag # 0 or ap # 0 (Case 2). Then the inequality A(CYN, By + 1) <
A(Cy, B + 1) is satisfied.

Proof. We show this property by treating separately the two different forms that CV
can take.

1. Consider the case where (ag,0) = (M,0) is an optimal tight profile so that CVV =
C(M,0). Using Lemma 2, its proof and Proposition 2, we get all tight profiles:

(ai, Bi) = (o —2i,4) satisfying v; = 0 +i(a—b); v > (Bi+1)(a—b) = (i+1)(a—Db)
for all i > 0 satisfying M — 2i > 0. After a complete cycle of C(ag, Ok), we get:

ACN, By +1) = A(Cr, B +1) = —<m+1>ﬁ+w
—(k+ 1)y + (v0 + k(a — b))
= —k(yv—(a—0))

< 0.

2. Suppose now that (v, 3o) is an optimal tight profile, i.e. CV = C(3, Bp), where 1 is
0 or 1. Then all tight profiles are of the form (o, ;) = (¢ + 24, 5o — i), ¢ > 0. From
Lemma 2 and Proposition 2, one gets the following information:

vi < (Bi +1)(a —b);
¥i =0 —i(a —b) > 0;
v < b, except vg < a if ¥ = 0.

We obtain
+1
Bo+1
(Bo+1—k)vo
;N —k(a—0
Bo+1 0 (a—10)
k

[(Bo + 1)(a —b) — 0]

Bo+1
0.

IN

g

Using Lemma 5, it is sufficient for the given B-D-block sequence By, ... By; D1,... D, to
assume that u < G — 1.

Lemma 6 The following inequalities are valid for u < B — 1:

AC,u+1)>0 if ap #0 and A(C,u+1) > b—a for a =0 and ap # 0. (6)

Let us take Lemma 6 for granted and finish the proof of Theorem 2. The case ap = ag =0
has been settled earlier (Case 1). We want to show that A(CY,u + 1) < A(C,u + 1) for

12

Case 2. This is obviously true if o, # 0. There A(CY,u + 1) is negative. Now suppose
that aj, = 0 and CV has the profile (ag,0). Then b > v9 > a — b and A(CN,u + 1) =
—(u+1)7 < =0 < —(a—b), which implies again A(CY,u+1) < A(C,u+1). Continuing
with the D-blocks, finally shows (5) A(CY, Tot) < A(C,Tot), thus terminating the proof
of Theorem 2.

It remains to show the validity of Lemma 6.

Proof of Lemma 6. We shall compare the length of the first D-block D; with the tight
block By,41, where we just continue with the profile (ag, 8;). One can observe that the
change one can make to get from B, to D; is to drop at least one ‘a’, i.e. to take out
at least one coupled task and start it later, thereby adjusting the rest of the sequence.

The proof will be done by listing several properties and subcases. Let us also remember
that the underlying partially tightly-packed cycle C is compact.

a) For the transition from B,y; to D; in a compact cycle, one never drops an ‘a’ that
belongs to two consecutive a’s in Byy1.

Consider such a sequence aa — — — b(idle=a — b)b. Suppose for instance that one
drops the first coupled task. If nothing is inserted, one could instead place one of the
following coupled task into this position, contradicting the compactness of the cycle
C. The other possibility is to drop the first ‘e’ and start a new ‘a’ in the place of
b(idle=a — b). Also this coupled task could be advanced to the former position, which
is again impossible for a compact cycle. We conclude that an ‘a’ may only be dropped
if it is between two b’s. This also implies that dropping an ‘a’ leaves an incompressible
additional idle time of a units.

One may have CY = C(M,0). But whenever C; = C(M,0), no transition to a non-
tight block is possible in a compact cycle C, according to a), i.e. C = C which is not
possible; C was supposed to be only partially tightly-packed.

We want to consider the structure of cycles C, in By11 and C in D;. Let al be the
first ‘a’ in Byy1 and bf its b-term. af may be preceded in B,1 by x b-terms. We can
exclude the cases x = M + 1 and x = M, which lead to C; = C(M,0). Then we get
the structure displayed in Figure 3 with 0 < x < M — 1, where Y is a sequence of
(M —1—2z) a’s and b’s and Y is the dual sequence (‘a’ is replaced with ‘b’ and vice
versa).

Bu+1

T T

A — |~
bdfvwya. avfaYlb. b

Figure 3: Structure of B,

b) If the inequality
|D1| = |Buyya| + b (7)

is verified, then (6) is valid.

13

We know that Cj is at least as good as C on the B-blocks (Lemma 3) and will gain
exactly -y, on one complete cycle. Remember that the cycle length is equal to (Gx +
1)(2L+a+b)—~. Using (7), we get A(C,u+1) > —y,+b and (6) follows immediately.

If two or more a’s are dropped in By,1, then (6) is verified.

In this case, D; contains at least 2a idle time units, implying (7) since then |D;| >
(2L + a + b) + a. Consequently, we are left with the case where exactly one single ‘a’
is dropped in By41.

Only the coupled task (af, /) is dropped.

Let us take out (af bf). Then x > 1 since = 0 would extend B, by af units and
B,, would no longer be tight. Not more than one extra ‘a’ can be inserted in the place

of bf. The first ‘b’ following B, remains in fixed position and has to be included in
D;. Thus (7) is satisfied.

A single ‘@’ different from af is dropped from B,.

Now take out a coupled task T = (a9,b9), different from (af,b/), and start it later,
thereby adjusting the rest of the sequence. There are several possible positions for 7"
the b-part of T may fall outside the block B, 1, or it is located inside. In any case,
one may at the best start an extra ‘a’ at the position of 49. But as long as the first ‘b’
following B, is different from b9, one obtains (7) as in d).

However, if this ‘b’ belongs to T', then B, 11 terminates with ‘a,id’ (inside B,1)” and
‘b9’ (outside By+1), where id is the idle time in front of b9. If b9 is followed by a ‘b,
the inequality (7) is implied as before.

Now let b9 be followed by an ‘a’. In this case, (7) may not be fulfilled. This depends
on the size of id. A glance at the idle time pattern of C; shows that one can gain at
most an additional idle time (75 — ¢d) before the end of a complete cycle (u+1 < f).
In Dy two a-terms may be shifted into (id,b9). Then we have

AC,u+1) > —(y —id) + (2a — (id + b)) = =y — b+ 2a >0

for all id and (6) is valid.

This completes the proof for all possible cases. In fact, it has been shown that C% is
strictly dominating all partially tightly-packed cycles.

4

Conclusion

In Ahr et al. [2], Table 2, the minimum mean cycle times have been computed for small
values (a < 10, b < 5, L < 30), using the graph method. The correctness of their results
can now be verified.

They also present in their conclusion a conjecture for the cycle times in the very special
case b = 1, which is as follows:

“;ﬁ%’: if L=-1 mod (a+1)
a+1
L“ngi]rfl otherwise
at+1

14

Also this formula is correct using (2). Notice that the case in Proposition 2a) applies.
Setting 8 = | -1+ |, the optimal profile is (a, 3,7) = (1, 8,0) whenever L = —1 mod (a +

a+1

1), otherwise the profile (0,3, < a) is optimal.

Having established the polynomial complexity for the cyclic case, it remains the finite
problem, where n identical coupled tasks have to be placed optimally. If n is very large,
the optimal schedule will have to follow in the "middle section” the optimal cyclic con-
figuration. However the starting and the finishing part of the schedule will in general
depend on n.

References

[1]

2]

A. A. Ageev and A. E. Baburin. Approximation algorithms for UET scheduling
problems with exact delays. Operations Research Letters, 35(4):533 — 540, 2007.

D. Ahr, J. Békési, G. Galambos, M. Oswald, and G. Reinelt. An exact algorithm
for scheduling identical coupled tasks. Mathematical Methods of Operations Research
(ZOR), 59:193-203, 2004.

Ph. Baptiste. A note on scheduling identical coupled tasks in constant time. Technical
report, private communication, 2009.

J. Békési, G. Galambos, M. Oswalda, and G. Reinelt. Improved analysis of an
algorithm for the coupled task problem with UET jobs. Operations Research Letters,
37(2):93 — 96, 2009.

J. Blazewicz, K. Ecker, T. Kis, and M. Tanas. A note on complexity of scheduling

coupled tasks on a single processor. Journal of the Brazilian Computer Society,
7(3):23-26, 2001.

N. Brauner, Y. Crama, A. Grigoriev, and J. van de Klundert. A framework for
the complexity of high-multiplicity scheduling problems. Journal of Combinatorial
Optimization, 9:313-323, 2005.

N. Brauner, Y. Crama, A. Grigoriev, and J. van de Klundert. Multiplicity and
complexity issues in contemporary production scheduling. Statistica Neerlandica,
61(1):75-91, 2007.

N. Brauner, G. Finke, V. Lehoux-Lebacque, C.N. Potts, and J. Whitehead. Schedul-
ing of coupled tasks and one-machine no-wait robotic cells. Computers and Opera-
tions Research, 36(2):301-307, 2009.

C. Duron. Ordonnancement en temps-réel des activités des radars. PhD thesis,
Université de Metz, 2002.

M. Elshafei, H. D. Sherali, and J. C. Smith. Radar pulse interleaving for multi-target
tracking. Naval Research Logistics, 51:72-94, 2003.

A. Farina and P. Neri. Multitarget interleaved tracking for the phased radar array.
IEE Proceedings F, 27:312-318, 1980.

15

[12]

[13]

[14]

[15]

[16]

J. N. D. Gupta. Comparative evaluation of heuristic algorithms for the single machine
scheduling problem with two operations per job and time-lags. Journal of Global
Optimization, 9:239-250, 1996.

M. Karp. A characterization of the minimum cycle mean in a digraph. Discrete
Mathematics, 1978.

V. Lebacque. Théories et applications en ordonnancement : contraintes de ressources
et taches agrégées en catégories. PhD thesis, Université Joseph Fourier, 2006.

D. J. Milojevic and B. M. Popovic. Improved algorithm for the interleaving of radar
pulses. IEE Proceedings F, 139:98-104, 1992.

A.J. Orman and C. N. Potts. On the complexity of coupled-task scheduling. Discrete
Applied Mathematics, 72:141-154, 1997.

A. J. Orman, A. K. Shahani, and A. R. Moore. Modelling for the control of radar
system. Computers and OR, 25:239-249, 1998.

A. K. Shahani, A. J. Orman, C. N. Potts, and A. R. Moore. Scheduling for a
multifunction phased array radar system. Furopean Journal of Operational Research,
90:13-25, 1996.

R. D. Shapiro. Scheduling coupled tasks. Nawval Research Logistics Quarterly,
27(2):489-497, 1980.

G. Simonin, B. Darties, R. Giroudeau, and J.-C. Koénig. Isomorphic coupled-task
scheduling problem with compatibility constraints on a single processor. In MISTA,
2009.

16

