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APPROXIMATION OF BOUNDARY CONTROL PROBLEMS ON
CURVED DOMAINS. II - THE DIRICHLET CASE∗

EDUARDO CASAS† AND JAN SOKOLOWSKI‡

Abstract. The influence of small boundary variations of the domain on optimal controls is
investigated in this paper. The domain variations are governed by a small parameter h → 0. In a
previous paper we have studied the Neuman control problem. In this paper, the Dirichlet control
problem is considered. The optimal solutions are compared between the problems defined in the
curved domain Ω and the polygonal domains Ωh, in the norm defined on the fixed boundary Γ = ∂Ω
of the curved domain. To this end, an appropriate parametrization of the boundaries is introduced,
and a one-to-one mapping between the boundaries Γ and Γh is employed. Error estimates of the
order h in the norm on the fixed boundary Γ are derived for the difference of optimal controls.

Key words. Dirichlet control, error estimates, semilinear elliptic equations, second order opti-
mality conditions

AMS subject classifications. 49J20, 35J65

1. Introduction. In this paper we study a Dirichlet control problem (P) defined
on a curved domain Ω. To solve numerically this problem, usually it is necessary to
approximate Ω by a new domain (typically polygonal) Ωh. Our goal is to analyze the
effect of the domain change on the optimal control. More precisely, a new optimal
control problem (Ph) in Ωh is defined. The convergence of global or local solutions of
problems (Ph) to the corresponding local or global solutions of (P) is investigated for
the parameter h tending to zero. We also derive some error estimates. We restrict our
study to the case of a convex domain Ω ⊂ R2 approximated by a polygonal domain Ωh,
h being the length of the biggest edge of Ωh. A family of infinite dimensional control
problems (Ph) defined in Ωh is considered and the solutions of (Ph) are compared
with the solutions of (P). In this way, the influence of small changes in the domain
on the solutions of the control problem is analyzed. The case of a Neumann control
problem is studied in [6].

In this paper we do not perform the numerical analysis of the optimal control
problems. We refer the reader to the related papers, [5] for the numerical discretization
of a Dirichlet control problem in the case of a polygonal domain and [7] for the analysis
in curved domains.

Let us describe the content of the paper. In §2 control problem (P) is introduced
and analyzed. In particular, the second order sufficient optimality conditions are
established. In spite of the fact that the cost functional is not of class C2 in L2(Γ),
we prove that the standard sufficient optimality conditions imply that the control is
a strict local minimum in the L2(Γ) norm. This is an improvement of the known
results where the optimality is established in the L∞(Γ) norm. Approximations Ωh of
Ω are defined in §3 along with control problem (Ph). In subsequent §4, the analysis is
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2 E. CASAS AND J. SOKOLOWSKI

performed and paper is completed with the full proof of the new error estimates in §5.
The second order sufficient optimality conditions are a crucial tool for the derivation
of error estimates.

2. Control Problem (P). The following control problem is considered in this
paper

(P)



















min J(u) =

∫

Ω

L(x, yu(x)) dx +
N

2

∫

Γ

u2(x) dσ(x)

subject to (yu, u) ∈ (L∞(Ω) ∩H1/2(Ω)) × L∞(Γ),

α ≤ u(x) ≤ β for a.e. x ∈ Γ,

where the state yu associated to the control u is the solution of the Dirichlet problem

(2.1)

{

−∆y + a(x, y) = 0 in Ω,
y = u on Γ.

The following hypotheses are assumed in the whole paper.
(A1) Ω is an open, convex and bounded domain in R2, with the boundary Γ of class
C2. Moreover we assume that N > 0 and −∞ < α < β < +∞.

(A2) L : Ω × R −→ R and a : Ω × R −→ R are Carathéodory functions of class
C2 with respect to the second variable, L(·, 0) ∈ L1(Ω), a(·, 0) ∈ Lp̄(Ω), for some
2 ≤ p̄ < +∞. Furthermore, for every M > 0 there exist a constant CL,M > 0 and a
function ψL,M ∈ Lp̄(Ω) such that for almost all x ∈ Ω and all |y|, |yi| ≤ M , i = 1, 2,
the following inequalities hold

(2.2)



















∣

∣

∣

∣

∂L

∂y
(x, y)

∣

∣

∣

∣

≤ ψL,M (x),

∣

∣

∣

∣

∂2L

∂y2
(x, y)

∣

∣

∣

∣

≤ CL,M ,

∣

∣

∣

∣

∂2L

∂y2
(x, y2) −

∂2L

∂y2
(x, y1)

∣

∣

∣

∣

≤ CL,M |y2 − y1|.

We also assume

(2.3)















∂a

∂y
(x, y) ≥ 0 for a.e. x ∈ Ω and for all y ∈ R,

∣

∣

∣

∣

∂a

∂y
(x, y)

∣

∣

∣

∣

+

∣

∣

∣

∣

∂2a

∂y2
(x, y)

∣

∣

∣

∣

≤ Ca,M for a.e. x ∈ Ω and for all |y| ≤M.

We say that an element yu ∈ L∞(Ω) is a solution of (2.1) if the following integral
identity is fulfilled

(2.4)

∫

Ω

−y∆wdx +

∫

Ω

a(x, y)w dx =

∫

Γ

u∂νw dσ ∀w ∈ H2(Ω) ∩H1
0 (Ω),

where ∂ν denotes the normal derivative on the boundary Γ. This is the classical
definition of a weak solution by transposition. The following result proved by Casas
and Raymond [5] is valid for any convex domain Ω. If the domain is not convex, then
some smoothness of Γ is required, Γ of class C1,1 is enough.

Theorem 2.1. For every u ∈ L∞(Γ) the state equation (2.1) has a unique
solution yu ∈ L∞(Ω) ∩H1/2(Ω). Moreover, the following Lipschitz properties hold

(2.5)
‖yu − yv‖L∞(Ω) ≤ ‖u− v‖L∞(Γ),
‖yu − yv‖H1/2(Ω) ≤ C‖u− v‖L2(Γ) ∀u, v ∈ L∞(Γ).
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Finally, if un ⇁ u weakly⋆ in L∞(Γ), then yun → yu strongly in Lr(Ω) for all
r < +∞.

Under the assumptions (A1) and (A2), it can be shown by standard arguments
that problem (P) has at least one solution. Since (P) is not convex we cannot ex-
pect any uniqueness of solutions. Moreover, (P) may have some local solutions. We
formulate the optimality conditions satisfied by such local solutions. To this end, we
analyze the differentiability of the cost functional J .

Under the assumption (A2), J : L∞(Γ) −→ R is of class C2 and

(2.6) J ′(u)v =

∫

Γ

(Nu− ∂νϕu) v dx,

where yu is the state associated to u and ϕu ∈ H2(Ω) is the unique solution of the
problem

(2.7)











−∆ϕ+
∂a

∂y
(x, yu)ϕ =

∂L

∂y
(x, yu) in Ω,

ϕ = 0 on Γ.

Furthermore, we have
(2.8)

J ′′(u)(v1, v2) =

∫

Ω

[

∂2L

∂y2
(x, yu)zv1

zv2
− ϕu

∂2a

∂y2
(x, yu)zv1

zv2

]

dx+

∫

Γ

Nv1v2 dx,

where zvi , i = 1, 2, satisfy

(2.9)







−∆zvi +
∂a

∂y
(x, yu)zvi = 0 in Ω,

zvi = vi on Γ.

Using (2.6) we obtain the necessary optimality conditions for (P).
Theorem 2.2. Let ū be a local minimum of (P). Then ū ∈ W 1−1/p̄,p̄(Γ) and

there exist elements ȳ ∈W 1,p̄(Ω) and ϕ̄ ∈W 2,p̄(Ω) such that

{

−∆ȳ + a(x, ȳ) = 0 in Ω,
ȳ = ū on Γ,

(2.10)







−∆ϕ̄+
∂a

∂y
(x, ȳ)ϕ̄ =

∂L

∂y
(x, ȳ) in Ω,

ϕ̄ = 0 on Γ,
(2.11)

∫

Γ

(Nū(x) − ∂νϕ̄(x))(v(x) − ū(x)) dσ(x) ≥ 0 for all α ≤ v ≤ β.(2.12)

The proof of theorem is given in [5].
In order to establish the second order optimality conditions we define the cone of

critical directions

Cū = {v ∈ L2(Γ) satisfying (2.13) and v(x) = 0 if |Nū(x) − ∂νϕ̄(x)| > 0},

(2.13) v(x) =

{

≥ 0 if ū(x) = α,
≤ 0 if ū(x) = β,

for a.e. x ∈ Γ.
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Now we formulate the second order necessary and sufficient optimality conditions.
Theorem 2.3. If ū is a local solution of (P), then J ′′(ū)v2 ≥ 0 holds for all

v ∈ Cū. Conversely, if ū is an admissible control for problem (P) satisfying the first
order optimality conditions given in Theorem 2.2 and the coercivity condition

(2.14) J ′′(ū)v2 > 0 ∀v ∈ Cū \ {0},

then there exist δ > 0 and ρ > 0 such that

(2.15) J(u) ≥ J(ū) +
δ

2
‖u− ū‖2

L2(Γ)

for all u such that α ≤ u ≤ β and ‖u− ū‖L2(Γ) ≤ ρ.
Proof. The necessary condition is easy to obtain. The inequality (2.15) is strong

when compared with the corresponding inequality of [5]. Indeed, here we claim that
(2.14) implies that ū is a strict local minimum of (P) in the sense of the L2(Γ)
topology. In [5] it is shown that condition (2.14) leads to the strict local optimality
of ū in the sense of the L∞(Γ) topology. A more general result is proved in [2] for a
distributed control problem, but in such a case once again only the local optimality in
the sense of the L∞(Ω) topology is shown. Here we can improve the results because
the control appears in a quadratic form within the cost functional. Let us see the
precise arguments.

We proceed by contradiction. Let us assume that there is no pair (δ, ρ), with
ρ, δ > 0, such that (2.15) holds. Then for every integer k, there exists a feasible
control of (P), uk ∈ L2(Γ), such that

(2.16) ‖uk − ū‖L2(Γ) <
1

k
and J(uk) < J(ū) +

1

k
‖uk − ū‖2

L2(Γ).

Let us define

(2.17) λk = ‖uk − ū‖L2(Γ) and vk =
1

λk
(uk − ū), hence ‖vk‖L2(Γ) = 1.

By taking a subsequence, if necessary, there exists v ∈ L2(Γ) such that vk ⇀ v weakly
in L2(Γ). The proof is divided into three steps: first, we prove that v ∈ Cū, then we
deduce that v = 0 and finally we get the contradiction.

Step 1. v ∈ Cū. Since α ≤ uk ≤ β, it is obvious that every vk satisfies (2.13). Also we
have that the set of functions of L2(Γ) satisfying (2.13) is convex and closed, therefore
v satisfies (2.13) as well. This implies

(2.18) (Nū(x) − ∂ν ϕ̄(x))v(x) = |Nū(x) − ∂νϕ̄(x)||v(x)| a.e. on Γ

Indeed, it is well known that (2.12) implies that Nū(x)− ∂ν ϕ̄(x) ≥ 0 if ū(x) = α and
Nū(x) − ∂νϕ̄(x) ≤ 0 if ū(x) = β. This property and (2.13) lead to (2.18).

On the other hand, from (2.16) we get

(2.19)
1

k
‖uk − ū‖2

L2(Γ) > J(uk) − J(ū) = J(ū + λkvk) − J(ū) = J ′(ū+ θkλkvk)vk,

for some 0 < θk < 1. From (2.6) we have that

(2.20) J ′(ū + θkλkvk)vk =

∫

Γ

(N [ū+ θkλkvk] − ∂νϕk)vk dσ.
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Let us denote by yk the state associated to ū + θkλkvk = ū + θk(uk − ū). Since
α ≤ ū+ θk(uk − ū) ≤ β and ū+ θk(uk − ū) → ū in L2(Γ) for k → +∞, we deduce, in
view of (2.5), that {yk}

∞
k=1 is bounded in L∞(Γ) and yk → ȳ in H1/2(Ω). Therefore,

the sequence of adjoint states {ϕk}
∞
k=1 converges to ϕ̄ in H2(Ω). Hence, we can pass

to the limit in (2.20) and use (2.19) to deduce that
∫

Γ

(Nū− ∂νϕ̄)v dσ ≤ 0.

This identity and (2.18) imply that v(x) = 0 if |Nū(x)− ∂νϕ̄(x)| > 0. Thus, we have
that v ∈ Cū.

Step 2. v = 0. Using again (2.16) we obtain

λ2
k

k
=

1

k
‖uk − ū‖2

L2(Γ) > J(uk) − J(ū) = J(ū + λkvk) − J(ū)

(2.21) = λkJ
′(ū)vk +

λ2
k

2
J ′′(ū+ θkλkvk)v2

k ≥
λ2

k

2
J ′′(ū + θkλkvk)v2

k,

the last inequality being a consequence of (2.12)

λkJ
′(ū)vk = J ′(ū)(uk − ū) =

∫

Γ

(Nū− ∂νϕ̄)(uk − ū) dσ ≥ 0.

Inequality (2.21) implies that

(2.22)
2

k
> J ′′(ū+ θkλkvk)v2

k.

Once again we denote by yk and ϕk the state and adjoint state evaluated for ū +
θkλkvk = ū + θk(uk − ū). Also we define zk and zv as the elements of H1/2(Ω)
satisfying

(2.23)











−∆zk +
∂a

∂y
(x, yk)zk = 0 in Ω,

zk = vk on Γ,

and

(2.24)











−∆zv +
∂a

∂y
(x, ȳ)zv = 0 in Ω,

zv = v on Γ.

Then zk ⇀ zv weakly in H1/2(Ω), hence strongly in L2(Ω). Moreover, yk → ȳ in
H1/2(Ω) and ϕk → ϕ̄ in H2(Ω). Now, recalling the expression of the second derivative
of J given in (2.8) we get

(2.25) J ′′(ū+ θkλkvk)v2
k =

∫

Ω

[

∂2L

∂y2
(x, yk)z2

k − ϕk
∂2a

∂y2
(x, yk)z2

k

]

dx+N

∫

Γ

v2
k dx.

Passing to the limit in this expression and using (2.22) we obtain

J ′′(ū)v2 =

∫

Ω

[

∂2L

∂y2
(x, ȳ)z2

v − ϕ̄
∂2a

∂y2
(x, ȳ)z2

v

]

dx+N

∫

Γ

v2 dx
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(2.26) ≤ lim inf
k→∞

J ′′(ū + θkλkvk)v2
k ≤ 0.

Since v ∈ Cū, according to (2.14) this is possible only if v = 0.

Step 3. Final Contradiction. Using two facts, vk ⇀ v = 0 and ‖vk‖L2(Γ) = 1, we
deduce from (2.22) and (2.25) the following contradiction

0 < N ≤ lim inf
k→∞

J ′′(ū+ θkλkvk)v2
k ≤ 0.

We conclude this section with the following result that provides an equivalent
formulation of (2.14), which is more useful for our purposes.

Theorem 2.4. Let ū be a feasible control of problem (P) satisfying the first order
optimality conditions (2.10)-(2.12). Then the condition (2.14) holds if and only if

(2.27) ∃µ > 0 and ϑ > 0 such that J ′′(ū)v2 ≥ µ‖v‖2
L2(Γ) ∀v ∈ Cϑ

ū ,

where

Cϑ
ū = {v ∈ L2(Γ) satisfying (2.13) and v(x) = 0 if |Nū(x) − ∂νϕ̄(x)| > ϑ}.

Proof. Since Cū ⊂ Cϑ
ū for any ϑ > 0, it is obvious that (2.27) implies (2.14). Let

us prove the reciprocal implication. We proceed again by contradiction. We assume
that (2.14) holds, but there is no pair of positive numbers (µ, ϑ) such that (2.27) is

fulfilled. Then for every integer k there exists and element vk ∈ C
1/k
ū such that

J ′′(ū)v2
k <

1

k
‖vk‖

2
L2(Γ).

Dividing vk by its norm and denoting the quotient by vk again, and taking a subse-
quence if necessary, we have that

(2.28) vk ∈ C
1/k
ū , ‖vk‖L2(Γ) = 1, vk ⇀ v in L2(Γ), J ′′(ū)v2

k <
1

k
.

Arguing as in the proof of Theorem 2.3, we obtain that v satisfies (2.13). On the

other hand, from the fact that vk ∈ C
1/k
ū and denoting by Γk the subset of Γ formed

by those points x such that |Nū(x) − ∂ν ϕ̄(x)| ≤ 1/k, we get
∫

Γ

(Nū− ∂νϕ̄)v dσ = lim
k→∞

∫

Γ

(Nū− ∂νϕ̄)vk dσ

≤ lim inf
k→∞

∫

Γ

|Nū− ∂ν ϕ̄||vk| dσ ≤ lim inf
k→∞

1

k

∫

Γk

|vk| dσ = 0.

This inequality and the fact that v satisfies (2.13) imply that v vanishes whenever
|Nū(x) − ∂ν ϕ̄(x)| > 0, hence v ∈ Cū. Now (2.14) implies that J ′′(ū) > 0 if v 6≡ 0.
But from (2.28) we deduce that

J ′′(ū)v2 ≤ lim inf
k→∞

J ′′(ū)v2
k ≤ 0.

Consequently we have that v ≡ 0. However, if we argue as in the proof of Theorem
2.3, we have that 0 < N ≤ lim infk→∞ J ′′(ū)v2

k ≤ 0, which is a contradiction.
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3. Control Problem (Ph). Now we define Ωh. We follow the notation intro-

duced in [6, Section 4]. Given a set of points {xj}
N(h)
j=1 ⊂ Γ, we put

hj = |xj+1 − xj |, h = max
1≤j≤N(h)

hj, τj =
1

hj
(xj+1 − xj),

where xN(h)+1 = x1. Γh is the polygonal line defined by the nodes {xj}
N(h)
j=1 and Ωh

is the polygon delimited by Γh. Since Ω is convex, then Ωh ⊂ Ω. Now, for every
1 ≤ j ≤ N(h), we denote by x̂jxj+1 the arc of Γ delimited by the points xj and xj+1.
Let us define ψj : [0, hj ] −→ x̂jxj+1 ⊂ Γ by

ψj(t) = xj + tτj + φj(t)νj ,

where νj represents the unit outward normal vector to Ωh on the boundary edge
(xj , xj+1) and φj : [0, hj] −→ [0,+∞) is chosen such that ψj(t) ∈ Γ. Since Ω is
convex and Γ is of class C2, the following properties hold

1. φj is of class C2 and φj(0) = φj(hj) = 0.
2. There exists a constant CΓ > 0 such that φj(t)+h|φ′j(t)| ≤ CΓh

2
j ≤ CΓh

2 for
all t ∈ [0, hj].

Now, we define we define the one-to-one mapping gh : Γh −→ Γ in the following way

gh|[xj,xj+1](x) = gh|[xj,xj+1](xj + tτj) = xj + tτj + φj(t)νj = ψj(t).

For every point x ∈ Γ, ν(x) denotes the unit outward normal vector to Γ at
the point x. By τ(x) is denoted the unit tangent vector to Γ at the point x such
that {τ(x), ν(x)} is a direct reference system in R2. For each point x ∈ Γh the
corresponding reference system is denoted by {τh(x), νh(x)}. If x ∈ (xj , xj+1) then
νh(x) = νj and τh(x) = τj . The following relations are proved in [6]

(3.1) max{|τ(gh(x)) − τh(x)|, |ν(gh(x)) − νh(x)|} ≤ (C2
Γ + 1)h ∀x ∈ Γh, x 6= xj ,

(3.2)

∫

Γh

|v(gh(x))| dσh(x) ≤

∫

Γ

|v(x)| dσ(x) ∀v ∈ L1(Γ),

(3.3)

∣

∣

∣

∣

∫

Γ

v(x) dσ(x) −

∫

Γh

v(gh(x)) dσh(x)

∣

∣

∣

∣

≤ CΓh
2

∫

Γ

|v(x)| dσ(x) ∀v ∈ L1(Γ),

and

(3.4)

∫

Γ

v(x) dσ(x) =

∫

Γh

v(gh(x))|Dgh(x) · τh(x)| dσh(x) ∀v ∈ L1(Γ).

In the domain Ωh we define the problem (Ph) as follows

(Ph)























min Jh(u) =

∫

Ωh

L(x, yh,u(x)) dx +
N

2

∫

Γh

u2(x) dσh(x)

subject to (yh,u, u) ∈ (L∞(Ωh) ∩H1/2(Ωh)) × L∞(Γh),

α ≤ u(x) ≤ β for a.e. x ∈ Γh,
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where yh,u is the solution of the problem

(3.5)

{

−∆y + a(x, y) = 0 in Ωh,
y = u on Γh.

Theorem 2.1 can be applied to (3.5) to get the existence and uniqueness of a solution
yh,u ∈ H1/2(Ωh) ∩ L∞(Ωh). Moreover, inequalities (2.5) hold. (Ph) has at least one
global solution and possibly there are some other local solutions of (Ph). For each
local solution we have the first order optimality conditions analogous to the conditions
in Theorem 2.2.

Theorem 3.1. Let ūh be a local minimum of (Ph). Then ūh ∈ H1/2(Γh) and
there exist elements ȳh ∈ H1(Ωh) and ϕ̄h ∈ H2(Ωh) such that

{

−∆ȳh + a(x, ȳh) = 0 in Ωh,
ȳh = ūh on Γh,

(3.6)







−∆ϕ̄h +
∂a

∂y
(x, ȳh)ϕ̄h =

∂L

∂y
(x, ȳh) in Ωh,

ϕ̄h = 0 on Γh,
(3.7)

∫

Γh

(Nūh(x) − ∂νh
ϕ̄h(x))(vh(x) − ūh(x)) dσh(x) ≥ 0 for all α ≤ vh ≤ β.(3.8)

Remark 3.2. We observe that ūh is less regular than ū. The same is true for ȳh

and ϕ̄h with respect to ȳ and ϕ̄. The reason of the lost of regularity is the lack of reg-
ularity of Γh. Γ is of class C2 and consequently we can deduce the W 2,p̄(Ω) regularity
of ϕ̄ (see, for instance, Grisvard [8]), which leads to the W 1−1/p̄(Γ) regularity of ū
and consequently to the W 1,p̄(Ω) regularity of ȳ. Using the results for polygonal do-
mains of [8], we can establish W 2,p(Ω) regularity of ϕ̄h for some 2 < p ≤ p̄ (assuming
p̄ > 2), with p depending on the angles of Ωh. The point is that p→ 2 if the maximal
angle of Ωh tends to π. This is exactly the case for h→ 0, therefore we cannot deduce
the boundedness of {‖ϕ̄h‖W 2,p(Ωh)}h>0 for any p > 2.

By using the Stampacchia approach [?] we can derive a bound for ‖ȳh‖L∞(Ωh)

which is dependent on α, β and a(·, 0), but independent of h. Then, from (3.7) the
boundedness of {‖ϕ̄h‖H2(Ωh)}h>0 can be obtained. Now, from (3.8) we deduce

(3.9) ūh(x) = Proj[α,β]

(

−
1

N
∂νh

ϕ̄h(x)

)

= max{α,min{−
1

N
∂νh

ϕ̄h(x), β}},

which implies that ūh ∈ H1/2(Γh) and the family {‖ūh‖H1/2(Γh)}h>0 is bounded. Fi-
nally, (3.6) leads to the boundedness of {‖ȳh‖H1(Ωh)}h>0 as well.

4. Convergence Analysis. In this section we prove the convergence of the
local or global solutions of (Ph) to the solutions of (P) with h → 0. To prove the
convergence, first we establish the convergence of the solutions of the state and adjoint
state equations.

Theorem 4.1. Let u ∈ H1/2(Γ) and uh ∈ L2(Γh), with

(4.1) max{‖u‖L∞(Γ), ‖uh‖L∞(Γh)} ≤M.

Let yu ∈ H1(Ω) ∩ L∞(Ω) and yh,uh
∈ H1/2(Ωh) ∩L∞(Ωh) be the corresponding solu-

tions of (2.1) and (3.5), respectively. Then there exists a constant CM > 0 independent
of h such that

(4.2) ‖yu − yh,uh
‖H1/2(Ωh) ≤ CM

(

‖u− uh ◦ g−1
h ‖L2(Γ) + h[1 + ‖u‖H1/2(Γ)]

)

.
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Proof. Let us take yh ∈ H1/2(Ωh) ∩ L∞(Ωh) satisfying

(4.3)

{

−∆yh + a(x, yh) = 0 in Ωh,
yh = u ◦ gh on Γh.

From (2.5) and (3.2) we get

‖yu − yh,uh
‖H1/2(Ωh) ≤ ‖yu − yh‖H1/2(Ωh) + ‖yh − yh,uh

‖H1/2(Ωh)

≤ ‖yu − yh‖H1/2(Ωh) + C‖u ◦ gh − uh‖L2(Γh)

(4.4) ≤ ‖yu − yh‖H1/2(Ωh) + C‖u− uh ◦ g−1
h ‖L2(Γ).

Let us estimate φh = yu − yh. By substraction of the equations satisfied by yu and
yh and using the mean value theorem, we get

(4.5)







−∆φh +
∂a

∂y
(x,wh)φh = 0 in Ωh,

φh = y − u ◦ gh on Γh,

where wh = yh + θh(yh,uh
− yh) and 0 < θh < 1. Now we have

‖φh‖H1/2(Ωh) ≤ C‖y − u ◦ gh‖L2(Γh) = C‖y − y ◦ gh‖L2(Γh).

Finally, by using the inequality (see Bramble and King [1, Lemma 1])

(4.6) ‖w − w ◦ gh‖L2(Γh) ≤ Chr‖w‖Hr(Ω) for all 1 ≤ r ≤ 2,

we conclude

‖φh‖H1/2(Ωh) ≤ Ch‖y‖H1(Ω) ≤ Ch(1 + ‖u‖H1/2(Γ)).

This inequality along with (4.4) proves (4.2).
Now we proceed with the analysis of the adjoint state equation. Let ϕu ∈ H2(Ω)

and ϕh,uh
∈ H2(Ωh) be given as the solutions of the equations

(4.7)







−∆ϕu +
∂a

∂y
(x, yu)ϕu =

∂L

∂y
(x, yu) in Ω,

ϕu = 0 on Γ,

and

(4.8)







−∆ϕh,uh
+
∂a

∂y
(x, yh,uh

)ϕh,uh
=

∂L

∂y
(x, yh,uh

) in Ωh,

ϕh,uh
= 0 on Γh.

Then we have the following estimate.
Theorem 4.2. Let (u, yu) and (uh, yh,uh

) be as in Theorem 4.1. Let ϕu ∈ H2(Ω)
and ϕh,uh

∈ H2(Ωh) be the corresponding solutions of (4.7) and (4.8), respectively.
Then there exists a constant CM > 0, independent of h, such that the following
estimate holds

(4.9) ‖ϕu − ϕh,uh
‖H3/2(Ωh) ≤ CM

(

‖u− uh ◦ g−1
h ‖L2(Γ) + h[1 + ‖u‖H1/2(Γ)]

)

.
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Proof. Let us define φh = ϕu − ϕh,uh
∈ H2(Ωh). From (4.7) and (4.8) we get

(4.10)























−∆φh +
∂a

∂y
(x, yu)φh =

∂L

∂y
(x, yu) −

∂L

∂y
(x, yh,uh

)

+

[

∂a

∂y
(x, yh,uh

) −
∂a

∂y
(x, yu)

]

ϕh,uh
in Ωh

φh = ϕu on Γh.

From assumption (A2), taking into account that yu and yh,uh
are bounded and using

(4.2), we get (see Kenig [10])

‖φh‖H3/2(Ωh) ≤ C
(

‖yu − yh,uh
‖L2(Ωh) + ‖ϕu‖H1(Γh)

)

(4.11) ≤ C(M)
(

‖u− uh ◦ g−1
h ‖L2(Γ) + h[1 + ‖u‖H1/2(Γ)] + ‖ϕu‖H1(Γh)

)

.

Let us estimate ϕu in H1(Γh). The norm in H1(Γh) is given by

‖ϕu‖H1(Γh) =
{

‖ϕu‖
2
L2(Γh) + ‖∂τh

ϕu‖
2
L2(Γh)

}1/2

,

where ∂τh
ϕu(x) = ∇ϕu(x) · τh(x), τh(x) being the unit tangent vector to Γh at the

point x; see §3. The estimate of the first term of the norm follows easily from (4.6)
and the fact that ϕu ◦ gh = 0 on Γh

(4.12) ‖ϕu‖L2(Γh) = ‖ϕu − ϕu ◦ gh‖L2(Γh) ≤ Ch2‖ϕu‖H2(Ω) ≤ C(M)h2.

Now the L2(Γ) norm of the tangential derivative is estimated. To this end we
observe that ϕu = 0 on Γ, therefore ∂τϕu = 0 on Γ as well. Thus, we also have
(∇ϕu ◦ gh) · (τ ◦ gh) = 0 on Γh. Hence

∂τh
ϕu(x) = [∇ϕu(x) −∇ϕu(gh(x))]τh(x) + ∇ϕu(gh(x))[τh(x) − τ(gh(x))].

This along with (4.6) and (3.1) leads to

‖∂τh
ϕu‖L2(Γh) ≤ ‖∇ϕu −∇ϕu ◦ gh‖L2(Γh)

(4.13) +‖ϕu‖H2(Ω)‖τh − τ ◦ gh‖L2(Γh) ≤ C(M)h.

Finally, (4.9) follows from (4.11), (4.12) and (4.13).
Corollary 4.3. Under the assumptions of Theorem 4.2, the following inequality

holds

(4.14) ‖∂νh
ϕu − ∂νh

ϕh,uh
‖L2(Γh) ≤ CM

(

‖u− uh ◦ g−1
h ‖L2(Γ) + h[1 + ‖u‖H1/2(Γ)]

)

for some CM > 0 independent of h.
Proof. It is enough to note that ϕu − ϕh,uh

∈ H3/2(Ωh) and ∆(ϕu − ϕh,uh
) ∈

L2(Ωh), then ∂νh
(ϕu − ϕh,uh

) ∈ L2(Γh) and we have

‖∂νh
(ϕu − ϕh,uh

)‖L2(Γh) ≤ ‖ϕu − ϕh,uh
‖H3/2(Ωh) + ‖∆(ϕu − ϕh,uh

)‖L2(Ωh);
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see [?] and [10]. From this inequality, Assumption (A2), estimates (4.2), (4.9), (4.10)
and (4.11) we get

‖∂νh
(ϕu − ϕh,uh

)‖L2(Γh) ≤ C(M)
(

‖u− uh ◦ g−1
h ‖L2(Γ) + h[1 + ‖u‖H1/2(Γ)]

)

+‖
∂a

∂y
(x,wh)‖L2(Ωh)‖ϕu − ϕh,uh

‖L2(Ωh) + ‖
∂L

∂y
(x, yu) −

∂L

∂y
(x, yh,uh

)‖L2(Ωh)

+‖
∂a

∂y
(x, yu) −

∂a

∂y
(x, yh,uh

)‖L2(Ωh)‖ϕh,uh
‖L2(Ωh)

≤ CMh
(

‖u− uh ◦ g−1
h ‖L2(Γ) + h[1 + ‖u‖H1/2(Γ)]

)

.

We complete this section by proving that the family of problems (Ph) realizes a
correct approximation of (P). More precisely we prove that the solutions of problems
(Ph) converge to the solutions of (P). Reciprocally, we also prove that any strict local
solution of (P) can be approximated by a sequence of local solutions of problems (Ph).

Theorem 4.4. Let ūh be a solution of problem (Ph). Then {ūh ◦ g−1
h }h>0 is a

bounded family in H1/2(Γ). If ū is a weak limit for a subsequence, still denoted in
the same way, ūh ◦ g−1

h ⇀ ū weakly in H1/2(Γ) with h → 0, then ū is a solution of
problem (P). Moreover

lim
h→0

‖ȳ − ȳh‖H1/2(Ωh) = 0 and lim
h→0

Jh(ūh) → J(ū),

where ȳ and ȳh denote the solutions of (2.1) and (3.5) corresponding to ū and ūh,
respectively.

Proof. First of all we recall definition of norm

‖ūh ◦ g−1
h ‖H1/2(Γ) =

{
∫

Γ

|ūh(g−1
h (x))|2 dσ(x)

(4.15) +

∫

Γ

∫

Γ

|ūh(g−1
h (x)) − ūh(g−1

h (x′))|2

|x− x′|2
dσ(x)dσ(x′)

}1/2

.

Let us estimate each of two integrals. In Remark 3.2, we establish the boundedness
of {‖ūh‖H1/2(Ωh)}h>0. If we prove that

‖ūh ◦ g−1
h ‖H1/2(Γ) ≤ C‖ūh‖H1/2(Γh),

then we obtain that {ūh ◦ g−1
h }h>0 is bounded in H1/2(Γ). On the other hand, from

(3.4) it follows that

‖ūh ◦ g−1
h ‖2

L2(Γ) =

∫

Γ

|ūh(g−1
h (x))|2 dσ(x)

(4.16) =

∫

Γh

|ūh(x)|2|Dgh(x) · τh(x)| dσh(x) ≤ C‖ūh‖
2
L2(Γh).
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By the change of variables in the second integral of (4.15), in view of (3.4), we
get

∫

Γ

∫

Γ

|ūh(g−1
h (x)) − ūh(g−1

h (x′))|2

|x− x′|2
dσ(x)dσ(x′)

(4.17) ≤ C2

∫

Γh

∫

Γh

|ūh(x) − ūh(x′)|2

|gh(x) − gh(x′)|2
dσh(x)dσh(x′).

Let us show that |x − x′| ≤ |gh(x) − gh(x′)| for every x, x′ ∈ Γh. First, we assume
that x, x′ ∈ [xj , xj+1] for some 1 ≤ j ≤ N(h). Then

x = xj + tτj , gh(x) = x = x+ φj(t)νj , x
′ = xj + t′τj , and gh(x′) = x′ + φj(t

′)νj .

Therefore,

|gh(x)− gh(x′)|2 = |t− t′|2 + |φj(t)−φj(t
′)|2 = |x−x′|2 + |φj(t)−φj(t

′)|2 ≥ |x−x′|2.

Now, we assume that x ∈ [xj , xj+1] and x′ ∈ [xi, xi+1], with i 6= j. Since Ω is
convex, there exist two points {x̂} = [xj , xj+1]∩ [gh(x), gh(x′)] and {x̂′} = [xi, xi+1]∩
[gh(x), gh(x′)]. Moreover we have

(4.18) |gh(x) − gh(x′)| = |gh(x) − x̂| + |x̂− x̂′| + |x̂′ − gh(x′)|.

On the other hand,

gh(x) − x̂ = (gh(x) − x) + (x− x̂) = φj(t)νj + (t− t̂)τj ,

which implies

|gh(x) − x̂|2 = |gh(x) − x|2 + |x− x̂|2 ⇒ |gh(x) − x̂| ≥ |x− x̂|.

Analogously, we can prove that |gh(x′)− x̂′| ≥ |x′− x̂′|. Finally using (4.18) we obtain

|gh(x) − gh(x′)| ≥ |x− x̂| + |x̂− x̂′| + |x′ − x̂′| ≥ |x− x′|.

Using this inequality in (4.17) we conclude that

∫

Γ

∫

Γ

|ūh(g−1
h (x)) − ūh(g−1

h (x′))|2

|x− x′|2
dσ(x)dσ(x′)

(4.19) ≤ C2

∫

Γh

∫

Γh

|ūh(x) − ūh(x′)|2

|x− x′|2
dσh(x)dσh(x′).

From (4.15), (4.16) and (4.19) it follows

‖ūh ◦ g−1
h ‖H1/2(Γ) ≤ C′‖ūh‖H1/2(Γh) ≤ C′′.

Therefore, there exists a subsequence and an element ū ∈ H1/2(Γ) such that ūh◦g
−1
h ⇀

ū weakly in H1/2(Γ) with h→ 0. Since the embedding H1/2(Γ) ⊂ L2(Γ) is compact,
we have ūh ◦ g−1

h → ū strongly in L2(Γ). It is obvious that α ≤ ū ≤ β. Now, if we
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denote by ȳh the states associated to ūh and by ȳ the state associated to ū, we deduce
from (4.2) that

lim
h→0

‖ȳ − ȳh‖H1/2(Ωh) = 0 and ∃Cαβ > 0 such that ‖ȳh‖L∞(Ωh) ≤ Cαβ ∀h.

Hence, it is easy to prove that Jh(ūh) → J(ū). It remains to prove that ū is a solution
of (P). Let us take any feasible control u for (P), then u ◦ gh is also feasible for (Ph).
Therefore, since ūh is a solution of (Ph), we obtain

J(u) = lim
h→0

Jh(u ◦ gh) ≥ lim
h→0

Jh(ūh) = J(ū),

which completes the proof.
Theorem 4.5. Let ū be a strict local minimum of (P), then there exists a family

{ūh} such that each control ūh is a local minimum of (Ph) and ūh◦g
−1
h ⇀ ū converges

weakly in H1/2(Γ).
Proof. Let ε > 0 be such that ū is the unique global solution of problem

(Pε)



















min J(u) =

∫

Ω

L(x, yu(x)) dx +
N

2

∫

Γ

u2(x) dσ(x)

subject to (yu, u) ∈ (L∞(Ω) ∩H1/2(Ω)) × L2(Γ),

α ≤ u(x) ≤ β for a.e. x ∈ Γ and ‖u− ū‖L2(Γ) ≤ ε.

Now, for every h we consider the problems

(Phε)























min Jh(u) =

∫

Ωh

L(x, yh,u(x)) dx +
N

2

∫

Γh

u2(x) dσh(x)

subject to (yh,u, u) ∈ (L∞(Ωh) ∩H1/2(Ωh)) × L2(Γh),

α ≤ u(x) ≤ β for a.e. x ∈ Γh and ‖u ◦ g−1
h − ū‖L2(Γ) ≤ ε

It is obvious that ū ◦ gh is a feasible control for each problem (Phε), therefore there
exists at least one solution uhε of (Phε). Let us show that uhε ◦ g

−1
h ⇀ ū weakly in

H1/2(Γ) with h→ 0.
Since {uhε ◦ g−1

h }h>0 is bounded in L∞(Γ), we can extract a subsequence, still
denoted by the same symbol, and an element ũ ∈ L∞(Γ) such that uhε ◦ g−1

h ⇀ ũ
∗weakly in L∞(Γ) with h→ 0. Let us denote by yhε ∈ H1/2(Ωh) ∩L∞(Ωh) the state
associated to uhε and consider an extension of yhε to Ω, still denoted by yhε, such
that

‖yhε‖H1/2(Ω) ≤ C‖yhε‖H1/2(Ωh) and ‖yhε‖L∞(Ω) ≤ C‖yhε‖L∞(Ωh) ∀h.

The boundedness of {uhε◦g
−1
h } in L∞(Γ) implies that of {yhε} in H1/2(Ω). Therefore,

by taking a subsequence, we can assume that

yhε ⇀ ỹ in H1/2(Ω) and uhε ◦ g
−1
h ⇀ ũ in L2(Γ).

We are going to prove that ỹ is the state associated to ũ. According to the definition
given in §2, we have to prove that the following identity holds

(4.20)

∫

Ω

−ỹ∆w dx+

∫

Ω

a(x, ỹ)w dx =

∫

Γ

ũ∂νw dσ ∀w ∈ H2(Ω) ∩H1
0 (Ω).
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For a given w ∈ H2(Ω) ∩H1
0 (Ω) we take wh ∈ H2(Ωh) ∩H1

0 (Ωh), a unique solution
of the Dirichlet problem

(4.21)

{

−∆wh = −∆w in Ωh,
wh = 0 on Γh.

As in the proof of Theorem 4.2 we have

(4.22) ‖w − wh‖H3/2(Ωh) ≤ C‖w‖H1(Ωh) ≤ Ch.

Hence

‖∂νh
w − ∂νh

wh‖L2(Γh) ≤ C
{

‖∆(w − wh)‖L2(Ωh) + ‖w − wh‖H3/2(Ωh)

}

(4.23) = C‖w − wh‖H3/2(Ωh) ≤ Ch.

Since yhε is the state associated to uhε we have
∫

Ωh

−yhε∆wh dx+

∫

Ωh

a(x, yhε)wh dx =

∫

Γh

uhε∂νh
wh dσh.

In view of (4.21), this identity can be rewritten as follows

(4.24)

∫

Ωh

−∆wyhε dx+

∫

Ωh

a(x, yhε)wh dx =

∫

Γh

uhε∂νh
wh dσh.

Now we want to pass to the limit with h→ 0 in (4.24). Using the compactness of the
imbedding H1/2(Ω) ⊂ L2(Ω) it is easy to pass to the limit in the first two integrals,
which are also the first two integrals of (4.20). Let us consider the right-hand side
term of (4.24). Applying (4.23) we get

(4.25)

∫

Γh

uhε∂νh
wh dσh =

∫

Γh

uhε∂νh
w dσh +O(h).

Now from Lemma 4.6 below we deduce

(4.26)

∫

Γh

uhε∂νh
w dσh =

∫

Γ

(uhε ◦ g
−1
h )∂νw dσ +O(h).

Finally, combining (4.25) and (4.26) we get

lim
h→0

∫

Γh

uhε(x)∂νh
wh dσh =

∫

Γ

ũ(x)∂νw(x) dσ.

Thus, we show that (4.20) follows from (4.24) by the limit passage.
Now, using that uhε ◦ g−1

h ⇀ ũ weakly in L2(Γ), yhε → ỹ strongly in L2(Ω),
{yhε}h>0 is bounded in L∞(Ω) and the fact that uhε is a solution of (Phε) and ū◦g−1

h

is feasible for problems (Phε) we obtain

J(ũ) ≤ lim inf
h→0

Jh(uhε) ≤ lim inf
h→0

Jh(ū ◦ g−1
h ) ≤ lim sup

h→0
Jh(ū ◦ g−1

h ) = J(ū).

Since ū is the unique solution of (Pε), the above inequality leads to ũ = ū and
Jh(uhε) → J(ū), which implies

lim
h→0

∫

Γh

u2
hε(x) dσh(x) =

∫

Γ

ū2(x) dσ(x).
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Using (3.3)

lim
h→0

∫

Γ

(uhε ◦ g
−1
h )2(x) dσ(x) =

∫

Γ

ū2(x) dσ(x).

This identity and the weak convergence imply the strong convergence uhε ◦ g
−1
h → ū

in L2(Γ). First consequence of this strong convergence is that the constraint ‖u ◦
g−1

h − ū‖L2(Γ) ≤ ε is not active at the controls uhε for h small enough. Therefore, uhε

is a local minimum of problem (Ph) for every h small enough. Since {‖uhε‖L2(Γh)}
is bounded, then we can argue as in the proof of Theorem 4.4 and conclude that
{uhε ◦ g

−1
h } is bounded in H1/2(Γ) and hence uhε ◦ g

−1
h ⇀ ū weakly in H1/2(Γ) with

h→ 0.
Lemma 4.6. Let w ∈ H2(Ω) and v ∈ L2(Γ), then there exists a constant C > 0

independent of w and v such that

(4.27)

∣

∣

∣

∣

∫

Γ

∂νwv dσ −

∫

Γh

∂νh
w(v ◦ gh) dσh

∣

∣

∣

∣

≤ Ch‖w‖H2(Ω)‖v‖L2(Γ).

Proof. First, we observe that (3.3) implies that

∣

∣

∣

∣

∫

Γ

[∇w(x) · ν(x)]v(x) dσ(x) −

∫

Γh

[∇w(gh(x)) · ν(gh(x))]v(gh(x)) dσh(x)

∣

∣

∣

∣

≤ CΓh
2

∫

Γ

|∇w(x) · ν(x)||v(x)| dσ(x)

(4.28) ≤ CΓh
2‖∂νw‖L2(Γ)‖v‖L2(Γ) ≤ Ch2‖w‖H2(Ω)‖v‖L2(Γ).

On the other hand,

∫

Γh

[∇w(x) · νh(x)]v(gh(x)) dσh(x) −

∫

Γh

[∇w(gh(x)) · ν(gh(x))]v(gh(x)) dσh(x)

=

∫

Γh

[∇w(x) · (νh(x) − ν(gh(x)))]v(gh(x)) dσh(x)

+

∫

Γh

[∇w(x) −∇w(gh(x))] · ν(gh(x))v(gh(x)) dσh(x).

From this identity we get, in view of (3.1), (3.2) and (4.6),

∣

∣

∣

∣

∫

Γh

[∇w(x) · νh(x)]v(gh(x)) dσh(x) −

∫

Γh

[∇w(gh(x)) · ν(gh(x))]v(gh(x)) dσh(x)

∣

∣

∣

∣

(4.29) ≤ Ch‖w‖H2(Ω)‖v‖L2(Γ).

Now, (4.28) and (4.29) imply (4.27).
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5. Error Estimates. In this section we assume that ūh is a local minimum of
(Ph) such that ūh◦g

−1
h converges weakly in H1/2(Γ) to a local minimum ū of (P) with

h→ 0; see Theorems 4.4 and 4.5. The goal of this section is to derive an estimate for
‖ū− ūh ◦ g−1

h ‖L2(Γ), which is established in the following theorem.
Theorem 5.1. Let ū and ūh be as above and let us denote by ȳ, ȳh and ϕ̄, ϕ̄h

the states and adjoint states associated to ū and ūh respectively. Let us assume that
the second order sufficient optimality condition (2.14) is fulfilled for ū. Then there
exists a constant C, independent of h such that the following estimates hold

(5.1) ‖ū− ūh ◦ g−1
h ‖L2(Γ) + ‖ȳ − ȳh‖H1/2(Ωh) + ‖ϕ̄− ϕ̄h‖H3/2(Ωh) ≤ Ch.

Before proving this theorem we provide a preliminary result. The proof of Lemma
5.2 is inspired by [5, Lemma 7.2], however there are some important differences.

Lemma 5.2. Let µ > 0 be taken from Theorem 2.4. Then there exists h0 > 0
such that

(5.2)
1

2
min{N,µ}‖ūh ◦ g−1

h − ū‖2
L2(Γ) ≤ (J ′(ūh ◦ g−1

h ) − J ′(ū))(ūh ◦ g−1
h − ū).

Proof. By applying the mean value theorem there is an intermediate element
ûh = ū+ θh(ūh ◦ g−1

h − ū) such that

(5.3) (J ′(ūh ◦ g−1
h ) − J ′(ū))(ūh ◦ g−1

h − ū) = J ′′(ûh)(ūh ◦ g−1
h − ū)2.

Let us take

vh =
1

‖ūh ◦ g−1
h − ū‖L2(Γ)

(ūh ◦ g−1
h − ū).

Taking a subsequence, if necessary, we can assume that vh ⇀ v weakly in L2(Γ). We
show that v belongs to the critical cone Cū defined in §2. First of all, observe that v
satisfies the sign condition (2.13) since every element vh satisfies the same condition.
Let us prove that v(x) = 0 if Nū(x)−∂ν ϕ̄(x) 6= 0. To this end it is enough to establish
the limit passage

(5.4) lim
h→0

∫

Γh

(Nūh − ∂νh
ϕ̄h)(vh ◦ gh) dσh =

∫

Γ

(Nū− ∂ν ϕ̄)v dσ.

Indeed, from (5.4) we deduce, in view of (3.8), that

∫

Γ

|Nū− ∂ν ϕ̄||v| dσ =

∫

Γ

(Nū− ∂νϕ̄)v dσ

= lim
h→0

1

‖ūh ◦ g−1
h − ū‖L2(Γ)

∫

Γh

(Nūh − ∂νh
ϕ̄h)(ūh − ū ◦ gh) dσh ≤ 0,

which proves the required property. Let us show (5.4). By the strong convergence
ūh ◦ g−1

h → ū in L2(Γ) combined with (4.14) and (3.2), we have

∣

∣

∣

∣

∫

Γh

(Nūh − ∂νh
ϕ̄h)(vh ◦ gh) dσh −

∫

Γh

(Nūh − ∂νh
ϕ̄)(vh ◦ gh) dσh

∣

∣

∣

∣
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≤ ‖∂νh
ϕ̄h − ∂νh

ϕ̄‖L2(Γh)‖vh ◦ gh‖L2(Γh)

≤ CM

(

‖ūh ◦ g−1
h − ū‖L2(Γ) + h[1 + ‖u‖H1/2(Γ)]

)

‖vh‖L2(Γ)

(5.5) = CM

(

‖ūh ◦ g−1
h − ū‖L2(Γ) + h[1 + ‖u‖H1/2(Γ)]

)

→ 0 with h→ 0.

On the other hand, from Lemma 4.6 we get

(5.6)

∫

Γh

∂νh
ϕ̄(vh ◦ gh) dσh =

∫

Γ

∂νϕ̄vh dσ + O(h) →

∫

Γ

∂νϕ̄v dσ with h→ 0.

Finally, from (3.3) we obtain

(5.7)

∫

Γh

ūh(vh ◦ gh) dσh =

∫

Γ

(ūh ◦ g−1
h )vh dσ +O(h) →

∫

Γ

ūv dσ with h→ 0.

Thus, (5.4) follows from (5.5), (5.6) and (5.7).
Now by the definition of vh and (2.8), (2.27), we get

lim
h→0

J ′′(ûh)v2
h = lim

h→0

{
∫

Ω

[

∂2L

∂y2
(x, yûh

) − ϕûh

∂2a

∂y2
(x, yûh

)

]

z2
vh
dx+N

}

=

∫

Ω

[

∂2L

∂y2
(x, ȳ) − ϕ̄

∂2a

∂y2
(x, ȳ)

]

z2
v dx+N

= J ′′(ū)v2 +N(1 − ‖v‖2
L2(Γ)) ≥ N + (µ−N)‖v‖2

L2(Γ).

Taking into account that ‖v‖L2(Γ) ≤ 1, the above inequality leads to

lim
h→0

J ′′(ûh)v2
h ≥ min{µ,N} > 0,

which proves the existence of h0 > 0 such that

J ′′(ûh)v2
h ≥

1

2
min{µ,N} ∀h < h0.

From this inequality, by the definition of vh and (5.3), we deduce (5.2), which com-
pletes the proof.

Proof of Theorem 5.1. By taking v = ūh ◦ g−1
h in (2.12) and vh = ū ◦ gh in (3.8) we

get

(5.8) J ′(ū)(ūh ◦ g−1
h − ū) =

∫

Γ

(Nū− ∂νϕ̄)(ūh ◦ g−1
h − ū) dσ ≥ 0

and

(5.9) J ′
h(ūh)(ū ◦ gh − ūh) =

∫

Γh

(Nūh − ∂νh
ϕ̄h)(ū ◦ gh − ūh) dσh ≥ 0.

We rewrite inequality (5.9) as follows

(5.10) J ′(ūh◦g
−1
h )(ū−ūh◦g

−1
h )+[J ′

h(ūh)(ū◦gh−ūh)−J ′(ūh◦g
−1
h )(ū−ūh◦g

−1
h )] ≥ 0.
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From (5.8) and (5.10) we obtain

[J ′(ūh ◦ g
−1
n )−J ′(ū)](ūh ◦ g

−1
h − ū) ≤ J ′

h(ūh)(ū ◦ gh − ūh)−J ′(ūh ◦ g
−1
h )(ū− ūh ◦ g

−1
h ).

Now, from (5.2) we deduce

(5.11)
1

2
min{N,µ}‖ūh◦g

−1
h −ū‖2

L2(Γ) ≤ J ′
h(ūh)(ū◦gh−ūh)−J ′(ūh◦g

−1
h )(ū−ūh◦g

−1
h ).

It remains to derive an estimate for the right-hand side of (5.11). To this end, we
introduce y ∈ H1(Ω) ∩ L∞(Ω) and ϕ ∈ H2(Ω) as the solutions of the equations

(5.12)

{

−∆y + a(x, y) = 0 in Ω,
y = ūh ◦ g−1

h on Γ,

and

(5.13)







−∆ϕ+
∂a

∂y
(x, y)ϕ =

∂L

∂y
(x, y) in Ω,

ϕ = 0 on Γ.

Then we have

(5.14) J ′(ūh ◦ g−1
h )(ū − ūh ◦ g−1

h ) =

∫

Γ

(Nūh ◦ g−1
h − ∂νϕ)(ū − ūh ◦ g−1

h )dσ.

From (5.9) we get

|J ′
h(ūh)(ū ◦ gh − ūh) − J ′(ūh ◦ g−1

h )(ū− ūh ◦ g−1
h )|

(5.15)

=

∣

∣

∣

∣

∫

Γh

(Nūh − ∂νh
ϕ̄h)(ū ◦ gh − ūh) dσh −

∫

Γ

(Nūh ◦ g−1
h − ∂νϕ)(ū − ūh ◦ g−1

h )dσ

∣

∣

∣

∣

.

Using (3.3) we obtain
∣

∣

∣

∣

∫

Γh

ūh(ū ◦ gh − ūh) dσh −

∫

Γ

ūh ◦ g−1
h (ū− ūh ◦ g−1

h ) dσ

∣

∣

∣

∣

≤ Ch2

∫

Γ

|ūh ◦ g−1
h ||ū− ūh ◦ g−1

h | dσ

(5.16) ≤ Ch2‖ūh ◦ g−1
h ‖L2(Γ)‖ū− ūh ◦ g−1

h ‖L2(Γ) ≤ Ch2‖ū− ūh ◦ g−1
h ‖L2(Γ).

On the other hand, from (4.14), Lemma 4.6 and (3.3) we get
∣

∣

∣

∣

∫

Γh

∂νh
ϕ̄h(ū ◦ gh − ūh) dσh −

∫

Γ

∂νϕ(ū − ūh ◦ g−1
h )dσ

∣

∣

∣

∣

≤ ‖∂νh
ϕ̄h − ∂νh

ϕ‖L2(Γh)‖ū ◦ g−1
h − ūh‖L2(Γh)

+

∣

∣

∣

∣

∫

Γh

∂νh
ϕ(ū ◦ gh − ūh) dσh −

∫

Γ

∂νϕ(ū − ūh ◦ g−1
h )dσ

∣

∣

∣

∣
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(5.17) ≤ Ch‖ū− ūh ◦ g−1
h ‖L2(Γ).

Thus, from (5.11), (5.15), (5.16) and (5.17) we conclude

‖ū− ūh ◦ g−1
h ‖L2(Γ) ≤ Ch.

The remaining estimates of (5.1) follow from the above estimate, (4.2) and (4.9).

REFERENCES

[1] J. Bramble and J. King, A robust finite element method for nonhomogeneous Dirichlet prob-

lems in domains with curved boundaries, Math. Comp., 63 (1994), pp. 1–17.
[2] E. Casas and M. Mateos, Second order optimality conditions for semilinear elliptic control

problems with finitely many state constraints, SIAM J. Control Optim., 40 (2002), pp. 1431–
1454.

[3] , Error estimates for the numerical approximation of Neumann control problems, Comp.
Optim. Appls., 39 (2008), pp. 265–295.
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