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APPROXIMATION OF BOUNDARY CONTROL PROBLEMS ON
CURVED DOMAINS. II - THE DIRICHLET CASE*

EDUARDO CASAST AND JAN SOKOLOWSKI?

Abstract. The influence of small boundary variations of the domain on optimal controls is
investigated in this paper. The domain variations are governed by a small parameter h — 0. In a
previous paper we have studied the Neuman control problem. In this paper, the Dirichlet control
problem is considered. The optimal solutions are compared between the problems defined in the
curved domain €2 and the polygonal domains €2, in the norm defined on the fixed boundary I' = 9Q2
of the curved domain. To this end, an appropriate parametrization of the boundaries is introduced,
and a one-to-one mapping between the boundaries I" and T'j, is employed. Error estimates of the
order h in the norm on the fixed boundary I' are derived for the difference of optimal controls.

Key words. Dirichlet control, error estimates, semilinear elliptic equations, second order opti-
mality conditions

AMS subject classifications. 49J20, 35J65

1. Introduction. In this paper we study a Dirichlet control problem (P) defined
on a curved domain 2. To solve numerically this problem, usually it is necessary to
approximate € by a new domain (typically polygonal) €2;,. Our goal is to analyze the
effect of the domain change on the optimal control. More precisely, a new optimal
control problem (P},) in Q, is defined. The convergence of global or local solutions of
problems (P},) to the corresponding local or global solutions of (P) is investigated for
the parameter h tending to zero. We also derive some error estimates. We restrict our
study to the case of a convex domain Q C R? approximated by a polygonal domain Qy,,
h being the length of the biggest edge of Q. A family of infinite dimensional control
problems (P,) defined in €, is considered and the solutions of (Pj) are compared
with the solutions of (P). In this way, the influence of small changes in the domain
on the solutions of the control problem is analyzed. The case of a Neumann control
problem is studied in [6].

In this paper we do not perform the numerical analysis of the optimal control
problems. We refer the reader to the related papers, [5] for the numerical discretization
of a Dirichlet control problem in the case of a polygonal domain and [7] for the analysis
in curved domains.

Let us describe the content of the paper. In §2 control problem (P) is introduced
and analyzed. In particular, the second order sufficient optimality conditions are
established. In spite of the fact that the cost functional is not of class C? in L?(T),
we prove that the standard sufficient optimality conditions imply that the control is
a strict local minimum in the L?(T') norm. This is an improvement of the known
results where the optimality is established in the L°°(T') norm. Approximations €, of
Q are defined in §3 along with control problem (Pj). In subsequent §4, the analysis is
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2 E. CASAS AND J. SOKOLOWSKI

performed and paper is completed with the full proof of the new error estimates in §5.
The second order sufficient optimality conditions are a crucial tool for the derivation
of error estimates.

2. Control Problem (P). The following control problem is considered in this

paper
min J(u) = / L(z,yy(x d:c—l——/
Q

(P) subject to (yu,u) € (L®(Q) N HY2(Q)) x L=(T),
a<u(zx)<p forae xzel,

where the state y,, associated to the control u is the solution of the Dirichlet problem

—Ay+a(r,y) = 0 inQ,
(2.1) { y = u onl.

The following hypotheses are assumed in the whole paper.
(A1) Q is an open, convex and bounded domain in R?, with the boundary I' of class
C?. Moreover we assume that N > 0 and —oo < a < 3 < +0o0.

(A2) L : Q xR — R and a : Q x R — R are Carathéodory functions of class
C? with respect to the second variable, L(-,0) € L*(Q), a(-,0) € LP(), for some
2 < p < +oo. Furthermore, for every M > 0 there exist a constant Cr ps > 0 and a
function ¢y ps € LP(Q) such that for almost all z € Q and all |y|, |y;| < M, i = 1,2,
the following inequalities hold

oL 0*L
’a_y(‘ruy)‘ SwL,M(:E)u ‘a—yz(%y)‘ SCL,]\{U

0%L %L
) - S )

(2.2)

< Cr.mly2 — y1l-

We also assume

0
a—a(x,y) >0 forae z€ andforall yeR,

2.3
Y 8“( )+82a( )| <C for a.e. € Q and for all |y| <M
dy Ty 992 T,Y)| < Cam rae. T nd for yl < M.

We say that an element y,, € L>°(2) is a solution of (2.1) if the following integral
identity is fulfilled

(2.4) / —yAwd:c—l—/ a(z,y)wdr = / ud,wdo Yw € H*(Q) N Hy(Q),
Q Q r

where 0, denotes the normal derivative on the boundary I'. This is the classical
definition of a weak solution by transposition. The following result proved by Casas
and Raymond [5] is valid for any convex domain €. If the domain is not convex, then
some smoothness of I' is required, I" of class C! is enough.

THEOREM 2.1. For every u € L>®(T') the state equation (2.1) has a unique
solution y,, € L=(Q) N HY?(Q). Moreover, the following Lipschitz properties hold

(2.5) Y = Yol @) < [lu—v[lLee(ry,
”yu - yv”Hl/?(Q) < CHU — U||L2(F) Yu,v € LOO(I‘).
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Finally, if u, — w weakly* in L (T), then y,, — y. strongly in L"(Q) for all
r < 4o00.

Under the assumptions (A1) and (A2), it can be shown by standard arguments
that problem (P) has at least one solution. Since (P) is not convex we cannot ex-
pect any uniqueness of solutions. Moreover, (P) may have some local solutions. We
formulate the optimality conditions satisfied by such local solutions. To this end, we
analyze the differentiability of the cost functional .J.

Under the assumption (A2), J : L>(T') — R is of class C? and

(2.6) J'(u)v = /F (Nu — 8,py) vdr,

where v, is the state associated to u and ¢, € H?(Q) is the unique solution of the
problem

da oL

—DAp+ (T, yu)p = 6—y(f1?,yu) in Q,

(2.7) Ay
p = 0 on I'.

Furthermore, we have

(2.8)
0?L 0%a
J/I(u)(vlav2) :/ |:8 2 (xayu)zmzvz - (pua 2($7yu)zv1zv2:| dx + / Nvyvs dr,
QlLoy Y r

where z,,, i = 1,2, satisfy

Oda )
(2.9) —szﬁa—y(:v,yu)zw = 0 inQ,

zZy, = v; onl.
Using (2.6) we obtain the necessary optimality conditions for (P).
THEOREM 2.2. Let @ be a local minimum of (P). Then @ € W'~V/PP(T) and
there exist elements § € WP(Q) and @ € W2P(Q) such that

—Ag+a(z,y) = 0 inQ,
(210) { y = u onl,
_ Qa, _._ 0L, _ .
(2.11) —Ap+ a_y(x’y)@ = a—y(x,y) in €,
P = 0 on T,

(2.12) /F(Nﬂ(:v) —0yp(x))(v(x) — t(x))do(xz) >0 forall a<v<p.

The proof of theorem is given in [5].
In order to establish the second order optimality conditions we define the cone of
critical directions

Cy = {v € L*(I) satisfying (2.13) and v(z) = 0 if |Na(z) — 8,¢(z)| > 0},
>0 ifa(x) =

(2.13) v(x) = { <0 ifalr) = g’ for a.e. z €T

)
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Now we formulate the second order necessary and sufficient optimality conditions.

THEOREM 2.3. If @ is a local solution of (P), then J"(u)v?> > 0 holds for all
v € Cy. Conversely, if @ is an admissible control for problem (P) satisfying the first
order optimality conditions given in Theorem 2.2 and the coercivity condition

(2.14) J"(@)v? >0 YoveCy)\ {0},

then there exist 6 > 0 and p > 0 such that

(215) J) 2 (@) + S~ )
for all u such that o« < u < 3 and [|u — | g2(ry < p.

Proof. The necessary condition is easy to obtain. The inequality (2.15) is strong
when compared with the corresponding inequality of [5]. Indeed, here we claim that
(2.14) implies that 4 is a strict local minimum of (P) in the sense of the L?(T")
topology. In [5] it is shown that condition (2.14) leads to the strict local optimality
of @ in the sense of the L>(T") topology. A more general result is proved in [2] for a
distributed control problem, but in such a case once again only the local optimality in
the sense of the L>(Q) topology is shown. Here we can improve the results because
the control appears in a quadratic form within the cost functional. Let us see the
precise arguments.

We proceed by contradiction. Let us assume that there is no pair (4, p), with
p,0 > 0, such that (2.15) holds. Then for every integer k, there exists a feasible
control of (P), ux € L*(T), such that

1 1
(2.16) lug — a”L?(F) < P and J(ug) < J(@)+ EHuk - ’ﬁ”%z(p).
Let us define

1
(217) A = Huk — 1_1'||L2(I‘) and v, = )\_k(Uk — 1_1,), hence ||kaL2(F) =1.

By taking a subsequence, if necessary, there exists v € L?(T") such that v, — v weakly
in L?(T"). The proof is divided into three steps: first, we prove that v € Cy, then we
deduce that v = 0 and finally we get the contradiction.

Step 1. v € Cy. Since o < uy < 3, it is obvious that every vy, satisfies (2.13). Also we
have that the set of functions of L?(I") satisfying (2.13) is convex and closed, therefore
v satisfies (2.13) as well. This implies

(2.18) (Nu(x) — d,@(x))v(x) = |Nu(x) — d,@(x)||v(z)| ae onT
Indeed, it is well known that (2.12) implies that Na(z) — 9, @(x) > 0 if @(z) = « and

Nu(z) — 0,@(x) <0 if a(xz) = B. This property and (2.13) lead to (2.18).
On the other hand, from (2.16) we get

1
(219) EHuk — ﬁ”%ﬁ(f‘) > J(uk) — J(ﬁ) = J(TL + /\kvk) — J(l_l,) = J/(l_L + HkAkvk)vk,
for some 0 < 6) < 1. From (2.6) we have that

(2.20) Jl(ﬂ + Hk)\kvk)vk = /(N[’ﬁ + H;C)\kvk] — Oypr v do.
I
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Let us denote by yi the state associated to @ + OpApvr = @ + Ox(up — @). Since
a <+ 0p(up —u) < B and @+ 0k (ux —u) — @ in L3(T') for k — 400, we deduce, in
view of (2.5), that {yx}72, is bounded in L>°(T") and yj, — 7 in H/?(Q2). Therefore,
the sequence of adjoint states {¢y}732, converges to ¢ in H%(Q). Hence, we can pass
to the limit in (2.20) and use (2.19) to deduce that

/(Nﬂ —dyp)vdo <0.
r

This identity and (2.18) imply that v(z) = 0 if |[Na(x) — d,@(x)| > 0. Thus, we have
that v € Cy.
Step 2. v = 0. Using again (2.16) we obtain

A2
?’“ = EHuk — allF2py > J(up) = J (@) = J(@+ Moy) — J (@)
A2 )\

(2.21) = /\kJ/( )’Uk + kJ”(u+9k/\kvk) 2k J”(u—|—9k/\kvk)vk,
the last inequality being a consequence of (2.12)

e (v, = J'(a)(ug, — u) = /(Nﬁ —9,¢)(ug —u)do > 0.

r

Inequality (2.21) implies that

2

E > JN(’l—L + Gk/\kvk)vi
Once again we denote by yi and ¢y the state and adjoint state evaluated for @ +
O pvr = @ + O (up — ). Also we define z, and z, as the elements of H'/2(Q)
satisfying

(2.22)

0
—Azk—i-—a(x,yk)zk = 0 inQ,
(2.23) dy
zr = wg onl,
and
—AZU—F%(I,ﬂ)ZU = 0 inQ,
(2.24) y
Zzy = v onl.

Then 2z, — z, weakly in H'/2(Q), hence strongly in L?(2). Moreover, y, — ¢ in
H'2(Q) and ¢, — @ in H?(Q). Now, recalling the expression of the second derivative
of J given in (2.8) we get

i 0%L 0%a
(2.25) J"(a+ 91@)\1@%)1113 = /Q [8y2( yk) gpka 2(95 yk)zk] dx + N/ v, dx.
Passing to the limit in this expression and using (2.22) we obtain

J"(ﬁ)v2:/ {225(35 )22 @g—(x 7)z } d:c+N/
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(2.26) < liminf J” (@ + Ox Ayvr )02 < 0.

k—oo
Since v € Cy, according to (2.14) this is possible only if v = 0.
Step 3. Final Contradiction. Using two facts, vx — v = 0 and ||vg[|z2r) = 1, we
deduce from (2.22) and (2.25) the following contradiction
0 < N < liminf J" (@ + O \pvr )i < 0.

O

We conclude this section with the following result that provides an equivalent
formulation of (2.14), which is more useful for our purposes.

THEOREM 2.4. Let @ be a feasible control of problem (P) satisfying the first order
optimality conditions (2.10)-(2.12). Then the condition (2.14) holds if and only if

(2.27) 3> 0 and ¥ > 0 such that J"(u)v* > pllv]|72py Yo € c?,
where

CY = {v e LA(T) satisfying (2.13) and v(z) = 0 if |Nu(zx) — d,p(x)| > 9}

Proof. Since C C CY for any 9 > 0, it is obvious that (2.27) implies (2.14). Let
us prove the reciprocal implication. We proceed again by contradiction. We assume
that (2.14) holds, but there is no pair of positive numbers (x, %) such that (2.27) is

fulfilled. Then for every integer k there exists and element vy € Cé/ " such that
~ 1
J"(wyp < E”’UkH%Q(F)'

Dividing vy, by its norm and denoting the quotient by v; again, and taking a subse-
quence if necessary, we have that

1
(2.28) vk € CF) Nokllzay =1, v — v in LAT), J" (@)} < T
Arguing as in the proof of Theorem 2.3, we obtain that v satisfies (2.13). On the

other hand, from the fact that vy € C’é/ " and denoting by I'y, the subset of I'" formed
by those points x such that |[Nu(z) — 0,¢(z)| < 1/k, we get

/(Na —0y@)vdo = lim [ (Nu— 0,@)vy do
r

k—o0 T

1
< liminf/ IN@ — 8,@||vg| do < liminf — |vg| do = 0.
k—oo Jp k—oo k Tk

This inequality and the fact that v satisfies (2.13) imply that v vanishes whenever
|INu(x) — 0,@(x)| > 0, hence v € Cz. Now (2.14) implies that J”(a) > 0 if v Z 0.
But from (2.28) we deduce that

J" (w)w? < likm inf J” (@)vi <O0.

Consequently we have that v = 0. However, if we argue as in the proof of Theorem
2.3, we have that 0 < N < liminfy_ o J"(ﬂ)v,% < 0, which is a contradiction. O
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3. Control Problem (Pj). Now we define €;,. We follow the notation intro-
duced in [6, Section 4]. Given a set of points {z; }jv:(f) C T, we put

1
hi=|rix1 —x;|, h= max h;, 7= —(xj41 —x;
i = lzj+ ils <GSy T hj( J+ i)

where ()41 = 21. I')y is the polygonal line defined by the nodes {x; }jvz(il) and
is the polygon delimited by I'j. Since € is convex, then Q) C Q. Now, for every
1 < j < N(h), we denote by ;2,11 the arc of ' delimited by the points x; and 1.
Let us define v; : [0, hj] — @jz;41 C T by

1/)j(t) =Ty + tTj + ij(t)uj,

where v; represents the unit outward normal vector to 2, on the boundary edge
(xj,zj+1) and ¢; : [0,hj] — [0,400) is chosen such that t;(t) € I'. Since Q is
convex and I is of class C?, the following properties hold
1. ¢; is of class C? and ¢;(0) = ¢;(h;) = 0.
2. There exists a constant Cr > 0 such that ¢;(t) + h|¢;(t)| < Crh3 < Crh? for
all t € [0, hy].
Now, we define we define the one-to-one mapping gy : I', — I in the following way

Inl(e; 2540 (T) = Gnlie; 200 (T5 +175) = 35 + 175 + &5 (D)v; = ¥;(2).

For every point # € T', v(x) denotes the unit outward normal vector to I' at
the point . By 7(z) is denoted the unit tangent vector to I'" at the point a such
that {r(z),v(x)} is a direct reference system in R?. For each point z € I'j, the
corresponding reference system is denoted by {7, (z),vp(x)}. If © € (z;,241) then
vp(z) = v; and 1, (x) = 7;. The following relations are proved in [6]

(3.1)  max{|7(gn()) — (@)l [v(gn(x)) — vn(@)[} < (CR+ Dh Vo €Ty, x # a5,

(3.2) [ bannlaon@ < [ p@ldete) voeLim),

(3.3)

[ @ in@) ~ [ o) don (o)

Ty

< Ophz/ |v(z)| do(x) Vv e LY(T),
r
and

(3.4) /Fv(x) do(x) = / v(gn(2))|Dgn () - ()| do (x) Yo € L*(T).

I'n

In the domain €, we define the problem (Pj) as follows

min Jp (u) = /Qh L(z,ypu(z)) de + g . u?(z) doy, ()
PRI\ subject to (g, u) € (L(Qn) N HY2(Q0)) x L=(Th),

a<u(x) <P forae xely,
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where yp, ., is the solution of the problem

(35) {—Ay—i—a(:c,y) = 0 inQy,
y = u only.

Theorem 2.1 can be applied to (3.5) to get the existence and uniqueness of a solution
Ynu € HY2(Q4) N L>®(Q,). Moreover, inequalities (2.5) hold. (P,) has at least one
global solution and possibly there are some other local solutions of (Pj). For each
local solution we have the first order optimality conditions analogous to the conditions
in Theorem 2.2.

THEOREM 3.1. Let @y be a local minimum of (Py,). Then @, € HY?(T},) and
there exist elements i, € H*(Q,) and ¢n € H*(Q,) such that

(3.6) { ~AdnFalzgn) = 0 in
Yp = up on Iy,
B da, _ __ oL, _ .
(3.7) —Agp + a—y(iﬂa Un)pn = 8_y($7 gn) in Qn,
I 0 on I'y,

(3.8) /r (Nup(x) — Oy, @n(x))(vp(x) — ap(z)) dop(z) >0 for all a<wv, < f.

Remark 3.2. We observe that uy, is less reqular than u. The same is true for yp,
and @, with respect to y and @. The reason of the lost of reqularity is the lack of reg-
ularity of Ty, T is of class C? and consequently we can deduce the WP (Q) regularity
of @ (see, for instance, Grisvard [8]), which leads to the W =1/P(T") regularity of
and consequently to the W1P(Q) regularity of y. Using the results for polygonal do-
mains of [8], we can establish W2P(Q) reqularity of ¢y for some 2 < p < p (assuming
D > 2), with p depending on the angles of Q. The point is that p — 2 if the maximal
angle of Qp, tends to w. This is exactly the case for h — 0, therefore we cannot deduce
the boundedness of {||@nllw2r ) tu>o for any p > 2.

By wusing the Stampacchia approach [?] we can derive a bound for ||gn||Le(q,)
which is dependent on o, § and a(-,0), but independent of h. Then, from (3.7) the
boundedness of {||¢n | g2(q,) tn>0 can be obtained. Now, from (3.8) we deduce

39 (o) = Projuy (~ 0 (o) ) = max{a,min{—-0,, 1(0), 6}

which implies that @y, € HY?(T}) and the family anll g1z, tr>o is bounded. Fi-
nally, (3.6) leads to the boundedness of {||yn| a1 () tn>0 as well.

4. Convergence Analysis. In this section we prove the convergence of the
local or global solutions of (Pj) to the solutions of (P) with o — 0. To prove the
convergence, first we establish the convergence of the solutions of the state and adjoint
state equations.

THEOREM 4.1. Let u € HY?(T') and uj, € L*(T}), with

(4.1) max{||w oo (ry, [[unll Lo, } < M.

Let y, € HY(Q) N L>®(Q) and yp., € HY?(Q,) NL>(Q,) be the corresponding solu-
tions of (2.1) and (3.5), respectively. Then there exists a constant Ciy > 0 independent
of h such that

(4.2) 9a = Ynoun 120y < Cnr (llw—wn 0 gg 2y + AL+ ([l g2 r)]) -
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Proof. Let us take yj, € H'/2(Q,) N L>(,) satisfying

(4.3) {—Ayh+a(a:,yh) = 0 in Qp,
Yn = wuwogy only.

From (2.5) and (3.2) we get

lyu = ynunll 1200y < NYu = Ynllaz @y + 190 = Ynun 51200

< yu = Ynll g2,y + Clluo gn — unllL2(r,)

(4.4) < yw = ynll gz, + Cllu — un o g, I L2y

Let us estimate ¢ = y, — yn. By substraction of the equations satisfied by y,, and
yp, and using the mean value theorem, we get

oa .

(45) _Ad)h + a_y(xa wh)¢h = 0 m Qh;

on = y—wuogy only,
where wy, = yp + 0n(Ynu, — yn) and 0 < 0, < 1. Now we have

Pl 200y < Clly —wo gnll2r,) = Clly —y o gnllL2ry)-
Finally, by using the inequality (see Bramble and King [1, Lemma 1])
(4.6) lw —wognllr2r,) < Ch||w||gr) forall 1<r <2,
we conclude
énller2 () < Chllyll @) < ChL+ [lull g1/2(ry)-

This inequality along with (4.4) proves (4.2). O
Now we proceed with the analysis of the adjoint state equation. Let ¢, € H%(Q)
and @, , € H?(Qp,) be given as the solutions of the equations

Oa oL .
(47) —A(pu + a_y(xv yu)</7u = a—y(fb, yu) in €,
Pu = 0 on I,
and
Oa oL .
(48) _Awh#h' + a_y(x’ yh,uh)@h,uh, = a_y(xv yh,uh,) m th
@h,uh, - 0 on Fh

Then we have the following estimate.

THEOREM 4.2. Let (u,y,) and (upn, Yn v, ) be as in Theorem 4.1. Let o, € H*(Q)
and op.u, € H*(Q) be the corresponding solutions of (4.7) and (4.8), respectively.
Then there exists a constant Cpr > 0, independent of h, such that the following
estimate holds

(4.9)  lew = Phun a2y < Cum (lu—un o gy M2y + R+ ull grem)) -
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Proof. Let us define ¢p, = 0y, — @nu, € H*(Qp). From (4.7) and (4.8) we get

Oa oL oL
—A¢p + a—y(af, Yu)n = a—y(x, Yu) — a—y(x, Yh,un)
(4.10) da da .
+ 6_y(x7yh7uh,) - 6_y('r7yu) Phou, 11 Qp,
on = Ou on I'y,.

From assumption (42), taking into account that y,, and yp, ., are bounded and using
(4.2), we get (see Kenig [10])

pnllga2(Qn) < C (||3/u — Yhun | 22(00) + HSDUHHl(Fh))

(4.11) < C(M) (lu = un 0 gy llz2wy + AL+ [ull iz )] + leull ) -

Let us estimate ¢, in H'(T';). The norm in H*(T'},) is given by

1/
leullzn i = {I0ulZa, + 10neuliam, )

where 0;, ¢y (z) = Vu(x) - m(x), () being the unit tangent vector to I'j, at the
point z; see §3. The estimate of the first term of the norm follows easily from (4.6)
and the fact that ¢, o gy, =0 on I’y

(4.12) ||<Pu||L2(Fh) = ||y — pu 0 gh||L2(Fh) < OhQH@uHH?(Q) < O(M)hQ-

Now the L?(T") norm of the tangential derivative is estimated. To this end we
observe that ¢, = 0 on I', therefore 0,0, = 0 on I' as well. Thus, we also have
(Veoyogn) - (Togn) =0onTy,. Hence

O pu(@) = [Veou (@) = Vou(gn())]m(2) + Vou(gn(@))[m(2) = 7(gn(2))]-
This along with (4.6) and (3.1) leads to

||6‘rh90u||L2(Fh,) < HVSDu =V, 0 thL?(Fh)

(4.13) +leull a2 lITh = 7 0 gullL2r,) < C(M)h.

Finally, (4.9) follows from (4.11), (4.12) and (4.13). O
COROLLARY 4.3. Under the assumptions of Theorem 4.2, the following inequality
holds

(4.14) (10w, 00 = Ouy P |20y < Car (lu = un 0 g M2y + L1+ [[ull graszgry])

for some Cyy > 0 independent of h.
Proof. It is enough to note that ¢, — pp., € H3/2(Qy,) and A(p, — Chouy,) €
L3(Q), then 9y, (¢u — @hu,) € L?(T'y) and we have

Hauh (P — SDth)HLQ(Fh,) < H‘Pu - Sph,UhHH3/2(Qh) + ”A(‘Pu - Sph,uh)HLQ(Qh,);
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see [?] and [10]. From this inequality, Assumption (A2), estimates (4.2), (4.9), (4.10)
and (4.11) we get

190, (Pu = nun)llz2r,y < COM) (lu = un 0 g Hlzzy + h{L + l[ull g2 ry))

Oa oL oL
+||8—y($awh)||L2(szh>||s0u — @hu 20 + |I8—y(w,yu) - 8—y(wayh,uh)|\m(szh>

oa da
+||8—y($= Yu) — 8—y($ayh,uh)HL?(szh)||90h,uh|\L2(szh)

< Cuh (Jlu—up o gy |2y + bl + [ull 172 (r)]) -

O

We complete this section by proving that the family of problems (P},) realizes a
correct approximation of (P). More precisely we prove that the solutions of problems
(Pr) converge to the solutions of (P). Reciprocally, we also prove that any strict local
solution of (P) can be approximated by a sequence of local solutions of problems (Pp,).

THEOREM 4.4. Let @, be a solution of problem (Pp). Then {un o g, '}rhso0 is a
bounded family in HY?(T). If @ is a weak limit for a subsequence, still denoted in
the same way, up, © g,?l — @ weakly in H'/?(T') with h — 0, then @ is a solution of
problem (P). Moreover

%ii% 19 = Ynll sz, =0 and %12% In(un) — J(u),
where § and Fp, denote the solutions of (2.1) and (3.5) corresponding to 4 and up,

respectively.
Proof. First of all we recall definition of norm

0.5 ey = { [ ot @) dote)

1/2

15) ] (g™ (@) = anlg (@) totoyite)

| —2/|?

Let us estimate each of two integrals. In Remark 3.2, we establish the boundedness
of {||@n |l g1/2(q,) }rn>0- If we prove that

1@n © gy ey < Cllanllge,),

then we obtain that {@ o g;, ' }n>0 is bounded in H'/2(T). On the other hand, from
(3.4) it follows that

im0 g5 ey = / lan(gr (2))P dofa)

(4.16) :/ [@n()]*|Dgn () - m(2)| don(z) < Cllanl|7ar, ).

Iy
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By the change of variables in the second integral of (4.15), in view of (3.4), we

get
// |Uh gh |x : Zﬁgghl(zl))F dU(l’)do(x/)
i (2 {E/ 2
(4.17) < C? /Fh /rh |Ig: (2) (2 ))||2 don(z)don (z').

Let us show that |z — /| < |gn(x) — gn(2")| for every x,a’ € T'),. First, we assume
that z,2’ € [xj,xj41] for some 1 < j < N(h). Then

r=uxz;+t1;, gn(x) =z =2+ ¢;(t)vj, 2’ =z; +t'7;, and gn(z') =2’ + ¢;(t')v;.
Therefore,

lgn(x) = gn(@)|? = [t=t']> + ¢ (1) — &5 ()] = |z —2'|* + |5 (1) — &5 ()]* = |z — ']
Now, we assume that x € [zj,xj+1] and 2’ € [®;,x;41], with ¢ # j. Since Q is

convex, there exist two points {#} = [z}, xj+1]N[gn(z), gn(2’)] and {2’} = [x;, 41| N
[gr (), gn(2)]. Moreover we have

(4.18) lgn(2) = gn(2")] = lgn(2) — &| + & — 2| + [2" — gn(2)].
On the other hand,
gn(x) =& = (gn(x) — @) + (& — &) = ¢; () + (¢ = D)7,
which implies
lgn(2) = &> = |gn(@) — o + |2 — & = |gn(z) — 2] > |z - 2].
Analogously, we can prove that |gx(2’) — 2’| > |2’ — &'|. Finally using (4.18) we obtain
lgn(2) = gn(@)] = & — 2| + & = | + |2 = | > |2 — 2.

Using this inequality in (4.17) we conclude that

o @) — g @DE
// e do(z)do (')

(4.19) < C? /F /F [n (@) — an ()| doy(z)don ().

|z — 2’|
From (4.15), (4.16) and (4.19) it follows
l@n o g, Nl gra ey < C'llanll gz e,y < C"-
Therefore, there exists a subsequence and an element @ € H'/2(T") such that @og; ' —

@ weakly in H'/2(T") with » — 0. Since the embedding H'/2(I") ¢ L*(T') is compact,
we have uy, o g,;l — 4 strongly in L?(T). It is obvious that a < u < 3. Now, if we
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denote by g, the states associated to up, and by ¢ the state associated to @, we deduce
from (4.2) that

%ii% 19 = Unll /20, =0 and  3Cap > 0 such that ||gn][L~,) < Cap Yh.

Hence, it is easy to prove that Jy (@) — J(@). It remains to prove that @ is a solution
of (P). Let us take any feasible control u for (P), then u o gy, is also feasible for (Pp,).
Therefore, since 4y, is a solution of (P},), we obtain

J(u) = }113% Jn(uogp) > %12% Jn () = J(a),

which completes the proof. O
THEOREM 4.5. Let @ be a strict local minimum of (P), then there exists a family
{an} such that each control uy, is a local minimum of (Py) and @pog, ' — u converges

weakly in H'Y/?(T).
Proof. Let € > 0 be such that @ is the unique global solution of problem

min J (u) = /(xyu d:c+—/

(Pe) 0 subject to (yu,u) € (L(Q) N HY2(Q)) x LA(T),
a<u(r)<p forae xecl and |u—alrr) <e

Now, for every h we consider the problems

minJh(u):/Q L(:C,yh,u(x))dx—i-g A u?(z) doy, ()

(Phe) subject to (yn.u,u) € (L°(Qy) N HY2(Qy)) x L*(Ty),

a<u(r)<pB forae xeTl), and |uog,' — Ullp2ry < e

It is obvious that @ o gy, is a feasible control for each problem (Pp.), therefore there
exists at least one solution upe of (Pp.). Let us show that upe o g,jl — @ weakly in
HY2(T') with h — 0.

Since {upe o 9;1}h>0 is bounded in L>(I"), we can extract a subsequence, still
denoted by the same symbol, and an element 4 € L*(I") such that up. o g,jl —q
*weakly in L°°(T') with h — 0. Let us denote by yn. € HY?(Q),) N L>®(Q,) the state
associated to upe and consider an extension of ype to €, still denoted by ype, such
that

”ythHl/?(Q) < OHthHHl/?(Qh) and ||ythL°°(Q) < C||yhs|\Loo(Qh) Vh.

The boundedness of {ujc0g; '} in L>(T") implies that of {y;.} in H/2(Q). Therefore,
by taking a subsequence, we can assume that

Yne — ¢ in HY3(Q) and upe0g, ' —a in L*(T).

We are going to prove that ¢ is the state associated to @. According to the definition
given in §2, we have to prove that the following identity holds

(4.20) / —jJAw dx —|—/ a(z,g)wdr = /da,jw do Yw € H*(Q) N HY(Q).
Q Q r
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For a given w € H2(Q) N H(Q) we take wy, € H2(Qp) N HE(Q4), a unique solution
of the Dirichlet problem

—Aw, = —Aw in Qp,
(4.21) { wy = 0 on I'y.
As in the proof of Theorem 4.2 we have
(4.22) |w — wil 32,y < Cllwllgr,) < Ch.
Hence

100, w = By, whllz2r,) < C{lIAW = wn)ll L2, + lw — whll garza,) b

(423) = OH’LU - wh”Hs/z(Qh) S Ch.

Since yp. is the state associated to upe we have

/ —YneAwy, da:—l—/ a(x, Yne )wp, da::/ Upe Oy, Wi, do,.
Qh Qh,

'y

In view of (4.21), this identity can be rewritten as follows

(4.24) —Awype dz + /

CL(:E, yhs)wh dx = / uhs&jh wp, dop,.
Qp Qn

I'n

Now we want to pass to the limit with h — 0 in (4.24). Using the compactness of the
imbedding H'/2() C L?(Q) it is easy to pass to the limit in the first two integrals,
which are also the first two integrals of (4.20). Let us consider the right-hand side
term of (4.24). Applying (4.23) we get

(425) / uhsathh doh = / uhsal,hyw dO’h + O(h)
Fh, Fh,
Now from Lemma 4.6 below we deduce
(4.26) / UpeOy, w doy, = /(uh€ 0 g, Ho,wdo + O(h).
Ty r

Finally, combining (4.25) and (4.26) we get

lim Upe (2)0y, wp, dop, = / ()0, w(z) do.
h—0 Fh, T
Thus, we show that (4.20) follows from (4.24) by the limit passage.

Now, using that uje 0 g; ' — @ weakly in L2(T'), ype — @ strongly in L?(Q),
{Yhe }r>0 is bounded in L>°(€) and the fact that up. is a solution of (Pj.) and ﬂoggl
is feasible for problems (Pp.) we obtain

J(u) < liinigf Jn(upe) < liinigf Jp(to g,?l) < limsup J (@ o g,?l) = J(a).
Since @ is the unique solution of (P.), the above inequality leads to @ = u and
Jn(upe) — J(u), which implies

lim ui_(z) dop(v) = /Fﬁ2(a:) do(x).

h—0 Fh
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Using (3.3)

lim [ (upe o g, ')?(z)do(x) = /aQ(;v) do(x).

h—0 r T

This identity and the weak convergence imply the strong convergence upe o 9;1 —
in L?(T'). First consequence of this strong convergence is that the constraint ||u o
g,?l — QHLQ(F) < g is not active at the controls up. for A small enough. Therefore, up.
is a local minimum of problem (Py) for every h small enough. Since {||unc|/z2(r,)}
is bounded, then we can argue as in the proof of Theorem 4.4 and conclude that
{un o g;;'} is bounded in H/2(T") and hence uje o g; ' — @ weakly in H/2(T") with
h—0.0

LEMMA 4.6. Let w € H*(Q) and v € L*(T), then there exists a constant C' > 0
independent of w and v such that

(4.27)

/ d,wv do — By, w(v o gy)doy,
T I'n

< COhllwll g2 vl 2 ry)-

Proof. First, we observe that (3.3) implies that

/F [Vw(z) - v(@)]v(z) do(z) - / [Vw(gn (@) - v(gn(x))]v(gn(z)) don ()

I'n
< Coh? / V(@) - v(@)|[o(x)] do(z)

(4.28) < Crl?||oywl| 2 myllvll 2y < Ch? |wll 2o lv]l L2 r)-

On the other hand,

/F V() - vn(@)olgn(z)) don(z) — / (Vao(gn (@) - v{gn(@)]o(gn () don (z)

I'yn

- / (Vaol) - (s () — (g (@) ]o(gn () do ()

+/ [Vw(z) = Vw(gn(2))] - v(gn(@))v(gn(z)) don(z).
I'n

From this identity we get, in view of (3.1), (3.2) and (4.6),

/F V() - vn(@)olgn(z)) don(z) — / (Veo(gn (@) - v{gn(@)]o(gn () don (z)

Ty

(4.29) < COhllw|l g2 llvll 22 (-

Now, (4.28) and (4.29) imply (4.27). O
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5. Error Estimates. In this section we assume that u; is a local minimum of
(P1,) such that 1w, 0g;, ' converges weakly in H'/2(T) to a local minimum @ of (P) with
h — 0; see Theorems 4.4 and 4.5. The goal of this section is to derive an estimate for
@ — @y o gy ' || L2(r), Which is established in the following theorem.

THEOREM b5.1. Let u and up be as above and let us denote by y, yn and @, pp
the states and adjoint states associated to u and up, respectively. Let us assume that
the second order sufficient optimality condition (2.14) is fulfilled for w. Then there
exists a constant C, independent of h such that the following estimates hold

(5.1)  Na—1nog, 2wy + 17— Unllgirz@, + 119 = Gl gz, < Ch.

Before proving this theorem we provide a preliminary result. The proof of Lemma
5.2 is inspired by [5, Lemma 7.2], however there are some important differences.

LEMMA 5.2. Let yu > 0 be taken from Theorem 2.4. Then there exists hg > 0
such that

1. _ 1 _ _ N 1 -
(5:2)  gmin{N,pHl|in o gy " = Al < (J'(@nog,") = J'(@)(ano g, — ).

Proof. By applying the mean value theorem there is an intermediate element
Gp, =+ Oy (1 © g, * — 1) such that

(5.3) (J'(an 0 gy ') — J' (@) (an o g, —a) = J"(ap) (tp o g, - — u)>.
Let us take

1

*lano gyt —all ey

s (up o g;l —u).

Taking a subsequence, if necessary, we can assume that v, — v weakly in L?(T"). We
show that v belongs to the critical cone C; defined in §2. First of all, observe that v
satisfies the sign condition (2.13) since every element v}, satisfies the same condition.
Let us prove that v(z) = 0if Nu(z)—0,@(x) # 0. To this end it is enough to establish
the limit passage

(54) }IIHI}) (N’ﬁh - &,h@h)(vh o gh) doyj, = /(N’ﬁ — 6U(ZD)U do.
- Ty I

Indeed, from (5.4) we deduce, in view of (3.8), that

/|Nﬁ—8ygﬁ||v|da:/(Nﬁ—&,@)vda
r r

1

m — ——
h=0 ||up 0 g~ — a2y

/ (N’U,h — 81,}1’(;_7}1)(’(_1,}1 —UuUo gh) dop, <0,
I'n

which proves the required property. Let us show (5.4). By the strong convergence
tp o gy, " — uin L*(T") combined with (4.14) and (3.2), we have

/ (Ntp — Oy, @n)(vn © gn) dop, — / (Nap, — Oy, @) (v © gn) don
T'n I'n



Approximation of Dirichlet Control Problems

< NOv, &1 = 0u, @l L2y 1o © gnll L2,
< Cum ([lan 0 gt = all 2y + {1+ [|ull i) lonll 2y

(5.5) =Cy (”ﬁh o g;l — ’l_LHLz(F) + h[1+ HUJHHl/z(I‘)]) — 0 with h — 0.

On the other hand, from Lemma 4.6 we get

(5.6) Oy, @(vp, 0 gp) dop, = / Oy pop do + O(h) — / dypvdo with h — 0.
T, r r

Finally, from (3.3) we obtain
(5.7) / ap(vp 0 gp) doy, = /(ﬂh o g, o do + O(h) — / wvdo with h — 0.
Ty, r r

Thus, (5.4) follows from (5.5), (5.6) and (5.7).
Now by the definition of v;, and (2.8), (2.27), we get

. . . 0%’L 9%a
}llll% J”(U:h)v}% = %ll% {/Q |:a—y2(xayﬁh,) - <Pﬁh,a—y2(x7yﬁh):| 2121;1 dx + N}

0?L 9%a ] 5
= —(z,9) — == (z,y)| z;dr + N
| |50 -egawn
= J"(@)v* + N(1 = [[vl[ o) = N + (= N)[[vll Lz r)-
Taking into account that ||v||z2ry < 1, the above inequality leads to
}llirr%) J" ()i > min{u, N} > 0,
which proves the existence of hg > 0 such that

1
J" (ap)vi > imin{,u,N} Vh < hg.

17

From this inequality, by the definition of v;, and (5.3), we deduce (5.2), which com-

pletes the proof. O

Proof of Theorem 5.1. By taking v = @, 0 g, in (2.12) and vy, = @ o gy, in (3.8) we

get

(5.8) J'(@)(ap 0 gyt —1a) = /F(Na —0,9)(ap 0 gyt —u)do >0

and

(5.9) Jp (up)(ao gn, —ap) = /F (N, — 8y, n) (o g, — tip) dop, > 0.
n

We rewrite inequality (5.9) as follows

(5.10) J'(wnogy, ") (@—unogy )+ [Jp () (@ogn —in) —J' (nogy, ") (ti—tnogy, )] > 0.
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From (5.8) and (5.10) we obtain
[T (@nog, ") = J'(@)](anog," —a) < Jp(an)(@ogn—an) —J (anogy ) (a—anog,").
Now, from (5.2) we deduce

1. oy N _ -
(5.11) 3 min{ NV, u}||arog, 1_“||2L2(1“) < Jy(an)(wogn—iun)—J' (unog, 1)(U_“h°9h 1)'

It remains to derive an estimate for the right-hand side of (5.11). To this end, we
introduce y € H*() N L>(Q) and ¢ € H*(Q) as the solutions of the equations

(5.12) {—Ayw(:v,y) = 0 @m0
y = upog, onl,
and
da oL )
(5.13) —Ap+ a—y(x,y)w = 6—y(a:,y) in Q,
Y = 0 on I

Then we have
(5.14) J'(ap 0 g, M) (u—apog,t) = /F(Nah 0gy 't — o) (@ —ap o gy do.
From (5.9) we get
| T (@) (@o gn — an) — J'(@n 0 g5, ) (@ —an 0 g, )|
(5.15)
/rh (N, — 8y, pn) (w0 gn, — n) doy, — /F(Nah ogy ' —0up)(u—1po0g, " )do

Using (3.3) we obtain

/ ﬂh(ﬁogh—@h)dah—/ﬂhogﬁl(@—ﬂhogﬁl)da
Fh, F

< Ch2/ un o gy @ — ap o gy, | do
r

(5.16) < Ch?||up, o g}:1|‘L2(F)|‘ﬂ —upo 9;:1||L2(r) < Ch?||t — tp o 9;:1HL2(P)-

On the other hand, from (4.14), Lemma 4.6 and (3.3) we get

Ov @n(Uo gy — up) doy, — / Oyp(i —up o g, M)do
Ty r

< 0w, &1 — Ou, @2, |0 og, ' — Unll L2y

_|_

/ Oy, (@ o gy, — ap) dop, — / Oyp(u — up o ggl)da
Ty T
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(517) S Oh”ﬂ—ﬁhog}:lHLz(F)
Thus, from (5.11), (5.15), (5.16) and (5.17) we conclude
la —an 0 g5 |2y < Ch.

The remaining estimates of (5.1) follow from the above estimate, (4.2) and (4.9). O
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