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In this paper we consider a Neumann control problem associated to a semilinear elliptic equation defined in a curved domain Ω. To deal with the numerical analysis of this problem, the approximation of Ω by an appropriate domain Ω h (typically polygonal) is required. Then the same infinite dimensional control problem is formulated in Ω h . We study the influence of the replacement of Ω by Ω h on the solutions of the control problem. Our goal is to compare the optimal controls defined on Γ = ∂Ω with those defined on Γ h = ∂Ω h and to derive some error estimates. The use of a convenient parametrization of the boundary is needed for such estimates.

Introduction.

In this paper we study the following optimal control problem (P)

         min J(u) = Ω L(x, y u (x)) dx + N 2 Γ u 2 (x) dσ(x) subject to (y u , u) ∈ (L ∞ (Ω) ∩ H 1 (Ω)) × L 2 (Γ), α ≤ u(x) ≤ β for a.e. x ∈ Γ,
where Γ is a smooth manifold, y u is the state associated to the control u, given by a solution of the Neumann problem (1.1) -∆y + a(x, y) = 0 in Ω, ∂ ν y = u on Γ.

We precise later the assumptions about the data of the control problem (P).

The numerical computation of the solution of (P) requires the discretization of the state equation, typically by using finite elements. If Ω is a polygonal domain, then it is covered by the union of the triangles of the mesh and Γ remains invariable. Then problem (P) is approximated by a discrete problem (P h ) and it is possible to estimate the difference ū -ūh L 2 (Γ) between the different solutions of (P) and (P h ), see for instance [START_REF]Error estimates for the numerical approximation of Neumann control problems[END_REF] or [START_REF] Casas | Error estimates for the numerical approximation of boundary semilinear elliptic control problems[END_REF]. In the problem that we are considering here, the situation is more complicated because the numerical analysis with finite elements requires the approximation of Ω by a new (typically polygonal) domain Ω h , so that the comparison between the solutions ū and ūh is more involved because ū ∈ L 2 (Γ) and ūh ∈ L 2 (Γ h ), where Γ h is the boundary of Ω h . This difficulty can be overcome by using convenient parametrizations of Γ and Γ h , but there are still some technical difficulties for the error analysis. In this paper we do not consider the numerical approximation of (P), we just analyze what happen if Ω is approximated by a polygonal domain Ω h , and (P) is transformed in a new infinite dimensional control problem (P h )

(P h )            min J h (u) = Ω h L(x, y h,u (x)) dx + N 2 Γ h u 2 (x) dσ h (x) subject to (y h,u , u) ∈ (L ∞ (Ω h ) ∩ H 1 (Ω h )) × L 2 (Γ h ),
α ≤ u(x) ≤ β for a.e. x ∈ Γ h , where y h,u is the solution of the problem (1.2) -∆y + a(x, y) = 0 in Ω h , ∂ ν h y = u on Γ h .

In this paper we study the influence of a small change in the domain on the solutions of the control problem. In §6 we prove that the order of the approximation is h 5/3 . This order has an interesting consequence. Indeed, to solve numerically a Neumann control problem, piecewise constant or piecewise linear functions are typically taken to approximate the controls. In both these cases, the maximal order of the error estimates is h or h 3/2 , respectively; see [START_REF]Error estimates for the numerical approximation of Neumann control problems[END_REF]. A consequence of our estimate is that it is not worthy to consider any better approximation Ω h of Ω than the polygonal one because it does not lead to any improvement in the order of the convergence of the numerical approximations. Even, if we follow the procedure suggested by Hinze in [START_REF] Hinze | A variational discretization concept in control constrained optimization: The linearquadratic case[END_REF], where no control discretization is considered, just the state and adjoint states are discretized, we cannot improve the order of convergence by using a better approximation Ω h of Ω, unless finite elements of order higher than one are considered to solve the state and adjoint state equations. However, in the last case the implementation is much more involved if we do not discretize the controls, the computational complication being increased by the fact that the control is the Neumann boundary condition.

The plan of the paper is as follows. In §2 we fix the notation, we introduce the assumptions, we study the existence, uniqueness and regularity of the state equation (1.1) as well as the existence of a solution for problem (P). In section §3 the first and second order optimality conditions for (P) are established, which are the essential tool to derive the error estimates. The domains Ω h , h > 0, are introduced in §4. Beside that, in §4 we define a one-to-one mapping g h : Γ h -→ Γ that allows us to compare the solutions ū of (P) and ūh of (P h ) in the norm ū -ūh • g -1 h L 2 (Γ) . In §5 we prove that problems (P h ) realize a correct approximation of (P) in the sense that global solutions of (P h ) converge strongly to global solutions of (P) and the strict local solutions of (P) can be approximated by local solutions of problems (P h ). A crucial result in this section is the derivation of the estimates for the differences of states and of adjoint states defined in Ω and Ω h , respectively. The reader is referred to Theorems 5.1 and 5.2 for the estimates in the spaces H s (Ω h ), with 0 ≤ s ≤ 3/2. One key point in this proof is the use of a modification of the Aubin-Nitsche argument to derive error estimates in the L 2 norm for finite element approximations. This approach used in the case of linear equations can be adapted to semilinear problems as it is shown. Finally, in §6 we derive the error estimates for the controls and the corresponding states and adjoint states.

In a forthcoming paper we analyze the case of a Dirichlet control problem. The reader is referred to [START_REF] Casas | Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations[END_REF] and [START_REF] Deckelnick | Finite element approximation of Dirichlet boundary control for elliptic PDEs on two-and three-dimensional curved domains[END_REF] for the numerical approximation of this problem.

Assumptions and Preliminary Results.

The following hypotheses are imposed on the data of problem (P).

(A1)

Ω is an open, convex and bounded domain in R 2 , with the boundary Γ of class C 2 . Moreover, we assume that N > 0 and -∞ ≤ α < β ≤ +∞.

(A2) L : Ω × R -→ R and a : Ω × R -→ R are Carathéodory functions of class C 2 with respect to the second variable, L(•, 0) ∈ L 1 (Ω), a(•, 0) ∈ L ∞ (Ω) and for every M > 0 there exist a constant C M such that for almost all x ∈ Ω and all |y|, |y i | ≤ M , i = 1, 2, the following inequalities hold (2.1)

           2 j=1 ∂ j L ∂y j (x, y) + ∂ j a ∂y j (x, y) ≤ C M , ∂ 2 L ∂y 2 (x, y 2 ) - ∂ 2 L ∂y 2 (x, y 1 ) + ∂ 2 a ∂y 2 (x, y 2 ) - ∂ 2 a ∂y 2 (x, y 1 ) ≤ C M |y 2 -y 1 |.
We also assume

(2.2)        ∂a ∂y
(x, y) ≥ 0 for a.e. x ∈ Ω and for all y ∈ R,

∃E ⊂ Ω and Λ > 0 such that |E| > 0 and ∂a ∂y (x, y) ≥ Λ ∀(x, y) ∈ E × R.
We observe that, by our assumptions (A1) and (A2), for every u ∈ L 2 (Γ) the state equation (1.1) has a unique solution y u ∈ L ∞ (Ω) ∩ H 1 (Ω). The proof is standard and some estimates can be derived

(2.3) y u H 1 (Ω) + y L ∞ (Ω) ≤ C E a(•, 0) L 2 (Ω) + u L 2 (Γ) .
Moreover, if u ∈ H 1/2 (Γ), then y u ∈ H 2 (Ω) and we have an analogous estimate with the L 2 (Γ)-norm of u replaced by the H 1/2 (Γ)-norm.

To assure the existence of a global optimal solution of problem (P) we need an additional hypothesis.

(A3) Either α, β ∈ R or the following assumption holds

(2.4) L(x, y) ≥ ψ L (x) + Λ L y 2 , with ψ L ∈ L 1 (Ω) and N + 4C 2 E min{0, Λ L } > 0.
where C E is as in (2.3). Indeed, if we take a minimizing sequence {u k } ∞ k=1 of problem (P), then either α, β ∈ R and consequently {u k } ∞ k=1 is bounded in L ∞ (Γ) or

J(u k ) ≥ Ω ψ L (x) dx + Λ L Ω y 2 k (x) dx + N 2 u k 2 L 2 (Γ) ≥ Ω ψ L (x) dx + 2 min{0, Λ L }C 2 E a(•, 0) 2 L 2 (Ω) + u k 2 L 2 (Γ) + N 2 u k 2 L 2 (Γ) = C + N 2 + 2 min{0, Λ L }C 2 E u k 2 L 2 (Γ) ,
which allows to conclude again that {u k } ∞ k=1 is bounded in L 2 (Γ). The remaining part of the proof is classical.

First and Second Order Optimality Conditions for (P).

In this section we establish the first and second order optimality conditions for the local minimum of (P), which are necessary to derive error estimates when approximating (P) by (P h ). Since problem (P) is not necessarily convex, then it may have more than one global solution as well as some local solutions which are not global. The optimality system for a local solution is stated in the next theorem, where we also establish the regularity of the local minima.

Theorem 3.1. Let ū be a local minimum of (P). Then ū ∈ C 0,1 (Γ) and there exist elements ȳ, φ ∈ W 2,p (Ω), for every 1 ≤ p < +∞, such that

-∆ȳ + a(x, ȳ) = 0 in Ω, ∂ ν ȳ = ū on Γ, (3.1)    -∆ φ + ∂a ∂y (x, ȳ) φ = ∂L ∂y (x, ȳ) in Ω, ∂ ν φ = 0 on Γ, (3.2) 
Γ ( φ(x) + N ū(x))(v(x) -ū(x)) dσ(x) ≥ 0 for all α ≤ v ≤ β. (3.3)
Sketch of the proof. First, we note that J :

L 2 (Γ) -→ R is of class C 1 (in fact, it is of class C 2 ) and J ′ (ū)v = Γ ( φ(x) + N ū(x))v(x) dσ(x),
where φ ∈ L ∞ (Ω) ∩ H 1 (Ω) is the solution of (3.2) and ȳ is the state associated to ū and consequently the unique solution of (3.1) in L ∞ (Ω) ∩ H 1 (Ω). The well known optimality condition

J ′ (ū)(v -ū) ≥ 0 for all α ≤ v ≤ β,
along with the expression of J ′ lead to (3.3). Now (3.3) implies

(3.4) ū(x) = Proj [α,β] - 1 N φ(x) = max{α, min{- 1 N φ(x), β}}.
From our assumption (A2) and the boundedness of ȳ we have that

∂L ∂y (x, ȳ(x)), ∂a ∂y (x, ȳ(x)) ∈ L ∞ (Ω).
Therefore, we can use the elliptic regularity results (see Grisvard [START_REF] Grisvard | Elliptic Problems in Nonsmooth Domains[END_REF]Chapter 2]) to deduce that φ ∈ W 2,p (Ω) for every 1 ≤ p < +∞. Moreover, since W 2,p (Ω) ⊂ C 1 ( Ω) for every p > 2, we get from (3.4) that ū is Lipschitz in Γ. Finally, from (3.1) and using again the elliptic regularity results, we conclude that ȳ ∈ W 2,p (Ω) for every 1 ≤ p < +∞.

Let us observe that (3.3) is equivalent to φ + N ū = 0 on Γ if α = -∞ and β = +∞. In this case ū = -φ/N ∈ W 2-1/p,p (Γ) for all 1 ≤ p < +∞.

We finish this section by stating the second order optimality conditions. Given a local minimum ū, the associated cone of critical directions is defined by

C ū = {v ∈ L 2 (Γ) satisfying (3.5) and such that v(x) = 0 if | φ(x) + N ū(x)| > 0}, (3.5) v(x) = ≥ 0 if ū(x) = α, ≤ 0 if ū(x) = β.
Then we have the following result. Theorem 3.2. If ū is a local minimum of problem (P), then J ′′ (ū)v 2 ≥ 0 for all v ∈ C ū. Reciprocally, if ū is a feasible control for problem (P) satisfying the first order optimality conditions (3.1)-(3.3) and the coercivity condition

(3.6) J ′′ (ū)v 2 > 0 ∀v ∈ C ū \ {0},
then there exist ε > 0 and δ > 0 such that

(3.7) J(ū) + δ 2 u -ū L 2 (Γ) ≤ J(u) for every α ≤ u ≤ β such that u -ū L 2 (Γ) < ε.
For the details, the reader is referred to [START_REF] Casas | Second order optimality conditions for semilinear elliptic control problems with finitely many state constraints[END_REF] and [START_REF] Casas | Error estimates for the numerical approximation of boundary semilinear elliptic control problems[END_REF]. An important fact is that condition (3.6) holds if and only if (3.8) ∃µ > 0 and ϑ > 0 such that

J ′′ (ū)v 2 ≥ µ v 2 L 2 (Γ) ∀v ∈ C ϑ ū ,
where

C ϑ ū = {v ∈ L 2 (Γ) satisfying (3.5) and v(x) = 0 if | φ(x) + N ū(x)| > ϑ}.

Problem (P h ).

In order to define the control problem (P h ) we consider a polygonal approximation of Ω. We fix a set of points {x j } N (h) j=1 ⊂ Γ, the nodes being ordered clockwise. We set

h j = |x j+1 -x j |, h = max 1≤j≤N (h) h j , τ j = 1 h j (x j+1 -x j ),
where we denote x N (h)+1 = x 1 . Γ h is the polygonal line defined by the nodes {x j }

N (h) j=1

and Ω h is the polygon delimited by Γ h . Since Ω is convex, it is clear that Ω h ⊂ Ω.

For every 1 ≤ j ≤ N (h), x j x j+1 denotes the arc of Γ delimited by the points x j and x j+1 . Then we have that Γ = ∪ N (h)

j=1 x j x j+1 and Γ h = ∪ N (h) j=1 [x j , x j+1 ].
For every 1 ≤ j ≤ N (h), ν j represents the unit outward normal vector to Ω h on the boundary edge (x j , x j+1 ). Now we introduce a parametrization of Γ as follows

ψ j : [0, h j ] -→ x j x j+1 ⊂ Γ is defined by ψ j (t) = x j + tτ j + φ j (t)ν j , φ j : [0, h j ] -→ [0, +∞) is chosen such that ψ j (t) ∈ Γ. It is evident that φ j is uniquely defined. Since Ω is convex and Γ is of class C 2 , the following properties hold 1. φ j is of class C 2 and φ j (0) = φ j (h j ) = 0. 2. There exists a constant C Γ > 0 such that φ j (t) + h|φ ′ j (t)| ≤ C Γ h 2 j ≤ C Γ h 2 for all t ∈ [0, h j ].
Finally, we define

g h : Γ h -→ Γ, g h | [xj ,xj+1] (x) = g h | [xj ,xj+1] (x j + tτ j ) = x j + tτ j + φ j (t)ν j = ψ j (t).
Clearly g h is one-to-one. We denote by ν(x) the unit outward normal vector to Γ at the point x and by τ (x) the unit tangent vector such that {τ (x), ν(x)} is a direct reference system in R 2 . We can obtain the expressions for these vectors from the parametrization. If x is a point of the arc x j x j+1 , then

τ (x) = 1 1 + φ ′ j (t) 2 (τ j + φ ′ j (t)ν j ) and ν(x) = 1 1 + φ ′ j (t) 2 (ν j -φ ′ j (t)τ j ).
From these expressions and the properties of φ j we deduce that

|ν(g h (x)) -ν j | ≤ C 2 Γ h 2 + 1C Γ h ∀x ∈ [x j , x j+1 ],
the same inequality holds true for |τ (g h (x)) -τ j |. Since we are interested in the case of h → 0, we can assume that h < 1 and then

(4.1) max{|τ (g h (x)) -τ h (x)|, |ν(g h (x)) -ν h (x)|} ≤ (C 2 Γ + 1)h ∀x ∈ Γ h , where τ h (x) = τ j and ν h (x) = ν j if x ∈ (x j , x j+1 ). Given a function v ∈ L 1 (Γ), we have Γ v(x) dσ(x) = N (h) j=1 hj 0 v(ψ j (t)) 1 + φ ′ j (t) 2 dt and Γ h v(g h (x)) dσ h (x) = N (h) j=1 hj 0 v(g h (x j + tτ j )) dt = N (h) j=1 hj 0 v(ψ j (t)) dt.
From these expressions we deduce that (4.2)

Γ h |v(g h (x))| dσ h (x) ≤ Γ |v(x)| dσ(x) ∀v ∈ L 1 (Γ) and Γ v(x) dσ(x) - Γ h v(g h (x)) dσ h (x) ≤ N (h) j=1 hj 0 |v(ψ j (t))||1 -1 + φ ′ j (t) 2 | dt (4.3) ≤ C Γ h 2 N (h) j=1 hj 0 |v(ψ j (t))| dt ≤ C Γ h 2 Γ |v(x)| dσ(x) ∀v ∈ L 1 (Γ).
We also have

(4.4) Γ v(x) dσ(x) = Γ h v(g h (x))|Dg h (x) • τ h (x)| dσ h (x) ∀v ∈ L 1 (Γ).
In the domain Ω h defined above we consider the state equation (1.2) and the associated control problem (P h ) described in Introduction. Since we are interested in the behavior of the solutions of (P h ) when h → 0, we can assume without any lost of generality that there exists h 0 > 0 such that the set E ⊂ Ω, introduced in assumption (A2), is also contained in Ω h for every h ≤ h 0 . Then assumptions (A1) and (A2) imply the existence of a unique solution y h,u of (1.2) in H 1 (Ω h ) ∩ L ∞ (Ω h ) for every u ∈ L 2 (Γ h ). Moreover, the inequality (2.3) can be rewritten as follows

(4.5) y h,u H 1 (Ω h ) + y L ∞ (Ω h ) ≤ C E a(•, 0) L 2 (Ω) + u L 2 (Γ h ) ∀h ≤ h 0 .
Since Ω h is a convex polygonal domain we have that y h,u ∈ H 2 (Ω h ) whenever u ∈ H 1/2 (Γ h ); see, for instance, Grisvard [START_REF] Grisvard | Elliptic Problems in Nonsmooth Domains[END_REF]Chapter 4].

Arguing as in §2, we can prove that problem (P h ) has at least one global minimum for every h ≤ h 0 . Furthermore, we have the optimality system analogous to (3.1)-(3.3).

Theorem 4.1. Let ūh be a local minimum of (P h ). Then ūh ∈ H 1 (Γ h ) and there exist elements ȳh , φh ∈ H 2 (Ω h ) such that

-∆ȳ h + a(x, ȳh ) = 0 in Ω h ∂ ν ȳh = ūh on Γ h (4.6)    -∆ φh + ∂a ∂y (x, ȳh ) φh = ∂L ∂y (x, ȳh ) in Ω h ∂ ν h φh = 0 on Γ h (4.7) Γ h ( φh (x) + N ūh (x))(v h (x) -ūh (x)) dσ h (x) ≥ 0 for all α ≤ v h ≤ β . (4.8)
The proof of this theorem is the same as of Theorem 3.1 with the only one difference concerning the regularity of (ū h , ȳh , φh ). This difference is due to the lack of the regularity of Γ h , which is not C 1,1 and thus the regularity results used in Theorem 3.1 are not valid. However, taking into account that Ω h is convex, we can deduce that ϕ h ∈ H 2 (Ω h ); see Grisvard [START_REF] Grisvard | Elliptic Problems in Nonsmooth Domains[END_REF]Chapter 3]. Moreover, we have

φh H 2 (Ω h ) ≤ C ∂a ∂y (x, ȳh ) L 2 (Ω h ) + ∂L ∂y (x, ȳh ) L 2 (Ω h ) ,
where C is independent of h. Hence from (4.5) and assumption (A2) it follows that

(4.9) φh H 2 (Ω h ) ≤ M ūh ,
where M ūh is a constant depending on ūh L 2 (Γ h ) . Using (4.8) we get

(4.10) ūh (x) = Proj [α,β] - 1 N φh (x) = max{α, min{- 1 N φh (x), β}}, which implies that ūh ∈ H 1 (Γ h ), hence ȳh ∈ H 2 (Ω h ) and (4.11) ȳh H 2 (Ω h ) + ūh H 1 (Γ h ) ≤ K ūh ,
where once again K ūh is a constant depending only on ūh L 2 (Γ h ) and independent of h.

If -∞ < α < β < +∞, then ūh L 2 (Γ h ) ≤ max{|α|, |β|}|Γ h | 1/2 ≤ max{|α|, |β|}|Γ| 1/2 .
If α = -∞ or β = +∞, then by (2.4) and the same argument as used at the end of §2 we get for all

u h ∈ L 2 (Γ h ) with α ≤ u h ≤ β C + N 2 + 2 min{0, Λ L }C 2 E ūh 2 L 2 (Γ h ) ≤ J h (ū h ) ≤ J h (u h ).
If ūh is a global solution of (P h ), then we can take u h ≡ c α,β , with a constant α < c α,β < β, and deduce from the above inequality, in view of (4.5), the boundedness of { ūh L 2 (Γ h ) } h≤h0 . In any case, by (4.9) and (4.11) there is a constant K > 0 such that

(4.12) ȳh H 2 (Ω h ) + φh H 2 (Ω h ) + ūh H 1 (Γ h ) ≤ K ∀h ≤ h 0 .
When {ū h } h≤h0 are just local minima of problems (P h ), the inequality (4.12) remains valid for -∞ < α < β < +∞ or for a bounded sequence {J h (ū h )} h≤h0 , which is true provided { ūh L 2 (Γ h ) } h≤h0 is bounded (cf. (4.5)).

5. Convergence Analysis. The goal of this section is to prove the convergence, in a sense to be defined later, of the solutions ūh of (P h ) to the solutions ū of (P). We also analyze the approximation of local minima of (P) by local minima of problems (P h ). In order to carry out this analysis, first we compare the solutions of (1.1) and (1.2).

Theorem 5.1.

Let u ∈ H 1/2 (Γ) and u h ∈ L 2 (Γ h ), with (5.1) max{ u L 2 (Γ) , u h L 2 (Γ h ) } ≤ M.
Let y u ∈ H 2 (Ω) and y h,u h ∈ H 3/2 (Ω h ) be the corresponding solutions of (1.1) and (1.2), respectively. Then there exists a constant C M > 0 independent of h such that for all 0 ≤ s ≤ 3 2 the following estimate holds

(5.2) y u -y h,u h H s (Ω h ) ≤ C M u -u h • g -1 h L 2 (Γ) + h 6-2s 3 [1 + u H 1/2 (Γ) ] .
Proof. Let us introduce the intermediate problem

(5.3) -∆y h + a(x, y h ) = 0 in Ω h , ∂ ν h y h = u • g h on Γ h .
Then we have (5.4)

y u -y h,u h H s (Ω h ) ≤ y u -y h H s (Ω h ) + y h -y h,u h H s (Ω h ) .
Let us estimate the second term of the right-hand side in (5.4). We set φ h = y h -y h,u h . By substraction of the equations satisfied by y h and y h,u h and using the mean value theorem, we get (5.5)

   -∆φ h + ∂a ∂y (x, w h )φ h = 0 in Ω h ∂ ν h φ h = u • g h -u h on Γ h ,
where w h = y h + θ h (y h,u h -y h ) and 0 < θ h < 1. From (5.5) and assumption (2.2) it follows that

φ h H 1 (Ω h ) + φ h L ∞ (Ω h ) ≤ u • g -1 h -u h L 2 (Γ h ) .
In view of (5.1), we can apply (2.3) and (4.5) to obtain that

∂a ∂y (x, w h ) L ∞ (Ω h ) ≤ C 1
for some constant C 1 depending on M (cf. Assumption (A2)). Then we get

φ h H 3/2 (Ω h ) ≤ C 2 ∆φ h L 2 (Ω h ) + u • g h -u h L 2 (Γ h ) ≤ C 2 C 1 φ h L 2 (Ω h ) + u • g h -u h L 2 (Γ h ) ≤ C 3 u • g h -u h L 2 (Γ h ) ,
see [START_REF] Kenig | Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems[END_REF] for the first estimate. Now (4.2) combined with the above inequality lead to (5.6)

y h -y h,u h H s (Ω h ) ≤ C 3 u -u h • g -1 h L 2 (Γ) for all 0 ≤ s ≤ 3 2 .
The remaining part of the proof is dedicated to derivation of the inequality (5.7)

y u -y h H s (Ω h ) ≤ Ch 6-2s 3 [ u H 1/2 (Γ) + 1] for all 0 ≤ s ≤ 3 2 ,
where C depends on the constant M given in (5.1). Thus (5.6) and (5.7) imply (5.2). The proof follows some steps. First, we consider the case s = 3/2, then by using the Aubin-Nitsche duality method we deduce the estimate for s = 0 and finally an appropriate interpolation inequality completes the proof.

Case 1: s = 3/2. Let us use again the letter φ h to denote φ h = y u -y h . By substraction of the equations satisfied by y u and y h and by an application the mean value theorem we get (5.8)

   -∆φ h + ∂a ∂y (x, w h )φ h = 0 in Ω h ∂ ν h φ h = ∂ ν h y u -u • g h on Γ h .
Using once again [START_REF] Kenig | Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems[END_REF], we get

φ h H 3/2 (Ω h ) ≤ C 3 ∂ ν h y u -u • g h L 2 (Γ h ) ≤ C 3 ∇y u • ν h -(∇y u • g h ) • ν h L 2 (Γ h ) + (∇y u • g h ) • ν h -(∇y u • g h ) • (ν • g h ) L 2 (Γ h ) ≤ C 3 ∇y u -∇y u • g h L 2 (Γ h ) + ∇y u • g h L 2 (Γ h ) ν h -ν • g h L 2 (Γ h ) .
From [1, Lemma 1] we have (5.9)

w -w • g h L 2 (Γ h ) ≤ Ch r w H r (Ω) for all 1 ≤ r ≤ 2.
Using this inequality with r = 1 and w = ∇y in the above estimate for φ h along with (4.1) we get (5.10)

y u -y h H 3/2 (Ω h ) ≤ C 4 h y u H 2 (Ω) ≤ C 5 h[ u H 1/2 (Γ) + 1],
where C 5 depends on the L 2 (Ω)-norm of ∂a ∂y (x, y u )y u . By using (2.3) and assumption (A2) we get that the norm can be estimated by a constant depending on M , which implies that C 5 depends on M as well. case 2: s = 0. Let us define the function µ h ∈ L ∞ (Ω h ) by

µ h (x) =      a(x, y u (x)) -a(x, y h (x)) y u (x) -y h (x) if y u (x) = y h (x) 0 otherwise.
Let f ∈ L 2 (Ω h ) be arbitrary. We extend f and µ h to Ω by zero and we define z ∈ H 2 (Ω) and z h ∈ H 2 (Ω h ) as the solutions of the problems (5.11)

-∆z + µ h (x)z = f in Ω, ∂ ν z = 0 on Γ,

and

(5.12)

-∆z h + µ h (x)z h = f in Ω h , ∂ ν h z h = 0 on Γ h .
Taking the difference of the equations (5.11) and (5.12) and arguing as above we get

z -z h H 3/2 (Ω h ) ≤ C 6 ∂ ν h z L 2 (Γ h ) = C 6 ∇z • ν h -(∇z • g h ) • (ν • g h ) L 2 (Γ h ) ≤ C 6 ∇z -∇z • g h L 2 (Γ h ) + ∇z • g h L 2 (Γ h ) ν h -ν • g h L 2 (Γ h ) (5.13) ≤ C 7 h z H 2 (Ω) ≤ C 8 h f L 2 (Ω h ) .
Now multiplying equation (5.12) by y u -y h , integrating by parts and using the equations satisfied by y u and y h we get

Ω h f (y u -y h ) dx = Ω h {∇z h (∇y u -∇y h ) + [a(x, y u ) -a(x, y h )]z h } dx = Ω h {(∇z h -∇z)(∇y u -∇y h ) + [a(x, y u ) -a(x, y h )](z h -z)} dx + Ω h {∇z∇y u + a(x, y u )z} dx - Ω h {∇z∇y h + a(x, y h )z} dx ≤ z h -z H 1 (Ω h ) y u -y h H 1 (Ω h ) - Ω\Ω h {∇z∇y u + a(x, y u )z} dx (5.14) + Γ uz dσ - Γ h (u • g h )z dσ h .
From (5.10) and (5.13) we obtain (5.15)

z h -z H 1 (Ω h ) y u -y h H 1 (Ω h ) ≤ C 5 C 8 h 2 [ u H 1/2 (Γ) + 1] f L 2 (Ω h ) .
To estimate the second term on the right-hand side of (5.14) we use the inequality

(see [1, Lemma 2]) (5.16) w L 2 (Ω\Ω h ) ≤ Ch w H 1 (Ω) .
On the other hand, recalling that 0 ≤ φ j (t) ≤ C Γ h 2 for every 1 ≤ j ≤ N (h), we get the well known estimate (5.17)

|Ω \ Ω h | ≤ Ch 2 .
From (5.16) and (5.17) we get

Ω\Ω h {∇z∇y u + a(x, y u )z} dx ≤ ∇z L 2 (Ω\Ω h ) ∇y u L 2 (Ω\Ω h ) + a(x, y u ) L 2 (Ω\Ω h ) z L 2 (Ω\Ω h ) ≤ Ch 2 z H 2 (Ω) y u H 2 (Ω) + |Ω \ Ω h | a(x, y u ) L ∞ (Ω) Ch z H 1 (Ω) (5.18) ≤ C 9 h 2 [ y u H 2 (Ω) + 1] f L 2 (Ω h ) ≤ C 10 h 2 [ u H 1/2 (Γ) + 1] f L 2 (Ω h ) ,
where C 10 depends on the constant M given by (5.1) Finally, we estimate the last term of (5.14) by using (4.2), (4.3), (5.1) and (5.9)

Γ uz dσ - Γ h (u • g h )z dσ h ≤ Γ h |(u • g h )(z • g h -z)| dσ h + C Γ h 2 Γ |uz| dσ ≤ u • g h L 2 (Γ h ) z • g h -z L 2 (Γ h ) + C Γ h 2 u L 2 (Γ) z L 2 (Γ) (5.19) ≤ C 11 h 2 u L 2 (Γ) z H 2 (Ω) ≤ C 12 M h 2 f L 2 (Ω h ) .
Now, from (5.14), (5.15), (5.18) and (5.19) we deduce (5.20)

y u -y h L 2 (Ω h ) ≤ Ch 2 [ u H 1/2 (Γ) + 1],
where C depends on M , but it is independent of h.

Case 3: 0 < s < 3/2. This case can be obtained from Case 1 combined with Case 2 and the following interpolation inequality

(5.21) w H s (Ω h ) ≤ ε w H 3/2 (Ω h ) + Kε -2s 3-2s w L 2 (Ω h )
which holds for any ε > 0; see [START_REF] Grisvard | Elliptic Problems in Nonsmooth Domains[END_REF]Theorem 1.4.3.3]. By setting ε = h (3-2s)/3 in (5.21) and using (5.10) and (5.20), we deduce (5.7). The next step in our analysis is comparison of the adjoint state equations corresponding to y u and y h,u h . More precisely, we introduce the adjoint states ϕ u ∈ H 2 (Ω) and ϕ h,u h ∈ H 2 (Ω h ) as the solutions of the equations

(5.22)    -∆ϕ u + ∂a ∂y (x, y u )ϕ u = ∂L ∂y (x, y u ) in Ω, ∂ ν ϕ u = 0 on Γ,

and

(5.23)

   -∆ϕ h,u h + ∂a ∂y (x, y h,u h )ϕ h,u h = ∂L ∂y (x, y h,u h ) in Ω h , ∂ ν h ϕ h,u h = 0 on Γ h .
Then we have the following estimates. Theorem 5.2. Let (u, y u ) and (u h , y h,u h ) be as in Theorem 5.1. Let ϕ u ∈ H 2 (Ω) and ϕ h,u h ∈ H 2 (Ω h ) be the corresponding solutions of (5.22) and (5.23), respectively. Then there exists a constant C M > 0 independent of h such that for all 0 ≤ s ≤ 3 2 the following estimate holds

(5.24) ϕ u -ϕ h,u h H s (Ω h ) ≤ C M u -u h • g -1 h L 2 (Γ) + h 6-2s 3 [1 + u H 1/2 (Γ) ] .
Proof. We follow the steps of the proof of Theorem 5.1, with some simplifications because now the equations are linear and the boundary conditions are homogeneous. To estimate ϕ u -ϕ h,u h we use estimates (5.2). Let us consider ϕ h ∈ H 2 (Ω h ) given by a solution of (5.25)

   -∆ϕ h + ∂a ∂y (x, y u )ϕ h = ∂L ∂y (x, y u ) in Ω h ∂ ν h ϕ h = 0 on Γ h
From assumption (A2) and estimates (5.2) we deduce the existence of a constant

C 1 > 0 depending on M such that ∂L ∂y (x, y u ) - ∂L ∂y (x, y h,u h ) L 2 (Ω h ) + [ ∂a ∂y (x, y u ) - ∂a ∂y (x, y h,u h )]ϕ h,u h L 2 (Ω h ) (5.26) ≤ C 1 y u -y h,u h L 2 (Ω h ) ≤ C 2 u -u h • g -1 h L 2 (Γ) + h 2 [1 + u H 1/2 (Γ) ] .
From (5.23), (5.25) and (5.26) we obtain

ϕ h -ϕ h,u h H 3/2 (Ω h ) ≤ C 3 ∆(ϕ h -ϕ h,u h ) L 2 (Ω h ) (5.27) ≤ C 4 u -u h • g -1 h L 2 (Γ) + h 2 [1 + u H 1/2 (Γ) ] .
The remaining part of the proof is devoted to the derivation of the following estimate (5.28)

ϕ u -ϕ h H s (Ω h ) ≤ Ch 6-2s 3 
, since (5.27) and (5.28) imply (5.24). We start with the case of s = 3/2. To this end, we define φ h = ϕ u -ϕ h . From (5.22) and (5.25) we get (5.29)

   -∆φ h + ∂a ∂y (x, y u )φ h = 0 in Ω h , ∂ ν h φ h = ∂ ν h ϕ u on Γ h .
Then we have (5.30)

ϕ u -ϕ h H 3/2 (Ω h ) = φ h H 3/2 (Ω h ) ≤ C 1 ∂ ν h ϕ u L 2 (Γ h ) ≤ C 2 h,
where the estimate for ∂ ν h ϕ u is obtained in the same way as for ∂ ν h z in (5.13). Now, we prove (5.28) for s = 0. To apply the Aubin-Nitsche duality method we define for every f ∈ L 2 (Ω) vanishing in Ω \ Ω h the functions z ∈ H 2 (Ω) and z h ∈ H 2 (Ω h ) given by solutions of the problems (5.31)

   -∆z + ∂a ∂y (x, y u )z = f in Ω, ∂ ν z = 0 on Γ.

and

(5.32)

   -∆z h + ∂a ∂y (x, y u )z h = f in Ω h , ∂ ν h z h = 0 on Γ h .
As in (5.13) we get

(5.33) z -z h H 3/2 (Ω h ) ≤ Ch f L 2 (Ω h ) .
The same arguments as in the proof of Theorem 5.1, in view of (5.30) and (5.33), lead to

(5.34) ϕ u -ϕ h L 2 (Ω h ) ≤ Ch 2 ,
where C depends on M . Finally, (5.28) is proved for 0 < s < 3/2 in the same way as in Theorem 5.1, using the inequality (5.21) with ε = h (3-2s)/3 along with inequalities (5.30) and (5.34).

Corollary 5.3. Under the assumptions of Theorem 5.2 the following inequality holds

(5.35) ϕ u -ϕ h,u h L 2 (Γ h ) ≤ C M u -u h • g -1 h L 2 (Γ) + h 5/3 [1 + u H 1/2 (Γ) ]
for a constant C M depending on M but independent of h. Proof. Using the function ϕ h defined in (5.25) and inequality (5.27) we get

ϕ u -ϕ h,u h L 2 (Γ h ) ≤ ϕ u -ϕ h L 2 (Γ h ) + ϕ h -ϕ h,u h L 2 (Γ h ) (5.36) ≤ ϕ u -ϕ h L 2 (Γ h ) + C u -u h • g -1 h L 2 (Γ) + h 2 [1 + u H 1/2 (Γ) ] .
According to [7, Theorem 1.5.1.10] we have

(5.37) ϕ u -ϕ h 2 L 2 (Γ h ) ≤ K ε 1/2 ∇(ϕ u -ϕ h ) 2 L 2 (Ω h ) + ε -1/2 ϕ u -ϕ h 2 L 2 (Ω h ) .
Taking s = 1 in (5.28) and ε = h 4/3 in (5.37) it follows

(5.38) ϕ u -ϕ h L 2 (Γ h ) ≤ Ch 5/3 .
Finally (5.36) and (5.38) lead to (5.35) The remaining part of the section is devoted to the study of the convergence of solutions of (P h ) to the solutions of (P) with h → 0. First, we prove that the solutions of (P h ) converge to solutions of (P). Since (P) is not convex, we are also interested in an inverse property: if a given local minimum of (P) can be approximated by local minima of problems (P h ). This question is positively answered in this section. Let us start with a theorem which provides a precise meaning for the convergence of controls. We recall that problems (P h ) admit at least one solution for each h small enough (see the comments before Theorem 4.1).

Theorem 5.4. Let ūh be a solution of problem (P h ) for h ≤ h 0 . Then {ū h • g -1 h } 0<h≤h0 is a bounded family in H 1 (Γ). If ū is a weak limit for a subsequence, denoted in the same way, i.e. ūh • g -1 h → ū weakly in H 1 (Γ) with h → 0, then ū is a solution of problem (P). Moreover

lim h→0 ȳ -ȳh H 3/2 (Ω h ) = 0 and lim h→0 J h (ū h ) → J(ū),
where ȳ and ȳh denote the solutions of (1.1) and (1.2) corresponding to ū and ūh , respectively.

Proof. The boundedness of {ū h • g -1 h } 0<h≤h0 is an immediate consequence of (4.12). Let us prove the convergence of {J h (ū h )}. We denote by ȳh and ȳ the states associated to ūh and ū respectively. Once again (4.12) implies that ūh L 2 (Γ h ) ≤ K for every h ≤ h 0 . Then we can use the estimates (5.2) with s = 3/2 to get for h → 0

ȳ -ȳh H 3/2 (Ω h ) ≤ C M ū -ūh • g -1 h L 2 (Γ) + h[1 + u H 1/2 (Γ) ] → 0.
This convergence imply also that ȳ -ȳh C( Ω) → 0. Then we have by assumption (A2)

Ω h L(x, ȳ(x)) dx - Ω h L(x, ȳh (x)) dx ≤ C 1 Ω h |ȳ(x) -ȳh (x)| dx → 0.
On the other hand, it is obvious that lim h→0 Ω\Ω h L(x, ȳ(x)) dx = 0. Finally, from (4.3) and by the strong convergence ūh

• g -1 h → ū in L 2 (Γ) we obtain Γ ū2 (x) dσ(x) - Γ h ū2 h (x) dσ h (x) ≤ Γ ū2 (x) dσ(x) - Γ ū2 h (g -1 h (x)) dσ(x) + Ch 2 → 0.
Collecting all these estimates we deduce the convergence J h (ū h ) → J(ū).

Let us show that ū is a solution of (P). First we select an element u ∈ H 1/2 (Γ) such that α ≤ u ≤ β and we prove that J(ū) ≤ J(u). Indeed, it is clear that u • g h is a feasible control for (P h ), consequently J h (ū h ) ≤ J h (u • g h ). Furthermore, if we denote by y h the state associated to u • g h , then (5.2) implies that

y u -y h H 3/2 (Ω h ) ≤ Ch[1 + u H 1/2 (Γ) ].
This along with (4.3) imply the convergence J h (u • g h ) → J(u). Thus, we have

J(ū) = lim h→0 J h (ū h ) ≤ lim h→0 J h (u • g h ) = J(u).
Finally, let us take u ∈ L 2 (Γ), with α ≤ u ≤ β. There exists a sequence {u k } ∞ k=1 ⊂ H 1/2 (Γ) such that u k → u in L 2 (Γ). Setting ûk = Proj [α,β] (u k ), we have that {û k } ∞ k=1 is still strongly convergent to u in L 2 (Γ) and ûk ∈ H 1/2 (Γ) is a feasible control for (P) for every k, then J(ū) ≤ J(û k ) for every k. Now passing to the limit we obtain J(ū) ≤ J(u). Since u is an arbitrary feasible control of (P), this completes the proof. Now we consider the approximation of local minima of (P) by local minima of problems (P h ). First let us say that whenever we speak about a local minimum it must be understood as a local minimum in the sense of L 2 , more precisely it is the minimum among all feasible controls in a L 2 -ball centered at the specific solution.

Theorem 5.5. Let ū be a strict local minimum of (P), then there exists a family {ū h } such that each ūh is a local minimum of (P h ) and ūh • g -1 h ⇀ ū weakly in H 1 (Γ).

Proof. Let ε > 0 be such that ū is the only global solution of problem

(P ε )          min J(u) = Ω L(x, y u (x)) dx + N 2 Γ u 2 (x) dσ(x) subject to (y u , u) ∈ (L ∞ (Ω) ∩ H 1 (Ω)) × L 2 (Γ), α ≤ u(x) ≤ β for a.e. x ∈ Γ and u -ū L 2 (Γ) ≤ ε.
Now for every h ≤ h 0 we consider the problems

(P hε )            min J h (u) = Ω h L(x, y h,u (x)) dx + N 2 Γ h u 2 (x) dσ h (x) subject to (y h,u , u) ∈ (L ∞ (Ω h ) ∩ H 1 (Ω h )) × L 2 (Γ h ), α ≤ u(x) ≤ β for a.e. x ∈ Γ h and u • g -1 h -ū L 2 (Γ) ≤ ε.
It is obvious that ū • g h is a feasible control for every problem (P hε ), therefore, there exists at least one solution u hε of (P hε ). Let us prove that u hε • g -1 h → ū weakly in H 1 (Γ) with h → 0.

Since {u hε • g -1 h } 0<h≤h0 is bounded in L 2 (Γ), we can take a subsequence, denoted in the same manner, and an element ũ ∈ L 2 (Γ) such that u hε • g -1 h ⇀ ũ weakly in L 2 (Γ) with h → 0. Let us denote by y hε ∈ H 3/2 (Ω h ) the state associated to u hε and consider an extension of y hε to Ω, still denoted by y hε , such that

y hε H 3/2 (Ω) ≤ C y hε H 3/2 (Ω h ) ∀h.
The boundedness of {u hε • g -1 h } 0<h≤h0 in L 2 (Γ) implies that {y hε } is bounded in H 3/2 (Ω). Therefore, by taking a subsequence, we can assume that

y hε ⇀ ỹ in H 3/2 (Ω) and u hε • g -1 h ⇀ ũ in L 2 (Γ).
Using the compactness of the imbeddings H 3/2 (Ω) ⊂ H 1 (Ω) and H 3/2 (Ω) ⊂ L ∞ (Ω), it is easy to prove that ỹ is the solution of (1.1) associated to the control ũ. On the other hand, each u hε • g -1 h is a feasible control for (P ε ) and the set of feasible controls for this problem is convex and closed in L 2 (Γ), consequently ũ is also a feasible control for (P ε ). From (5.2), the strong convergence y hε → ỹ in L ∞ (Ω), the weak convergence u hε • g -1 h ⇀ ũ, (4.3) and the fact that u hε is a solution of (P hε ) and ū • g -1 h is feasible for (P ε ) we get

J(ũ) ≤ lim inf h→0 J h (u hε ) ≤ lim inf h→0 J h (ū • g -1 h ) ≤ lim sup h→0 J h (ū • g -1 h ) = J(ū).
The fact that ū is the unique solution of (P ε ) and the above inequalities lead to ũ = ū and J h (u hε ) → J(ū), which implies lim

h→0 Γ h u 2 hε (x) dσ h (x) = Γ ū2 (x) dσ(x).
Using once again (4.3) we have

lim h→0 Γ (u hε • g -1 h ) 2 (x) dσ(x) = Γ ū2 (x) dσ(x).
This identity and the weak convergence imply the strong convergence

u hε • g -1 h → ū in L 2 (Γ). A first consequence of this strong convergence is that the constraint u • g -1 h -ū L 2 ( 
Γ) ≤ ε is not active for the elements u hε if h small enough. Therefore, u hε is a local minimum of problem (P h ) for h small enough. Since { u hε L 2 (Γ h ) } is bounded, then we can use (4.12) and conclude that {u hε • g -1 h } is bounded in H 1 (Γ) and hence u hε • g -1 h ⇀ ū weakly in H 1 (Γ) with h → 0. 6. Error Estimates. In this section we assume that ūh is a local minimum of (P h ), for every h ≤ h 0 , such that ūh • g -1 h converges weakly in H 1 (Γ) to a local minimum ū of (P) with h → 0; see Theorems 5.4 and 5.5. The goal of this section is to derive estimates of ū -ūh • g -1 h L 2 (Γ) , which are established in the following theorem.

Theorem 6.1. Let ū and ūh be as above and let us denote by ȳ, ȳh and φ, φh the states and adjoint states associated to ū and ūh , respectively. Let us assume that the second order sufficient optimality condition (3.6) is fulfilled. Then there exists a constant C independent of h such that the following estimates hold

ū -ūh • g -1 h L 2 (Γ) ≤ Ch 5/3 , (6.1) ȳ -ȳh H s (Ω h ) + φ -φh H s (Ω h ) ≤ Ch min{5,6-2s}/3 for all 0 ≤ s ≤ 3 2 . (6.2) Proof. By taking v = ūh • g -1 h in (3.3) and v h = ū • g h in (4.8) we get (6.3) J ′ (ū)(ū h • g -1 h -ū) = Γ ( φ + N ū)(ū h • g -1 h -ū) dσ ≥ 0 and (6.4) J ′ h (ū h )(ū • g h -ūh ) = Γ h ( φh + N ūh )(ū • g h -ūh ) dσ h ≥ 0.
We rewrite inequality (6.4) as follows

(6.5) J ′ (ū h •g -1 h )(ū-ūh •g -1 h )+[J ′ h (ū h )(ū•g h -ūh )-J ′ (ū h •g -1 h )(ū-ūh •g -1 h )] ≥ 0.
From (6.3) and (6.5) we obtain

[J ′ (ū h • g -1 n ) -J ′ (ū)](ū h • g -1 h -ū) ≤ J ′ h (ū h )(ū • g h -ūh ) -J ′ (ū h • g -1 h )(ū -ūh • g -1 h ).

By applying the mean value theorem we obtain the existence of an element

v h = ū + θ h (ū h • g -1 n -ū) such that (6.6) J ′′ (v h )(ū h • g -1 h -ū) 2 ≤ J ′ h (ū h )(ū • g h -ūh ) -J ′ (ū h • g -1 h )(ū -ūh • g -1 h
). This inequality plays the central role in the derivation of (6.1). The proof is divided in two parts. First we use the second order optimality condition (3.6), or more precisely its equivalent formulation (3.8) to estimate the left hand side of (6.6) from below. In the second part we estimate the right-hand side in terms of h from above. The inequality (6.2) is an immediate consequence of (6.1) combined with the estimates (5.2) and (5.24).

Lower Bounds for (6.6). Let us prove that ūh • g -1 h -ū ∈ C ϑ ū for every h small enough. Indeed, ūh • g -1 h -ū satisfies obviously conditions (3.5). Let us check that (ū h • g -1 h -ū)(x) = 0 at the points x where | φ(x) + N ū(x)| > ϑ. First, we observe that the weak convergence ūh • g -1 h ⇀ ū in H 1 (Γ) implies the strong convergence in C(Γ). On the other hand, from (5.24) with s = 3/2 we get φ -φh C( Ωh ) ≤ C 1 φ -φh H 3/2 (Ω h ) (6.7)

≤ C 2 ū -ūh • g -1 h L 2 (Γ) + h[ ū H 1/2 (Γ) + 1] → 0 with h → 0.
This inequality implies the strong convergence φh • g -1 h → φ in C(Γ). Therefore, there exists h 1 > 0 such that (6.8) ( φh • g -1 h + ūh • g -1 h ) -( φ + N ū) C(Γ) < ϑ 2 for all h ≤ h 1 .

Thus, if ( φ + N ū)(x) > ϑ, then ( φh • g -1 h + ūh • g -1 h )(x) > ϑ/2 for every h ≤ h 1 . Using the identities (3.4) and (4.10), we have that ū(x) = ūh • g -1 h (x) = α, therefore (ū(x) -ūh • g -1 h )(x) = 0. Analogously we can prove that ( φ + N ū)(x) < -ϑ leads to ū(x) = ūh • g -1 h (x) = β and then (ū(x) -ūh • g -1 h )(x) = 0 as well. This proves that ūh • g -1 h -ū ∈ C ϑ ū and hence (3.8) implies (6.9)

J ′′ (ū)(ū h • g -1 h -ū) 2 ≥ µ ūh • g -1 h -ū 2 L 2 (Γ)
for all h ≤ h 2 .

For the elements v h in (6.6) we have that v h → 0 in C(Γ) with h → 0. On the other hand, the mapping J is of class C 2 in L 2 (Γ), therefore there exists 0 < h 2 ≤ h 1 such that

[J ′′ (ū) -J ′′ (v h )](ū h • g -1 h -ū) 2 ≤ µ 2 ūh • g -1 h -ū 2 L 2 (Γ)
for all h ≤ h 2 .

This inequality combined with (6.9) leads to (6.10)

J ′′ (v h )(ū h • g -1 h -ū) 2 ≥ µ 2 ūh • g -1 h -ū 2 L 2 (Γ) .
Upper Bounds for (6.6). Let us define y, ϕ ∈ H 2 (Ω) as the solutions of the equations Then we have (6.13)

J ′ (ū h • g -1 h )(ū -ūh • g -1 h ) = Γ (ϕ + N ūh • -1 h )(ū -ūh • g -1 h )dσ.
From (6.3) and (6.13) and taking into account (4.2), (4.3) and (5.9) we get

|J ′ h (ū h )(ū • g h -ūh ) -J ′ (ū h • g -1 h )(ū -ūh • g -1 h )| = Γ h ( φh + N ūh )(ū • g h -ūh ) dσ h - Γ (ϕ + N ūh • g -1 h )(ū -ūh • g -1 h )dσ ≤ Γ h |( φh + N ūh ) -(ϕ • g h + N ūh )||ū • g h -ūh |dσ h +Ch 2 Γ |ϕ + N ūh • g -1 h ||ū -ūh • g -1 h |dσ ≤ φh -ϕ L 2 (Γ h ) + ϕ • g h -ϕ L 2 (Γ h ) ū • g h -ūh L 2 (Γ h ) +Ch 2 ϕ + N ūh • g -1 h L 2 (Γ) ū -ūh • g -1 h L 2 (Γ) (6.14) ≤ C(h 5/3 + h 2 ) ū -ūh • g -1 h L 2 (Γ) ≤ Ch 5/3 ū -ūh • g -1 h L 2 (Γ) ,
the last estimate being a consequence of (5.35). Finally (6.6), (6.10) and (6.14) lead to (6.1), which completes the proof.
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