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Preamble

A “complex system” is in general any system congmiof a great number of
heterogeneous entities, among which local intevasticreate multiple levels of collective
structure and organization. Examples include nhsystems ranging from bio-molecules and
living cells to human social systems and the ecesphas well as sophisticated artificial
systems such as the Internet, power grid or argetacale distributed software system. A
unique feature of complex systems, generally oeddd by traditional science, is the
emergenceof non-trivial superstructures which often domendéihe system’s behaviour and
cannot be easily traced back to the propertiehi®fconstituent entities. Not only do higher
emergent features of complex systems arise fronendevel interactions, but the global
patterns that they create affect in turn these tdesels—a feedback loop sometimes called
immergence In many cases, complex systems possess strikiogegies of robustness
against various large-scale and potentially disvepperturbations. They have an inherent
capacity to adapt and maintain their stability. 8ese complex systems require analysis at
many different spatial and temporal scales, s@entiace radically new challenges when
trying to observe complex systems, in learning howdescribe them effectively, and in
developing original theories of their behaviour aodtrol.

Complex systems demand an interdisciplinary approas the universal questions
they raise find expression in le widely differentstems across a broad spectrum of
disciplines—from biology to computer networks tonan societies. Moreover, the models
and methods used to tackle these questions alsmdgeb different disciplines—mainly
computer science, mathematics and physics—and tdnedazd methods of specialized
domains rarely take into account the multiple-leviglwpoint so needed in the context of
complex systems, and attained only through a nmiegrated and interdisciplinary approach.

Two main kinds of interdisciplinary investigatiomrc be envisioned. The first path
involves working on &aopic of research that is intrinsically multidiscipliyarfor example
“cognition,” and posing various questions about$bhene topic from multiple and somewhat
disconnected disciplinary viewpoints (from neuresce, psychology, artificial intelligence,
etc.). The second path consists in studying theesguestion for example, “what causes
synchronization?”, in connection with different ebjs of research in different disciplines
(statistical physics, chemistry, biology, electliemgineering, etc.). This second approach
establishes the foundations of a tesenceof complex systems. However, the success of
these two complementary approaches depends diitmalthe design of new protocols, new
models and new formalisms for the reconstructiomratrgent phenomena and dynamics at
multiple scales. It is on the successful pursuiihed joint goal of (a) massive data acquisition
on the basis of certain prior assumptions, andg@nstruction and modeling of such data, on
which the future science of complex systems depembsre remains much to do in the
theoretical domain in order to build concepts anodets able to provide an elegant and
meaningful explanation of the so-called “emergepitenomena that characterize complex
systems.

The aim of this roadmap is to identify a set of evithematic domains for complex
systems research over the next five years. Eachaiom organized around a specific
question or topic and proposes a relevant set @ntl challenges”, i.e., clearly identifiable
problems whose solution would stimulate significardgress in both theoretical methods and
experimental strategies.



Theoretical questions issue immediately from thedn® account for different levels
of organization. In complex systems, individual &abur leads to the emergence of
collective organization and behaviour at higherlsyand these emergent structures in turn
influence individual behaviour. This two-way causafluence raises important questions:
what are the various levels of organization andtvena their characteristic scales in space
and time? How do reciprocal influences operate betwthe individual and collective
behaviour? How can we simultaneously study multiphels of organization, as is often
required in problems in biology or social sciencét®v can we efficiently characterize
emergent structures? How can we understand theyicitpstructures of emergent forms, their
robustness or sensitivity to perturbations? Is d@renimportant to study the attractors of a
given dynamical system, or families of transieatest? How can we understand slow and fast
dynamics in an integrated way? What special emeéng@perties characterize those complex
systems that are especially capable of adaptatiochanging environments? During such
adaptation, individual entities often appear arghppear, creating and destroying links in the
system's graph of interactions. How can we undedsthe dynamics of these changing
interactions and their relationship to the systeiugtions?

Other key questions arise out of the challengeodmstructing system dynamics from
data. These include questions related to the epist®op (the problem of moving from data
to models and back to data, including model-dridata production), which is the source of
very hard inverse problems. Other fundamental questarise around the constitution of
databases, or the selection and extraction ozstylfacts from distributed and heterogeneous
databases, or the deep problem of reconstructingoppate dynamical models from
incomplete, incorrect or redundant data.

Finally, some questions also emerge from effortsgtwern or design complex
systems, which one might think of as “complex systeengineering.” On the basis of an
incomplete reconstruction of dynamics based on, date& can we learn to steer a system’s
dynamics toward desirable consequences or at lesegt itaway from regimes where it
exhibits undesirable behaviour? How can one acHieveo-called “complex control,” with
controlling influences distributed on many distih@trarchical levels in either a centralized or
decentralized way? Finally, how is it possible é&sidn complex artificial systems, using new
techniques of multilevel control?

In addition to the questions just outlined, anotkey issue is the reaction of complex
systems to perturbations, which can be weak faiatecomponents or on certain scales of
the system and strong for others. These effectstraleto the prediction and control of
complex systems and models, must be specificallgied. In addition, it is also important to
develop both strategies for representing and ettiga@ertinent parameters and formalisms
for modeling morphodynamics. Learning to succegsfoitedict multiscale dynamics raises
other important challenges, and will be requiredamg from controlled systems to governed
systems in which control is less centralized andendistributed among hierarchical levels.

Grand challenges for complex systems research hspiration from a wide variety
of complex phenomena arising in different scieatiields. Their presentation follows the
hierarchy of organizational levels of complex sgsie either natural, social or artificial.
Understanding this hierarchy is itself a primargalgof complex systems science.

In modern physics, the understanding of collecbedaviour and out-of-equilibrium
fluctuations is increasingly important. Biology @l&aces complex behaviours at every level,
in systems ranging from biological macromoleculesl aolecular systems through entire



ecosystems. Indeed, the question of gaining agrated understanding of the different scales
of biological systems is probably one of the maBtadilt and exciting tasks for researchers in
the next decade. Before we can hope to developn@mgrated understanding of the full

hierarchy of living systems, we must study and usta@&d the integration between one level
and the next. The hierarchy of levels includesutail and sub-cellular spatiotemporal

organization, and multicellular systems (integmtintracellular dynamics, such as gene
regulation networks, with cell-cell signalling armlo-mechanical interactions), where the
guestion of the impact of local perturbations oa #tability and dynamics of multicellular

organizations takes great importance. These systamierlie larger scale physiological

functions, which emerge from sets of cells andugssin complex interaction within a given

environment. At the highest level, the understagdamd control of ecosystems involves
richly integrated interactions among living organssin a given biotope.

In the context of the human and social sciences,ttee complex systems approach is
rapidly assuming central importance (even if itisrently less developed than in biology).
One crucial domain to be investigated is learniog lthe individual cognition of interacting
agents leads to social cognition. Another imporfagmnomenon, with particularly important
societal consequences, is the mystery of innovatisrdynamical appearance and diffusion,
frequency and coevolution, and how all of this $inlgp with human cognition. Complex
systems approaches offer promise to gain an inegjtanderstanding of the many conflicting
demands and forces which must be managed if ouetsescare to move toward sustainable
development. In the context of globalization and growing importance of long-distance
interactions through a variety of networks, compleystems analysis (including direct
observations and simulation experiments) can hslgxplore a variety of issues related to
economic development, social cohesion, or the enmient at different geographical scales.

Finally, the rapidly growing influence of informati and communication technologies
in our societies and the large number of decem@dlinetworks relying on these new
technologies require research and management adeaisig from complex systems science.
In particular, the trend in information sciencearisving from processors to networks, and this
leads to the emergence of so-called “ubiquitouslligence,” a phenomenon that will play an
increasing role in determining how the networkshef future will be designed and managed.
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1.1. Formal epistemology, experimentation, machine
learning

Reporter: Nicolas Brodu (INRIA — Rennes)

Contributors: Paul Bourgine (CREA, Ecole Polytechnique), NicoBsodu (INRIA —
Rennes), Guillaume Deffuant (CEMAGREF), Zoi Kapo{l@NRS), Jean-Pierre Mduller
(CIRAD), Nadine Peyreiras (CNRS).

Keywords. Methodology, tools, computer, experimentation, nliode validation, machine
learning, epistemology, visualization, interactiorfunctional entity, formalization,
phenomenological reconstruction.

Introduction

The modern world, especially in medicine, in theialbsphere and in the environment,
increasingly depends on or confronts very largetesys comprised of many interacting
entities. The data collected on such systems, d@llgion enormous scales, poses formidable
challenges for efforts to reconstruct their muliiscdynamics and their multiple downward
and upward influences. The task requires the hélp tormal epistemology and massive
computation, and a generalization of the kind géelo science" originally inspired by the
high-energy physics community.

The task of understanding a phenomenon amountedim@ a reasonably precise and
concise approximation for its structure and behaviavhich can be grasped by the human
mind. As it is, human intuition unaided cannot Harttie intrinsic subtleties and non-intuitive
properties of complex systems. Ideally, optimalnfal techniques may provide us with
candidate concepts and relations, which can ther s a basis for the human experimental
work. When the optimal forms found by the theoryrd match the optimal concepts for the
human brain, the reason for this discrepancy wa#lf be the subject of further investigation.
Understanding complex systems thus requires defiaimd implementing a specific formal
and applied epistemology. New methods and toolse hav be developed to assist
experimental design and interpretation for:

+ ldentifying relevant entities at a given time apadce scale.
- Characterizing interactions between entities.
« Assessing and formalizing the system behaviour.

The strategy from experimental design to post heta @nalysis should reconcile the
hypothesis- and data-driven approaches by:

« Defining protocols to produce data adequate for rieonstruction of multiscale
dynamics.

« Bootstrapping through the simultaneous building ¢iieoretical framework for further
prediction and experimental falsification.

« A functional approach at different levels, leadittythe construction of adequate
formalisms at these levels. There is no theoretigarantee that one formal level
could then be deducible in any way from anothert this does not matter:

11



Phenomenological reconstruction steps are preferableach relevant level for the
comprehension of the system.

The methodology begins with observation and dali@ad®n. However, there comes
a point at which it is not relevant to go on cadlieg data without knowing whether they are
really required for understanding the system behaviPhenomenological reconstruction
leads to data parameterisation and obtained measuate should allow further detection and
tracking of transient and recurrent patterns. Tliesgtires themselves only make sense if they
are integrated into a model aiming to validate higpses. We expect here to find a model
consistent with the observations. The mere factbwiding the model necessitates the
formalization of hypotheses on the system behavamd underlying processes. Part of the
understanding comes from there, and more comes fr@mpossibility of validating the
model's predictions through experimentation. Tagt point is depicted on the right-hand side
of the graph below.

Formal & Applied Epistemology

Theoretical reconstruction
Hypotheses,
theoretical methods Simulation
and tools
Phenomenological  _ i - Reconstructed
reconstruction Experimental © multiscale dynamics
Validation
Data : '
ke reat Rt Visualisation Visualisation
fi}
Augmented — Augmented
Raw data phenomenology i virtuality

The workflow of theoretical reconstruction

The integration of computer science is an esseatimlponent of this epistemology.
Computer science should provide:

- Exploratory tools for a data-based approach. Unsigesl machine learning can
provide people with candidate patterns and relatitrat unaided human intuition
would never detect. Active machine learning is @ned with determining which
experiments are best suited to test a model, wischt the heart of the above
epistemology.

- Tools for comparison between the model (hypothdsisgen) and the observations.
Supervised learning corresponds to exploring thdehparameter space for a good fit
to the data. Auto-supervised learning is used whetemporal aspect allows the
continuous correction of model predictions with thieserved data corresponding to
these predictions.

Computer science methods and tools are requiréeeifollowing steps:

- Human-machine interactions: visualization and sxtgon with data, ontologies and

simulations.

12



- Building ontologies of relevant functional entitiasdifferent levels.
« Constructing hypotheses, formalizing relations lesmventities, designing models.
- Validating the models.

We expect certain fundamental properties from cdemmcience methods and tools:

« Generic tools should be as independent as posBilme a logical (interpretation)
framework. In particular, because of the varyingural habits of different disciplines
and the specificities of each system, it is prdfierato propose a collection of
independent and adaptable tools, rather than agrated environment that would not
cover all cases anyway.

« Independence should also apply for the softwareedsffor the usage and the
evolution and the adaptation of the tools to specieeds). This requires free/libre
software as a necessary but not sufficient conditio

« Tools need to be useful for a specialist and atable by non-specialist. This can be
achieved, for example, by providing domain-spediéatures with added value for the
specialist as extensions (modules, etc.) of thewgetools.

- Readiness for use: The preconditions for the agiptio of the tool should be minimal,
the tool should not require a large engineeringréefiefore it can be used.

Main Challenges
1. Computer tools for exploration and formalization
2. Computer assisted human interactions

1.1.1. Computer tools for exploration and formalization

The computer must be identified as an exploratio &rmalization tool and
integrated into an epistemology of complex systems.

Some research domains currently embrace this agpraxad their efforts need to be
furthered. Computational mechanics and its cautsk seconstruction is one candidate
technique which could possibly automate phenomencdd reconstruction, but there are
challenges concerning its real applicability. Faample, we face obstacles in finding a
practical algorithm for the continuous case, obuilding significant statistical distributions
with a limited number of samples (relative to teareh space). Statistical complexity can also
be considered as a useful exploratory filter tanidyg the promising zones and interacting
entities in the system. Another research domaindbald be integrated into the epistemology
Is the quantification of the generalization cap#bs of learning systems (e.g. Vapnik et al.).
Automated selection of the most promising hypothem®d/or data instances is the topic of
active learning. Its application is particularlyastjhtforward for exploring the behaviour of
dynamical computer models, but more challenging rfaritiscale complex systems. The
problem may be, for instance, to determine respsandaces which lead to a major change of
behaviour (the collapse of an ecosystem, for im&anNVhen the system is of high dimension,
the search space is huge and finding the mostrd#tive experiments becomes crucial. Some
analysis techniques are inherently multiscale (eagtal/multifractal formalisms) and would
need to be integrated as well. Dynamical regimesaaessential part of complex systems,
where sustained non-stationary and/or transienhghena maintain the state out of static
equilibrium. Some of the existing mathematical atgbrithmic tools should be adapted to

13



this dynamic context and new ones may have to bated specifically. Research is also
needed on how to integrate these dynamical aspeetgly into the experimental and formal
aspects of the above epistemology.

1.1.2. Computer assisted human interactions

The computer has become a necessary componenteotisc epistemology, as an
extension to the human experimentalist. Three kfdsteractions involving humans and
machines might be considered:

e Machineto human: The human sensory system (sight, hearing, ete@xégedingly
powerful for some tasks, such as detecting patterrem image, but quite poor for
tasks like visualizing relations in large-dimensibspaces and graphs. Research is
needed to explore how machines might provide peoplth an adequate
representation of a complex system, in a form blétéor the human sensory system.

* Human to machine: The feedback and control that an unaided humarmpegnrm on
a complex system is similarly limited. For examplehen people act as the
discriminating element for repeated decision-makKmg. attributing/selecting fitness
criteria of model parameters), the rate at whicbpte can make decisions limits the
execution speed of the algorithm. As a parallethi® visualization problem, human
interaction capabilities on a large-dimensional wdation are relatively poor,
especially with conventional devices such as a mauml keyboard. Finding controls
(software or hardware) adapted to the human mooglyoand limitations is another
part of this human/complex system interaction amge.

« Human to human: The computer should help human communication.ifstance,
knowledge from domain experts is often lost when-gpecialist computer scientists
formalize and create the experiments that expex¢sl.nideally, the computer should
be a tool that enhances - not hampers - crossptrsmiy communication, and should
be directly usable by the experts themselves faeigdeng experiments and models
and running simulations. But the use of the compaga facilitator of human-to-
human relations is not limited to interdisciplinaagpects. The computer should
become an integral part of the collaborative precescessary to handle complex
systems.

14



1.2. Stochastic and multiscale dynamics, instabilities and
robustness

Reporter: Daniel Schertzer (Meteo France)

Contributors: Pierre Baudot (Inaf CNRS), Hughes Berry (INRIA)akcois Daviaud (CEA),
Bérengére Dubrulle (CEA), Patrick Flandrin (CNRS$Nyon), Cedric Gaucherel (INRA),
Michael Ghil (ENS Paris), Gabriel Lang (AGRPParech), Eric Simonet (CNRS)

Keywords. Random dynamical systems, non stationarity, loramnge/ short range

dependence, local/nonlocal interactions, discretdfisuous scaling, cascades,
wavelet/multifractal analysis, multiscale modeliagd aggregation/disaggregation, pattern
recognition, graph dynamics, extremes distributiod large deviations.

Introduction

Hierarchical structures extending over a wide raraje space-time scales are
ubiquitous in the geosciences, the environment,sighy biology and socio-economic
networks. They are the fundamental structures imgldip our four-dimensional world’s
complexity. Scale invariance, or "scaling” for shas a powerful mathematical tool for
characterising these structures and inferring ptagseacross scales, instead of dealing with
scale-dependent properties. Whereas scaling indmrespace has been investigated in many
domains, four-dimensional scaling analysis and riogleare still relatively little used and
under-developed, even though it is indispensahledé&scribing, estimating, understanding,
simulating and predicting the underlying dynamiRather complementary to this approach,
random dynamical system theory is also a powerfytr@ach for grasping multiscale
dynamics. This theory is likely to provide inteiegtgeneralizations of what we have learned
from deterministic dynamical systems, particularty the case of bifurcations. Other
important domains of investigation are phase tteoms, emerging patterns and behaviours
which result when we move up in scale in the compder-dimensional fields.

Main Challenges

1. The cascade paradigm

2. Random dynamical systems and stochastic bifurcation
3. Phase transitions, emerging patterns and behaviour
4. Space-time scaling in physics and biology

1.2.1. The cascade paradigm

The idea of structures nested within larger stmastuthemselves nested within larger
structures and so on over a given range of spate$icales has been in physics for some
time, and could be traced back to Richardson’s blkather Prediction by Numerical
Processes, 1922) with his humoristic presentatidheoparadigm of cascades. This paradigm
became widely used well beyond its original framewof atmospheric turbulence, in such
fields as ecology, financial physics or high-enepysics. In a generic manner, a cascade
process can be understood as a space-time hierafdtguctures, where interactions with a
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mother structure are similar in a given mannerhmsé with its daughter structures. This
rather corresponds to a cornerstone of multiscalehastic physics, as well as of complex
systems: a system made of its own replicas atrdiftescales.

Cascade models have gradually become well-defiresghecially in a scaling
framework, i.e. when daughter interactions aresaaked version of mother ones. A series of
exact or rigorous results have been obtained is fitsimework. This provides a powerful
multifractal toolbox to understand, analyse andutate extremely variable fields over a wide
range of scales, instead of simply at a given sddlétifractal refers to the fact that these
fields can be understood as an embedded infingeatuhy of fractals, e.g. those supporting
field values exceeding a given threshold. Thesénigoes have been applied in many
disciplines with apparent success.

However, a number of questions about cascade meEeeemain open. They include:
universality classes, generalized notions of scaktreme values, predictability and more
generally their connection with dynamical systenithee deterministic-like (e.g. Navier-
Stokes equations) or random (those discussed ingkiesection). It is certainly important to
look closely for their connections with phase traoss, emerging patterns and behaviours
that are discussed in the corresponding sectiorticBlar emphasis should be placed on
space-time analysis and/or simulations, as disdusste last section on the general question
of space-time scaling.

1.2.2. Random dynamical systems and stochastic bifurcations

Along with mathematicians' interest in the effeofsnoise on dynamical systems,
physicists have also paid increasing attentionoiseneffects in the laboratory and in models.
The influence of noise on long-term dynamics oft@s puzzling non-local effects, and no
general theory exists at the present time. In ¢brstext, L. Arnold and his "Bremen group"
have introduced a highly novel and promising apgmo&tarting in the late 1980s, this group
developed new concepts and tools that deal witly general dynamical systems coupled
with stochastic processes. The rapidly growingdfief random dynamical systems (RDS)
provides key geometrical concepts that are cleaplyropriate and useful in the context of
stochastic modeling.

This geometrically-oriented approach uses ergoditraeasure theory in an ingenious
manner. Instead of dealing with a phase spaceeRtends this notion to a probability bundle,
S x probability space, where each fiber represantsalization of the noise. This external
noise is parametrized by time through the so-cathedsure-preserving driving system. This
driving system simply "glues” the fibers togethertsat a genuine notion of flow (cocycle)
can be defined. One of the difficulties, even ie ttase of (deterministic) honautonomous
forcing, is that it is no longer possible to defim@ambiguously a time-independent forward
attractor. This difficulty is overcome using thetina of pullback attractors. Pullback
attraction corresponds to the idea that measureraet performed at present time t in an
experiment that was started at some time s<t irr¢h®te past, and so we can look at the
"attracting invariant state" at time t. These wilined geometrical objects can be
generalized with randomness added to a systemrantien called random attractors. Such a
random invariant object represents the frozen s$iedi at time t when "enough" of the
previous history is taken into account, and it eeel with time. In particular, it encodes
dynamical phenomena related to synchronization@edmittency of random trajectories.
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This recent theory presents several great matheahatihallenges, and a more
complete theory of stochastic bifurcations and redrforms is still under development. As a
matter of fact, one can define two different nosiaf bifurcation. Firstly, there is the notion
of P-bifurcation (P for phenomenological) whereugbly speaking, it corresponds to
topological changes in the probability density fiilore (PDF). Secondly, there is the notion of
D-bifurcation (D for dynamical) where one considarbifurcation in the Lyapunov spectrum
associated with an invariant Markov measure. Ireothords, we look at a bifurcation of an
invariant measure in a very similar way as we l@khe stability of a fixed point in a
deterministic autonomous dynamical system. D-bdtions are indeed used to define the
concept of stochastic robustness through the nati@tochastic equivalence. The two types
of bifurcation may sometimes, but not always batesl, and the link between the two is
unclear at the present time. The theory of stoahastmal form is also considerably enriched
compared to the deterministic one but is still mpdete and more difficult to establish.
Needless to say, bifurcation theory might be apple partial differential equations (PDES)
but even proving the existence of a random attranty appear very difficult.

1.2.3. Phase transitions, emerging patterns and behaviour

Phase transitions are usually associated withrergence of patterns and non-trivial
collective behaviour, for instance due to the diesice of a correlation length. Beyond the
classical example of glassy systems, these featumes been recently observed in shear
flows, where the transition from laminar to turbade occurs discontinuously through gradual
increasing of the Reynolds Number. In such a dhsegrder parameter is the volume fraction
occupied by the turbulence as it slowly organizes a band pattern, with a wavelength that
Is large with respect to any characteristic sizéhefsystem.

A similar transition seems to occur in cortical dgmcs, when experimenters increase
the forcing of the sensory flow, using spectral isformational measures as an order
parameter. When subjected to simple visual inpetironal processing is almost linear and
population activity exhibits localized blob patteriWhen subjected to more informational
and realistic stimuli, the neuronal processing appéo be highly nonlinear, integrating input
over large spatial scales (center-surround intemactand population patterns become more
complex and spatially distributed.

The present challenge is to build a simple stoahasbdel which can account for the
emerging structures generated by the dynamic agid dependence on the forcing. A more
fundamental long-term aim is to catch both glassy arbulent flow dynamics under such
formalism.

A novel approach consists in considering a popaatif agents which have their own
dynamics and characterizing their collective bebawvat different observation scales through
gradual aggregation.

The simplest way to aggregate agents is to summ@easing number of them. When
they are identically distributed and independendoen variables, the law of large numbers
and the central limit theorem apply and the resgltollective evolution is analogous to the
individual one. The result does not change wherddpendence is short range; this would be
the equivalent of the laminar phase. As the spdépkendence becomes long range, the nature
of the collective behaviour changes (lower rateafvergence, different limit process). By
playing with the interaction range, one is therefable to induce a phase transition.
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Another kind of transition is observable if oneoals for non-linear effects in the
aggregation process. In such a case, the resydtmgess may be short-range or long-range
dependent, even if the dynamics of the individua simple (autoregressive short-range
dependence in space and time).

A first task is to develop such aggregation methiodsimple individual models and
to investigate the joint effect of dependence amgregation process. Examples of
applications include geophysical problems, hydrglagd hydrography, integrative biology
and cognition.

1.2.4. Space-time scaling in physics and biology
1.2.4.1. Empirical background

Systems displaying a hierarchy of structures ondewange of time and space scales
occur almost everywhere in physics and biology.

In the geosciences, ‘Stommel diagrams’ displayiifg time vs. size of structures
(usually in log-log plots) span several orders @gmtude, but a satisfactory explanation of
this state of affairs is missing.

In biology, metagenomics have recently been deeslopo explore microbial
biodiversity and evolution by mining urban wasteirtgorove our knowledge of the “tree of
life,” but the time structure is far from beingieddly estimated.

In the area of computer and social networks, thke isghe best-known example, but
scale-invariant and small-world networks are entenenl everywhere; in this case
researchers have begun to explore the temporatt@aspiesuch networks, but the connection
between time evolution and spatial structure rexguiurther attention.

1.2.4.2. State of the art

a) Taylor's hypothesis of frozen turbulence (193&)s0 used in hydrology, is
presumably the simplest transformation of timeiagahto space scaling. This is obtained by
supposing that the system is advected with a ctersiic velocity.

b) In other cases, the connection between spacdirapdscaling is less evident. As
already pointed out, this is the case for compuatworks: (space) network topology and
(time) computer traffic have been separately stlidie to now. Morphogenesis is a research
domain that requires the development of space-itaéng analysis.

c) More recently, the comparison of scaling in timse scaling in space has been used
to determine a scaling time-space anisotropy exponalso often called a dynamical
exponent.
1.2.4.3. What is at stake

a) Why do we need to achieve space-time analysieling?

Basically there is no way to understand dynamicthout space and time. For instance,
whereas earlier studies of chromosomes were peefromly along 1D DNA positions, 4D
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scaling analysis is required to understand the ectiion between the chromosome structure
and the transcription process.

b) Data analysis
We need to further develop methodologies:

+ to perform joint time-space multiscale analysihe@itfor exploratory analysis or for
parameter and uncertainty estimations,

+ to extract information from heterogeneous and scdata,

« to carry out 4-D data assimilation taking bettezcaamt of the multiscale variability of
the observed fields,

« for dynamical models in data mining.

¢) Modeling and simulations
We also need to further develop methodologies:
+ to select the appropriate representation spacewaglets),
+ to define parsimonious and efficient generators,
« to implement stochastic subgrid-scale parametanati
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Introduction

From genetic and social networks to the ecospheeeface systems composed of
many distinct units which display collective belmui on space and time scales clearly
separated from those of individual units. Among wynamhers, we can mention cellular
movements in tissue formation, flock dynamics, abeind economic behaviour in human
societies, or speciation in evolution.

The complexity of such phenomena manifests itgethe non-trivial properties of the
collective dynamics - emerging at the global, papah level - with respect to the
microscopic level dynamics. Many answers and insighto such phenomena can and have
been obtained by analysing them through the lensiasf-linear dynamics and out-of-
equilibrium statistical physics. In this framewotkge microscopic level is often assumed to
consist of identical units. Heterogeneity is, hoamg\present to varying extents in both real
and synthetic populations. Therefore, the existidggcriptions also need to encompass
variability in both the individual units and thersaunding environment, and to describe the
structures that emerge at the population level.il&ily, while a homogeneous environment
(medium) is a useful approximation for studying leclive dynamics, hardly any real
environment, either natural or artificial, is homeogous, and heterogeneity deeply
influencing the structures, dynamics and fates opogpulation. The variability of the
environment applies both on spatial and temporalesc Examples include filaments and
vortices in fluid media, patches and corridorsaindscapes, or fluctuating resources.

From a methodological point of view, successful eld) of such influences requires,
at least: the quantification of environmental hegeneities at different scales; the
improvement of the formalization of heterogeneitye identification of the heterogeneity
features that are relevant at the population lewel the study of population responses to
changes in these heterogeneities.

Also of crucial importance for our understanding lmblogical processes is an
understanding of what generates heterogeneityhandit influences the further development
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of emergent patterns at many different scales. inQuihe early stages of embryogenesis in
metazoans, for example, cell diversity -- which rnequired for further functional
differentiation -- is generated from the non-homugmus distribution of sub-cellular
components, cell division and cell environmentrattion. Models need to link the collective
behaviour of cell populations, which underlie pattéormation, to cell diversification and
differentiation. Both theoretical and experimerggapects of these questions have been almost
completely unexplored so far. Finding how molecwaad cellular behaviours are coupled in
these processes is a main challenge of develophieolagy.

Close interaction between physicists and biologstgled in non-linear analysis,
social scientists and computer scientists has prévebe a key ingredient for advances in
handling these subjects.

Main Challenges

1. Collective dynamics of homogeneous and/or hetereges units

2. Collective dynamics in heterogeneous environments

3. Emergence of heterogeneity and differentiation @sses, dynamical heterogeneity,
information diffusion

1.3.1. Collective dynamics of homogeneous and/or heterogeneous
units

In the past few years, researchers have devotesidawable effort to studying and
characterising the emergence of collective phenanterough observation, experiment and
theory. Research has explored a wide range of mgstfom nano-structures and granular
matter to neuronal dynamics and social organizatighe animal kingdom (including human
societies).

The intrinsic dynamical nature of these phenomezadmarked similarities with the
physics of non-linear systems. Studies have indeedmented a number of dynamical paths
to organised collective behaviour having strongomesice with systems in physics: phase
synchronization in interacting oscillating systemsiering phase transition in systems of self-
propelled agents, and self-organization and pafi@mation in spatially-extended systems
(e.g. ecological systems).

However, we are far from fully understanding thdatien between microscopic
dynamics and macroscopic properties. For instaheegemergence at the global level of non-
trivial coherent dynamics out of unlocked microscopscillators, characterized by time
scales much shorter than the macroscopic one,lathls a general theoretical framework.
While some researchers speculate that transpoffiateets may be extracted from the long
wavelength components of microscopic linear anslydiyapunov analysis), no clear
connection has been established so far. Systenselbpropelled units seem to display
anomalously large fluctuations in number densitynknown in ordinary equilibrium matter,
though observed experimentally in granular mediaut current theoretical models only
partially account for such phenomena.

New insights are expected from the intermediatéesgesoscopic description which
bridge the microscopic and macroscopic levels bgrsmgraining relevant quantities over
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appropriate local scales of space and time. Dufdamportance of fluctuations in out-of-

equilibrium phenomena, the resulting partial défgral equations (PDES) are expected to
yield stochastic terms, often multiplicative in tbearse-grained fields. The analysis of such
stochastic PDEs is an open challenge for physiaists mathematicians alike, both from the
numerical and the analytical point of view, but moful new techniques, such as the non-
perturbative renormalization group, promise to shed light on this subject in the near

future.

Although researchers have so far focussed on sgsteade up of largely identical
units, numerous problems of interest involve systesuch as living organisms containing
diverse cell types or ecosystems of many speciegosed of units of many different kinds.
The task of fully understanding the emergence dlective phenomena in such systems
requires taking into account the interactions amsuogh elements, and poses numerous
guestions. To what extent can heterogeneous sydiemeduced to homogeneous ones? In
other words, is a wide degree of heterogeneityri@aucible feature of certain systems (for
instance, complex ecological niches), and simplyohd any description in terms of simpler,
decoupled few-species models? Are the emergenteprep of homogeneous systems
conserved in heterogeneous ones, and what arpek#is features that arise at the collective
level from microscopic heterogeneity? How do newesgent properties relate to previous
results obtained in a more homogeneous contextl@atmeoretical results for homogeneous
systems be extended towards heterogeneous systtans®e extend tools already developed
for modeling collective dynamics to take heterogigniato account (agent-based simulation,
for example, can be very naturally extended) owddave to develop specific new tools?

At the theoretical level, a number of avenues hslwvewn promise. The study of
simple systems composed of coupled oscillators hatierogeneous frequencies, for example,
may open new insights into more practical systewtse the important role played by
synaptic plasticity in neuronal dynamics has loegrbrecognized.

Segregation between different species can be yeddsdcribed using heterogeneous
agent-based models, while cells can be seen ash@mogeneous fluid. Thus, theoretical
results about the behaviour of such systems (engsep transitions, diffusion in crowed
heterogeneous media, etc.) could shed new lighhany open questions in molecular and
cellular biology, such as the organization of tle#f nucleus, diffusion in membranes, signal
transduction, or the regulation of transcription.

Finally, it is worth recalling that the theoretiaproach must be developed in parallel
with experimental observations. Model studies negarovide results in a form which can be
compared and validated with quantitative experimefrt particular, spatial reconstruction
techniques — allowing to measure the three-dimeasiposition and trajectory of each unit
inside a large group - are proving increasinglyfulder extracting information at the level of
microscopic dynamics.

1.3.2. Collective dynamics in heterogeneous environments
The complexity of collective dynamics reflects {h@perties of individual units, the
interactions between them, but also influences ngnftom the surrounding environment.

Assessing how environmental heterogeneity influsncellective systems poses a central
challenge in many fields, including biology, ge@suaies, computer and social sciences.
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The complex systems approach should provide aingifyamework for investigating

the effect of environmental heterogeneity on pogpaadynamics. In particular, progress is
needed in the following directions:

Multiscale analyses: the observation and measureaie@mvironmental heterogeneity
requires new tools for its detection against ndisgkgrounds and its analysis at
multiple scales. In landscape ecology, for exammsearchers need to capture the
scaling sensitivity of mosaic heterogeneity, yatl $ack technical tools for this
purpose. A similar problem arises in plankton stsditurbulence gives spatial and
temporal structure to populations on scales randiom centimetres to the entire
oceanic basin, and from minutes to years, but @hsens currently cover only
portions of this range.

Formalization: the capture of heterogeneity witmondels requires novel means for
mathematical representation. Equations, algorittand geometric representations
must encompass environmental heterogeneity atreiffescales and describe and
couple the environment with the underlying dynanatndividual system units. For
example, long-range hydrodynamical interactionsukhdoe included in models
describing the collective motion of bacteria swimgnin viscous fluids. Evolution of
the vegetal cover has been formalized using diftesk equations for continuous
diffusion processes or percolation-based approadfetsa mathematical formalization
of more discontinuous environments, either in teahenvironment heterogeneity or
of constituting units, remains to be achieved.

Identification of key environmental features: made&nnot include a description of
all possible sources of heterogeneity, and it erdfore important to identify the
aspects of heterogeneity that are most relevantthfer chosen description of the
system. Heterogeneity can be examined in term&fofmation, texture, correlation
parameters, or coherent structures selected focdHhective dynamics under study.
For example, landscape structures may exhibit réiffieheterogeneity, depending on
the properties influencing the collective dynamicentrast often highlights barrier
effects, while connectivity highlights preferent@thways in the mosaic. In a fluid,
transport barriers and mixing regions organize spatial distribution of tracers;
nonlinear methods make it possible to extract stalctures from the velocity field
and to shed light on the interaction between tweg and biochemical tracers.
Changing environments: heterogeneity is often mdindd once and for all, but can
change over the course of time. Such changes caur on time scales faster than
those of the collective dynamics, or manifest thelwes as slow drifts in the
environmental properties. Both kinds of changecffeicrobiological populations, for
example, living in environments where food availband temperature are subject to
intense fluctuations. An adequate description @fpsation and evolution of collective
behaviour demands that such fluctuations be takinaccount. When the population
itself induces environmental modifications, it isetfeedback between collective
behaviour and environmental heterogeneity whichpebtathe coupled population-
environment dynamics, as in the case of the biatt#enteraction in the wake of
climate change.

1.3.3. Emergence of heterogeneity and differentiation processe S,
dynamical heterogeneity, information diffusion

From genetic networks to social networks and eocags many natural systems

display endogenous heterogeneity: heterogeneityeimerges from the very functioning of
the system. Mechanisms producing such heterogengitiude cell differentiation in
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ontogeny, social and economic differentiation imlam societies and speciation in evolution.
The origin and role of this heterogeneity in thabiity and maintenance of these large
systems is still largely unknown. Yet its importanis recognized in the emergence of
topological macro-structures which often underlibgl functions. Understanding the
emergence of heterogeneity and its maintenancleuss a challenge for our efforts manage
and, possibly, control complex systems.

From a simple homogeneous structure (multiple copfehe same object or uniform
topological space) there are four main types ot@se through which heterogeneity emerges,
processes which can be classified in terms of bim¢ir Kolmogorov complexity and their
logical depth (a measure of "organizational comipy&xntroduced by Charles Bennett).

+ Random emergence: noise upon a regular simpletgteugandom perturbation). One
observes an increase in Kolmogorov complexity, maoitincrease in organizational
complexity.

« Coordinated or strongly constrained evolution. Eganthe duplication of a gene
gives two genes, allowing the divergence of thaiction, or the differentiation of
individuals in a social structure (specializatiamew functions, etc.). It is not
necessarily associated with a significant increadelmogorov complexity, but with
an increase in organizational complexity (“crystaliion of a computation™).

+ Mixed emergence: randomness and constraints plalgan the dynamical process of
emergence. Examples: whole molecular and genetdules are re-used and evolve,
leading to morphogenetic and functional diversigpeciation by isolation and
adaptation to various geographical constraintseisg\copies of an entity subjected to
various conditions diverge by learning or mutugluatinent. In this case, there is an
increase in both Kolmogorov complexity and orgatieeal complexity.

« Emergence by "computation/expression of a predegistprogram”. If the
"computation” is fast and non-random, there is mardase in Kolmogorov
complexity, nor in organizational complexity.
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Introduction

In acting on a complex system, institutions in geaof its governance first face the
problem of defining desired objectives. Often, thebjectives must integrate the conflicting
interests and points of view of diverse stakehaldmr multiple scales. Then, in order to
compromise and to decide on policy actions to m#telobjectives, it is necessary to build an
appropriate understanding of the phenomena, ofttesugh modeling which includes the
effect of the potential actions. (Here, we touchiagn the general problem of modeling and
reconstructing dynamics from data, addressed ithanpart of the roadmap). Unfortunately,
current methods (reinforcement learning, viabiligtc.) for assessing policy actions only
work practically for models in state spaces of ldwensionality. Progress can be sought in
two directions: either by extending these methadsnultiscale and higher dimensionality
dynamics and multi-level actions (e.g. central dedentralized), or by projecting multiscale
dynamics into smaller spaces. The use of stylizgdachics, when possible, is another
research direction that could open new possitslifier managing good policy actions on
complex dynamics. Finally, dynamics are often utaterand partially unknown, which
implies a difficult compromise between exploitatiminthe better known parts of the dynamics
and exploration of worse known parts. This problsan be extended to the reformulation of
the problem (including the objectives). This franoekv similarly addresses problems of
control and design.

Main Challenges

Extending the scope of optimal control

Projecting complex dynamics into spaces of smdileension

Projecting optimal control into high and multiscdienension space
Extending exploration / exploitation compromisgtoblem reformulation
Co-adaptation of governance and stakeholders’ titagsc
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1.4.1. Extending the scope of optimal control

Current methods of optimal control can deal witltentain non-linear dynamics, and
with flexible definitions of the objectives (in \odity theory, for instance), but they are
limited by the curse of dimensionality: these methaenust sample the state space with a
given precision, and this requires computationagrovhich increases exponentially with the
dimensionality of the state space. Extending thmesthods to spaces of larger dimensions is
therefore crucial to enable their use in the cantéxomplex systems.

One potential approach for addressing these qguestis to develop weaker
frameworks than optimal control. For instance, oantay seek resilience and viability, or
the maintenance of some important functional priggerwithout demanding the traditional
objective of optimal control, which is to maximigdunction.

Finally, in some cases, mixing mathematical optatis of action policies and
participatory approaches within an iterative dialegcould provide a good compromise
between flexibility, social acceptability and ratadity. Such approaches would require a
specific methodological focus on how to define past the problem which can be treated
automatically, and how to integrate the resultthese optimising algorithms efficiently with
other aspects of a group decision process.

1.4.2. Projecting complex dynamics into spaces of smaller dime nsion

Another possibility to tackle the limits of curremethods for control is to reduce the
dimensionality of complex dynamics (for instandeptigh the identification of slower parts
of the dynamics, the aggregation of the state sgheeadefinition of stylized dynamics and so
on). This type of work is also very important ingoéation and formulation processes, in
order to give stakeholders intelligible materiatenfi which they can easily express their
views. We do not know of reduction approaches tiek@t the local views of the different
stakeholders: such approaches would be very integes

Dimensionality reduction applies to both data (infation) and models. Statistical
techniques based on Principal Component Analysisriakne a linear space containing the
essential information. They do not apply to noredéin correlation, when projection should
lead to curved manifolds. New methods are needetbver this case as well. Non-linear
Independent Components represent one possibletidireof research. Classical model
reduction techniques, such as averaging, singudaumbations, or calculation of invariant
manifolds, are based on separation of time andespeales. These methods are currently used
for applications in physics and chemistry and thleguld be adapted to take into account the
specificities of other domains. Furthermore, compteodels are only partially specified. For
instance, models in biology are qualitative andvidedge of parameters is only partial.
Classical model reduction methods start from mode& are completely specified (all
parameters are known). There is a need for modict®n techniques which can replace
numerical information by ordinal information (onarameter is much smaller than others) or
other types of qualitative information.
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1.4.3. Projecting optimal control into high and multiscale dim ensional
space

Another possibility is to extend optimal controln¢a any developments beyond
optimal control) to high dimensional, multiscalesms. Such an extension should consider
the possibility of using distributed actions atfeliént levels, particularly in a decentralized
way. This is a challenging aim, even if the effetthe controls is perfectly known, because
not only the system but the control as well is iditnensional, with potentially non-linear
effects of control coordination. Research requimes approaches to advance in this direction.

The scope of this approach might also be extenaleddes with multiple objectives at
different scales. Such a proposition involves idtring the concept of a "complex
objective," and would probably require new form@alssto describe the architecture and links
between these multiscale objectives. Since theydasribed at different levels, current
control methods are not suitable for tackling ttosicept. New research should therefore be
undertaken in this field using either centralizeddastributed control. The latter method is
appealing since it allows different semantics aftoal and actions at different scales. This
concept raises several questions, including: hogotmple and synchronise controllers; how to
deal with simultaneous and opposite actions onsystem; how to handle the different
hierarchical levels; how to mix participation/decis making/optimisation; how to implement
distributed control with a single global objectmemultiple local objectives or both.

1.4.4. Extending the exploration/exploitation trade-off to gove rnance
analysis

Decision-makers often have multiple possibilities &ction, and from these have to
choose how to allocate their resources. The evkatdeome of policy actions, relative to the
objectives, often remain imperfectly known, makipglicy evaluation very difficult. As a
consequence, decision makers regularly face a-oHdeetween further exploration of the
different available opportunities for action, angitation of certain selected opportunities.
Exploring opportunities requires experiments atrappate scales in time and space, and
therefore the expenditure of resources. These sggemust be compared with the potential
benefit of such exploration, compared with the negeloitation of known routines.

In the framework of governance, exploration is 3seelly made at a given scale of
time and space, whereas governance initiativesparéormed within open systems and
therefore at several scales of space and time.chhkenge is thus to propose methods and
tools which can go beyond constraints of exploratoad bridge the gap between the results
of exploratory experiments and full-scale vivo implementation of governance actions.
These methods would have to take into account ¢aetive and adaptable nature of the
targeted systems, as specified in challenge 1.

1.4.5. Co-adaptation of governance and stakeholders’objective S

In a multi-level context, identifying the stakehetd and territory concerned is a
problem in itself.

The co-existence of different objectives, which rbayin conflict, raises problems for
the management or regulation of the system. Momeawesome circumstances, the fact that
these objectives may evolve with the environmemiciéd context) or may adapt to a
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dynamical context (Ambient Intelligence) makes $lgstem even more complex to manage or
design.
We can focus on two challenges

1.4.5.1. The static dimension: governance in theeod of heterogeneity of stakeholders,
their points of view and interests

The challenge is to develop models and methoddogig¢ake into account the large
heterogeneity of stakeholders’ viewpoints and eg&s, which is reinforced by the
entanglement of a large range of space and timessdslulti-criteria analysis is a starting
point for solving such problems, but it must beeexted to incorporate several parallel
objectives, and to include the reformulation prgcééoreover, the choice of indicators linked
to given objectives or their achievement must idelstakeholder participation and be easy to
use. On the other hand, the theoretical conseqsentehe choice of indicators, and
particularly the potential biases they may intraglumust be carefully investigated. These
tools and methods should also help determine iter analysing the adequacy of the
objectives (any-time evaluation) and progress togachieving them

1.4.5.2. The dynamical dimension: evolution of st@kders' objectives and viewpoints in the
governance process

The challenge is to develop models and methodddogpe take into account the
feedback loops associated with self-regulation raeigdms, as well as the interdependence of
particular interests during the governance procEes.example, changes in the process by
which decision-makers and stakeholders interact aftay their conceptions of the objectives,
and the problem itself, and this alteration mayntlteme back to affect the interaction
process. This process becomes even more complesogial settings, with efforts to
coordinate multiple objectives at the collectivedie The time scales of model formation,
decision-making and the interaction process its&lfe to be taken into account.

These aspects of the problem deal with the questiggovernance, and focus on the
participative context where co-learning becomesngsortant as collective negotiation and
decision-making. Moreover, the results of the mtépon during the governance process can
lead to new views of the problem, and possibly rgwernance objectives (taking into
account, for instance, social acceptability) or retmactures in the multiscale architecture of
the governance organizations.
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1.5. Reconstruction of multiscale dynamics, emergence
and immergence processes

Contributors: Paul Bourgine (Ecole Polytechnique), David Chavatar(Institut des

Systemes Complexes de Paris lle-de-France / CNR&)-Philippe Cointet (Institut des
Systémes Complexes de Paris lle-de-France / INRMighel Morvan (ENS Lyon), Nadine
Peyrieras (Institut de Neurobiologie CNRS).

Keywords. Micro-macro reconstruction, multi-level experimantprotocol, emergence,
immergence, dynamical systems, multiscale systems.

Introduction

The data collected from complex systems are ofteamplete and difficult to exploit
because they are limited to a single level, i.eerrt®d observations made on particular scales
of space and time. Gathering data effectively fiesfuires the definition of common concepts
and pertinent variables for models at each levelotAer important problem is obtaining
unified and coherent representations useful fagrating different levels of organization and
for predicting the dynamics of the complete syst&ims goal can be achieved by defining
pertinent variables at each level of organizatian, at different time (slow/fast) and spatial
(macro/micro) scales, their relationships, and hbey are coupled together in models that
describe the dynamics at each level. The challeag® make explicit and meaningful
connections from micro to macro levels (emergengections) and from micro to macro
levels (immergence functions).

Main Challenges

1. Building common and pertinent conceptual framewankthe life sciences.

2. Achieving coherence in the modeling of complex eys.

3. Development of mathematical and computer formaliBmsnodeling multi-level
and multiscale systems. Computer tools for explomadnd formalization

4. Computer assisted human interactions

1.5.1. Building common and pertinent conceptual frameworks in the
life sciences

The data collected from complex systems are oftenmplete and therefore difficult
to exploit. A main challenge is to find common nuath to collect data at different levels of
observation, which are coherent and compatibléénsense that they can be used in order to
integrate behaviour a different levels of a mudtrdl (multiscale) system. Thus, it is necessary
to find multiscale models which allow researchersiéfine pertinent experimental variables
at each level and to achieve a common referenceefrevith data reproducibility in the
different levels of organization of the completsteyn.
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1.5.2. Achieving coherence in the modeling of complex systems

The goal is to find coherence in the definitionvafiables and models used at each
level of the hierarchical system and to make cormjgathe models that are used to describe
the dynamics at each hierarchical level of orgdiunaat given time and space scales.

As a first step, one must take natural constramits account and verify fundamental
laws at each level of description (definition ofrjpeent species, symmetry laws, physical
laws, conservation laws and so on). The next fdp connect the description and models
used at each level to those at other levels:

(i) Modeling the dynamics at microscopic levels dsnuseful for defining boundaries for
global variables and even to obtain correct intgdirons for global variables.

(i) Modeling the dynamics at macroscopic levels t& helpful for defining local functions
and variables governing microscopic dynamics.

1.5.3. Development of mathematical and computer formalisms f or
modeling multi-level and multiscale systems.

The complexity of natural and social systems stgpma the existence of many levels
of organization corresponding to different time asphce scales. A major challenge of
complex systems science is to develop mathemdticalalisms and modeling methods able
to capture complete system dynamics by integratioactivity at many, often hierarchically
organised, levels. This goal can be achieved bynidgf emergence and immergence
functions and integrating intra-level (horizontal)d inter-level (vertical) couplings.

Mathematical models used to describe the dynamfiasatural and social systems
involve a large number of coupled variables for rdities at different scales of space and
time. These models are in general nonlinear arfetulif to handle analytically. Therefore, it
is crucial to develop mathematical methods whidovwalone to build a reduced system
governing a few global variables at a macroscogiell i.e. at a slow time scales and long
spatial scales. Among open questions, we mentemléfinition of pertinent variables at each
level of organization. It is also necessary to wbtanergence (resp. immergence) functions
that allow analysis to jump from a microscopic fresacroscopic) level to a macroscopic
(resp. microscopic) level, to study the couplingnmen the different levels and therefore the
effects of a change at one level of a hierarchtherdynamics at others.

Methods based on the separation of time scalesdlrallow the aggregation of
variables and are used in mathematical modelingntegrating different hierarchical levels.
However, such multi-level modeling methods neetidextended to computer modeling and
particularly to IBM (Individual Based Models), afius constitutes a very promising research
theme. Also, the comparison of multi-level modelskperimental data obtained at different
levels remains a major challenge to be investigategarallel with the development of
mathematical and computer modeling methodologiemidti-level systems.
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1.6. Designing artificial complex systems

Reporter: René Doursat (Institut des Systemes Complex&HAC Ecole Polytechnique)

Contributors: Jean-Christophe Aude (CEA), Sofiane Ben Amor @g€antrol), Marc Bui
(EPHE), René Doursat (Institut des Systemes CorepléxCREA, Ecole Polytechnique),
Jean-Francois Mangin (CEA), Jean Sallantin (CNRSMM).

Keywords:. artificial assistants, virtual simulations, furetal modeling and regulation, bio-
inspiration, autonomous and evolutionary systems.

Introduction

Modeling and simulation are crucial complementaopld in the exploration of
complex systems. Striking advances in computer ordsvand high-performance calculation
have stimulated the rapid development of complestesys research in many scientific fields,
and strong interactions between disciplines. Infdram and communication technologies
represent today a major tool of investigation irmptex systems science, often replacing
analytic and phenomenological approaches in thdysai emergent behaviour. In return,
information technologies also benefit from compleystem research. Artificial complex
systems can be created to analyse, model and tequdtural complex systems. Conversely,
new and emergent technologies can find inspiraftiom natural complex systems, whether
physical, biological or social.

Main Challenges

1. Using artificial complex systems for the understagdnd regulation of natural
complex systems

2. Finding inspiration in natural complex systemstfoe design of artificial complex
systems

3. Building hybrid complex systems.

1.6.1. Using artificial complex systems for the understanding a nd
regulation of natural complex systems

Natural complex systems (NCS) include systems foundature (natural patterns,
biological organisms, the ecosphere, etc) but alsiems spontaneously originating from
human activity (cities, economies, transportatigsteams, etc.) A key application of artificial
complex systems (ACS) is to assist the descripgiengration and support of these NCS. One
major challenge is to design and develop systermpahkda of exploring NCS in a systematic
way, or regulating such systems. In particular, Ad&Sign can complement human collective
intelligence by integrating different levels of expse and harmonising or managing
contradictions in collaborative works. Such ari#lcsystems can be based on structures and
principles of function quite different from the nedl systems they observe. An ACS could
serve to regulate, schedule, repair or modify theSN The execution of ACS can be
asynchronous and separate from the NCS, or it eantbgrated with it.
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Examples:

« Reconstructing the topology of neural connectianghie brain by means of neuro-
imagery and artificial vision based on a distrilsbiéechitecture

« Observation of interest groups and interaction neta/ on the Internet (forums, blogs,
instant messaging) through software agents

+ Airflight dynamics and network

1.6.2. Finding inspiration in natural complex systems for the design of
artificial complex systems

In order to create technological systems that aten@mous, robust and adaptive, new
engineering approaches must draw inspiration fradSNFor example, in computer security,
systems able to mimic the biological immune systaan provide useful solutions against
continuously evolving attacks on computer netwoiKsese ACS are built upon intrinsically
distributed, self-organizing and evolutionary aasit They reproduce the original behaviour
and organizational principles that are found in NQ# have no equivalent in traditional
technical design. In some domains, biology couldnexeplace physics at the foundation of
new engineering principles.

NCS provide rich sources of ideas in the develogroédecentralized systems which
can display robustness, modularity, and autonomyyinamically changing environments
(i.e., “ubiquitous computing”, “ambient intellige&). ACS should be able to reproduce the
dual principles of cooperation and competition @&t observed in NCS.

On the other hand, bio-inspired artificial designnot constrained by any fidelity to
the original NCS. Computer and technological inrimra can free designers from
experimental data or real examples of functioningclhanisms. Examples include neural
networks inspired by neuroscience and genetic dhgos by Darwinian evolution. ACS
created this way can also play a heuristic expboyatole for NCS. Engineering inventions
allow us to better understand, even predict therabhphenomena that inspired them.

Examples:
« Neuro-inspired artificial intelligence and robotics
+ Collective optimization and swarm intelligence imsf from social animal behaviour
« Evolutionary robotics
+ Intelligent materials, auto-assembling materialed amorphogenetic engineering
(nanotechnologies)
« Ambient intelligence
« Computer security inspired by immune systems olasateractions

1.6.3. Design of Hybrid Complex Systems

The rapid dissemination of computing devices arsdesys in our society (cellphones,
PDAs, etc.) and the intricacy and profusion of thieferconnections constitute a major case
of hybrid or “techno-social” complex systems. Sugystems can be studied as complex
communities combining natural and artificial agetuisers can instruct machines, themselves
capable of autonomous learning and adaptationeio émvironment.
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2.1. Complex matter

Reporter: Francois Daviaud (CEA)

Contributors: Giulio Biroli (CEA), Daniel Bonamy (CEA), ElisadetBouchaud (CEA),
Olivier Dauchot (CEA, Commissariat a I'energie atpume), Francois Daviaud (CEA), Marc
Dubois (CEA SPEC), Berengere Dubrulle (CEA), Framdoadieu (CEA), Denis L'Hb6te
(CEA).

Keywords: Glassy dynamics, slow relaxations, frustration distrder, collective behaviors,
out-of-equilibrium and nonlinear systems, self-arigation, turbulence, dynamo action,
fracture.

Introduction

The field of complex and non-equilibrium systemsusrently driven by a large body of new

experiments and theoretical ideas in various bremabf physics, from condensed matter
physics up to ultra-cold atomic physics and bioloBgyond their apparent diversity, these
systems share a common characteristic: the emergéraomplex collective behaviours from

the interaction of elementary components. Glassyadycs, out-of-equilibrium systems, the

emergence of self-organized or self-assembled tstes; criticality, percolating systems,

domain wall propagation and pinning of elastic watonlinear systems, turbulence and
fracture propagation are some subjects of complattemthat can be addressed only with the
tools developed for the study of systems of intimgc entities. Understanding these

phenomena also requires the development of newetieal methods in statistical physics

and the design of new types of experiments.

Main Challenges

1. Non-equilibrium statistical physics

2. Damage and fracture of heterogeneous materials

3. Glassy dynamics: glasses, spin glasses and graneldia

4. Bifurcations in turbulence: from dynamo action ks dynamics

2.1.1. Non-equilibrium statistical physics

The long lasting interest for non-equilibrium pherena has recently experienced a
noticeable revival, through the development of maeoretical ideas (especially on the
symmetries of non-equilibrium fluctuations) and neweas of applications, ranging from
many examples in condensed matter physics to dbih@nches of physics (heavy ion
collisions, the early universe) and also to otlwersces, including biology (manipulations of
single molecules). Non-equilibrium phenomena al&y @n important part in many of the
interdisciplinary applications of statistical physi (modeling the collective behavior of
animals, or social and economic agents).

A physical system may be out of equilibrium fothetit of the following two reasons:
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« Slow dynamics. The microscopic dynamics of the system are réversso that the
system possesses an authentic equilibrium stagedyimamics of some of the degrees
of freedom are however too slow for these variabdesquilibrate within the duration
of the experiment. The system is therefore in a/lsi@volving non-equilibrium state
for a very long time (forever in some model systeriifie characteristic features of
this regime of non-equilibrium relaxation, includirthe violation of the fluctuation
dissipation theorem, have been the subject of ssteactivity over the last decade.
These phenomena are commonly referred to as "agihghomena (see the part on
glassy dynamics).

+ Driven dynamics. The dynamics of the system are not reversiblealysbecause of
some macroscopic driving caused by external forEes.instance, an electric field
induces a non-zero current across the system,liphetestroying the reversibility of
the underlying stochastic dynamics. The systemhesaa non-equilibrium stationary
state, where it stays forever. There are also systat least model systems) where the
lack of reversibility lies entirely at the microgio level, and does not rely on any
macroscopic external driving. The paradigm of sadituation is the celebrated voter
model.

One of the most salient advances of the lastdiebas been the discovery of a whole
series of general results concerning the symmetfespontaneous fluctuations in non-
equilibrium states. These theorems, associated maithes such as Gallavotti, Cohen, Evans
and Jarzynski, have been applied and/or testedaimyrsircumstances, both by theory and
experiment.

Most recent efforts in this area have been devimtedteracting particle systems. This
broad class of stochastic systems is commonly tesetbdel a wide range of non-equilibrium
phenomena (chemical reactions, ionic conducti@msjport in biological systems, traffic and
granular flows). Many interacting particle systecas be investigated by analytical methods,
whereas some of them have even been solved exactly.

Although the usual formalism of equilibrium statial physics does not apply to out-
of-equilibrium systems, it is now well-known thaany of the tools developed in equilibrium
settings can also be used out-of-equilibrium. Tis particular the case for the framework
of critical behaviour, where concepts such as scalariance and finite-size scaling have
provided (largely numerical) evidence for univeityain non-equilibrium systems. It is
possible to investigate systems in which the namtbgium character stems not from the
presence of gradients imposed, for instance, byndemy reservoirs, but because of the
breaking of micro-reversibility - that is to sayme-reversal invariance - at the level of the
microscopic dynamics in the bulk.

A large part of the research activity on non-etpuilim statistical physics is also
centred on the various phase transitions obsermethany contexts. Indeed, many non-
equilibrium situations can be mapped onto eachrptlevealing a degree of universality
going well beyond the boundaries of any particuiatd: for example, self-organized
criticality in stochastic (toy) sand piles has besfiown to be equivalent to linear interface
depinning on random media, as well as to a padrctiass of absorbing phase transitions in
reaction-diffusion models. Another prominent exaenpd the jamming transition which
bridges the fields of granular media and glassyensds. It has been studied experimentally
thanks to a model experiment consisting in a slaelager of metallic disks. Synchronization
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and dynamical scaling are, likewise, very genef@nmmena which can be related to each
other and to the general problem of understandnmgeusality out of equilibrium.

2.1.2. Damage and fracture of heterogeneous materials

Understanding the interrelation between microstngctind mechanical properties has
been one of the major goals of materials scienar tive past few decades. Quantitative
predictive models are even more necessary wherndssimg extreme conditions — in terms of
temperature, environment or irradiation, for examplor long-time behaviour. While some
properties, such as elastic moduli, are well apipnated by the average of the properties of
the various microstructural components, none of fhmeperties related to fracture —
elongation, stress to failure, fracture toughnegsdlew such an easy rule, mostly: (i) because
of the high stress gradient in the vicinity of aak tip, and (ii) because, as the more brittle
elements of microstructure break first, one is idgalvith extreme statistics. As a result, there
Is no way that a material can be replaced by afecg¥e equivalent” medium in the vicinity
of a crack tip. This has several major consequences

2.1.2.1. Size effects in material failure

In brittle materials, for example, cracks initiae the weakest elements of the micro-
structures. As a result, toughness and life-timgpldy extreme statistics (Weibull law,
Gumbel law), the understanding of which requireprapches based on nonlinear and
statistical physics (percolation theory, randonefasdels, etc.).

2.1.2.2 Crack growth in heterogeneous materials

Crack propagation is the fundamental mechanismirigab material failure. While
continuum elastic theory allows the precise desiompof crack propagation in homogeneous
brittle materials, we are still far from understangdthe case of heterogeneous media. In such
materials, crack growth often displays a jerky dwies, with sudden jumps spanning over a
broad range of length-scales. This is also sugddsten the acoustic emission accompanying
the failure of various materials and - at muchéargrale - the seismic activity associated with
earthquakes. This intermittent “crackling” dynamicannot be captured by standard
continuum theory. Furthermore, growing cracks @&eat structure of their own. Such
roughness generation has been shown to exhibitertsal/ morphological features,
independent of both the material and the loadinglitimns, reminiscent of interface growth
problems. This suggests that some approaches issmdtatistical physics may succeed in
describing the failure of heterogeneous materigdd. us finally add that the mechanisms
become significantly more complex when the craakgn velocity increases and becomes
comparable to the sound velocity, as in impactagrhentation problems, for instance.

2.1.2.3. Plastic deformation in glassy materials

Because of high stress enhancement at crack tgusufe is generally accompanied by
irreversible deformations, even in the most britttaorphous materials. While the physical
origin of these irreversible deformations is nowllwenderstood in metallic materials, it
remains mysterious in amorphous materials like @xjthsses, ceramics or polymers, where
dislocations cannot be defined.
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2.1.3. Glassy dynamics
2.1.3.1. Glasses

The physics of glasses concerns not only the gdassed in everyday life (silicates),
but a whole set of physical systems such as maeglhsses, polymers, colloids, emulsions,
foams, Coulomb glasses, dense assemblies of gmrtinsUnderstanding the formation of
these amorphous systems, the so-called glass tioansiand their out-of-equilibrium
behaviour is a challenge which has resisted a antiat research effort in condensed matter
physics over the last decades. This problem isterest to several fields from statistical
mechanics and soft matter to material scienceshamghysics. Several fundamental open
guestions emerge: is the freezing due to a trueenlyidg phase transition, or is it a mere
crossover with little universality in the drivingethanism? What is the physical mechanism
responsible for the slowing down of the dynamicd glassiness? What is the origin of the
aging, rejuvenation and memory effects? What aee dimmon concepts that emerge to
describe the various systems evoked above, andresmatins specific to each of them?

Interestingly, however, evidence has mounted récémat the viscous slowing down
of super-cooled liquids and other amorphous systemght be related to the existence of
genuine phase transitions of a very singular nat@ontrary to usual phase transitions, the
dynamics of glass-formers dramatically slows dowithwearly no changes in structural
properties. We are only just beginning to undecttidne nature of the amorphous long-range
order that sets in at the glass transition, thdogies with spin-glasses and their physically
observable consequences. One of the most integestinsequences of these ideas is the
existence of dynamical heterogeneities (DH), wiiakie been discovered to be (in the space-
time domain) the counterpart of critical fluctuaisoin standard phase transitions. Intuitively,
as the glass transition is approached, increasiagier regions of the material have to move
simultaneously to allow flow, leading to intermittedlynamics, both in space and in time. The
existence of an underlying phase transition anddghamical heterogeneities should
significantly influence the rheological and aginghbviours of these materials, which are
indeed quite different from those of simple liquatsd solids. As a consequence, progress in
the understanding of glassy dynamics should trigggreral technological advances. An
important example where the peculiar propertiegglagses are used in technology is the
stocking of nuclear waste.

From an experimental point of view, the major otvadjes for the future have been
transformed not only because progress in the dohmasnled to radically new questions, but
also because new experimental techniques now al&sgarchers to investigate physical
systems at a microscopic scale. New challengeshtoryears to come are: i) To study the
local dynamical properties in order to unveil whadianges in the way molecules evolve and
interact makes the dynamics glassy, in particulay whe relaxation time of supercooled
liquids increases by more than 14 orders of magdgiin a small temperature window; ii) To
provide direct and quantitative evidence that glagdgnamics is (or is not) related to an
underlying phase transition; iii) To study the matwf the dynamical heterogeneities
(correlation between their size and their time atioh, fractal dimensions, etc.); iv) To
investigate the nature of the out-of-equilibriunoperties of glasses, such as violation of the
fluctuation-dissipation theorem, intermittence, etc
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From a theoretical point of view, the major chafjeris to construct and develop the
correct microscopic theory of glassy dynamics. TWil consist both in unveiling the
underlying physical mechanisms that give rise tavshnd glassy dynamics and in obtaining a
guantitative theory that can be compared to exparier The main focus will again be on
local dynamic properties, their associated lengtilesand their relation to the growing time
scales and the global properties of glassy dynamics

2.1.3.2. Spin glasses

The expression “spin glasses" was invented to thesaertain metallic alloys of a
non-magnetic metal with few, randomly substitut@@gnetic impurities, where experimental
evidence for a low temperature phase showed a aoaodic freezing of the magnetic
moments with a very slow and strongly history-dejset response to external perturbations.
Basic fundamental ingredients of spin glasses #&eradkr and frustration. The frustration
consists in the fact that the energy of all thergaof spins cannot be minimized
simultaneously. The theoretical analysis of spiasgés lead to the celebrated Edwards-
Anderson model: classical spins on the sites oégular lattice with random interactions
between nearest-neighbour spins. This has led tty mavelopments over the years, and the
concepts developed for this problem have foundiegpdns in many other fields, from
structural glasses and granular media to problenssmputer science (error correction codes,
stochastic optimization, neural networks, etc.).

The program of developing a field theory of spimsges is extremely hard, with
steady, slow progress. The theory is not yet ablenbke precise predictions in three
dimensions. Numerical simulations face severaldaliffies: we cannot equilibrate samples of
more than a few thousand spins, the simulation rbestepeated for a large number of
disorder samples (due to non-self-averaging), dm finite size corrections decay very
slowly.

Spin glasses also constitute an exceptionally auewé laboratory frame for
experimental investigations of glassy dynamics. diépendence of their dynamical response
on the waiting time (aging effect) is a widesprgdmenomenon observed in very different
physical systems such as polymers and structuaakgs, disordered dielectrics, colloids and
gels, foams, friction contacts, etc.

2.1.3.3. Granular Media close to the Jamming tiams

Common experience indicates that as the voluméidraof hard grains is increased
beyond a certain point, the system jams, stopsitfigvand is able to support mechanical
stresses. The dynamical behaviour of granular madse to the jamming transition’ is very
similar to that of liquids close to the glass titios. Indeed, granular media close to jamming
display a similar dramatic slowing-down of the dynes as well as other glassy features like
aging and memory effect. One of the main featufdhedynamics in glass-forming systems
is what is usually called the cage effect, whiclcoamnts for the different relaxation
mechanisms: at short times, any given particleaisped in a confined area by its neighbours,
which form the so-called effective cage, leadingat®low dynamics; at sufficiently long
times, the particle manages to leave its cagdyaattis able to diffuse through the sample by
successive cage changes, resulting in a fasteateda. Contrary to standard critical slowing
down, this slow glassy dynamics does not seemegklad a growing static local order. For
glass-formers it has been proposed instead thaelieation becomes strongly heterogeneous
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and dynamic correlations build up when approaclire glass transition. The existence of
such a growing dynamic correlation length is vemportant in revealing some kind of
criticality associated with the glass transition.

One can, for example, study the dynamics of a §patise monolayer of disks under
two different mechanical forcings, i.e. cyclic shaad horizontal vibrations. In the first case,
a “microscopic” confirmation of the above similgrihas been obtained and the second can
provide the experimental evidence of a simultanesiuvergence of length and time scales
precisely at the volume fraction for which the systloses rigidity (jamming transition).

2.1.4. Bifurcations in turbulence: from dynamo action to slow
dynamics

2.1.4.1. Dynamo action

Dynamo action consists in the emergence of a magfeit through the motion of an
electrically conducting fluid. It is believed to béthe origin of the magnetic fields of planets
and most astrophysical objects. One of the mogtirgyr features of the Earth's dynamo,
revealed by paleomagnetic studies, is the observaii irregular reversals of the polarity of
its dipole field. A lot of work has been devoted ttas problem, both theoretically and
numerically, but the range of parameters relevantriatural objects are out of reach of
numerical simulations for a long time to come, iartigular because of turbulence. In
industrial dynamos, the path of the electrical ents and the geometry of the (solid) rotors
are completely prescribed. As this cannot be thee dar the interiors of planets or stars,
experiments aimed at studying dynamos in the ldaborénave evolved towards relaxing these
constraints. The experiments in Riga and Karlsshwved in 2000 that fluid dynamos could
be generated by organizing favourable sodium fldws,the dynamo fields had simple time
dynamics. The search for more complex dynamicdy siscexhibited by natural objects, has
motivated most teams working on the dynamo probtendesign experiments with less
constrained flows and a higher level of turbulenbe.2006, the von Karman sodium
experiment (VKS) was the first to show regimes whaistatistically stationary dynamo self-
generates in a fully turbulent flow. It then evided other dynamical regimes for the first
time, including irregular reversals as in the Eanid periodic oscillations as in the Sun.

These complex regimes, involving a strong couplbeween hydrodynamic and
MHD, need to be studied in detail. In particuldney reveal that although the dynamo
magnetic field is generated by the turbulent flatens, it behaves as a dynamical system
with a few degrees of freedom.

Theoretical predictions regarding the influence tofbulence on the mean-flow
dynamo threshold are scarce. Small velocity flunobug produce little impact on the dynamo
threshold. Predictions for arbitrary fluctuation @itudes can be reached by considering the
turbulent dynamo as an instability (driven by theeam flow) in the presence of a
multiplicative noise (turbulent fluctuations). lnis context, fluctuations can favour or impede
the magnetic field growth, depending on their istgnor correlation time. We can use direct
and stochastic numerical simulations of the MHD atipns to explore the influence of
turbulence on the dynamo threshold.
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2.1.4.2. Bifurcations in turbulence

At high Reynolds numbers, some systems undergabalant bifurcation between
different mean topologies. Moreover, this turbulbiitircation can conserve memory of the
system history. These aspects of the turbulentrdafion recall classical properties of
bifurcations in low-dimensional systems, but théutmation dynamics is really different,
probably because of the presence of very largaukemb fluctuations. Future studies will be
concerned with the universal relevance of the cpnoemultistability in average for states of
highly fluctuating systems and by the transitionstween these states (e.g. magnetic
inversions of the Earth, climate changes betweanigl and interglacial cycles). The slow
dynamics of turbulent systems, in the case whechanges of stability can be observed for
some global quantities or some averaged propegtitse flow, should also be studied, and an
attempt made to construct nonlinear or stochastidets of those transitions.

In the case of turbulent flows with symmetry, it atso possible to construct a
statistical mechanics, and to develop a thermodymapproach to the equilibrium states of
axisymmetric flows at some fixed coarse-grainedescehis allows the definition of a mixing
entropy and derivation of Gibbs states of the mawbby a procedure of maximization of the
mixing entropy under constraints of conservationtt@d global quantities. From the Gibbs
state, one can define general identities definlrgy @équilibrium states, as well as relations
between the equilibrium states and their fluctueiorl his thermodynamics should be tested
in turbulent flows, e.g. von Karman flow. Effectitemperatures can be measured and
preliminary results show that they depend on thesidered variable, as in other out-of-
equilibrium systems (glass). Finally, we can dervparameterisation of inviscid mixing to
describe the dynamics of the system at the coaeseegl scale. The corresponding equations
have been numerically implemented and can be used aew subgrid scale model of
turbulence.
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2.2. From molecules to organisms
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Contributors: Pierre Baudot (ISC-PIF), Hugues Berry (INRIA, Sa¢JaGuillaume Beslon
(IXXI-LIRIS, Lyon), Yves Burnod (INSERM, Paris), da-Louis Giavitto (IBISC, Evry),
Francesco Ginelli (CEA, Saclay), Zoi Kapoula (CNRZyris), Christophe Lavelle (Institut
Curie, Paris), André Le Bivic (CNRS SDV, Marseilléyadine Peyrieras (CNRS, Gif s/
Yvette), Ovidiu Radulescu (IRMAR, Rennes), Adrier @&JPMC, Paris).

Keywords. Systems biology and integrative biologgtability, fluctuation, noise and
robustness, physiopathology, biological networksmputational biology, multiscaling in
biological systems.

Introduction

Biological investigations provide knowledge and a&pected, at some point, to
translate into clinical research and medical adeandor the treatment of human
physiopathology. We hope to find cures for diseamed other key medical conditions, if
possible, or at least to understand those conditlmetter. Yet it is increasingly clear that
better understanding can only arise from a morestolor integrative view of biological
systems. We thus need to develop a better grabpolafgical systems as complex systems,
and to transfer this understanding into clinicabe@ch. Doing so requires a strongly
interdisciplinary approach, and should provide nav&ghts into physiology and pathology.

After a brief presentation of the general aims amdcepts discussed in this topic, we
list and offer details on four main challenges. Howestigations should be driven in biology
is a matter of debate. Should they be data-drigbject-driven or hypothesis-driven? Do we
at least agree about the aim of deciphering theataunains underlying biological processes?
Do we expect models to bring insights and knowledfeut the behaviour of biological
systems, and to make accurate predictions?

Recent advances in functional genomics and intteysof complex diseases (such as
cancer, autoimmunity or infectious diseases, miadhial diseases or metabolic syndrome)
have shown the necessity for an alternative wayhofking in biology, a view in which
pathology and physiology result from interactioe$ween many processes at different scales.
The new scientific field of systems biology has eyee from this perspective; it focuses on
the study of gene, protein, and biochemical reaatietworks and cell population dynamics,
considered as dynamical systems. It explores tbh&dical properties resulting from the
interaction of many components, investigating psses at different scales and their overall
systemic integration. Complex systems science gdesvia conceptual framework and
effective tools for unravelling emergent and imnesrigfeatures from molecules to organisms
and vice versa. The term "immergence"” is meanijaly that some macro-level constraints
cascade back in a causal way onto micro-levelsh Botergent and immergent properties
should be understood from the multiscale reconstmu®f data recorded at the appropriate
spatial and temporal scales. We expect to find gepeocesses (design patterns for computer
science) which apply from upper to lower levelsoofanization, and vice versa, and which
allow their coupling e.g. synchronisation, reinfement, amplification, inhibition, achieved
through basic processes such as signalling througacular interactions, diffusion, vesicular
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transport, ionic transport, electric coupling, bemhanical coupling and regulation of
molecules and macromolecules characteristic fesfiimeluding their concentrations).

Complex systems almost always involve a wide rasfgeeales both in time (typically
femtoseconds in chemical reactions, seconds inhbuoksan processes, days to months in
cells, and years in an living organism) and spagpidally nanometers for molecular
structures, micrometers for supramolecular asses\btirganelles and cells, centimeters for
tissues and organs, and meters for organisms)irfgnide pertinent space and time scales for
experimentation and modeling is a major issue. Sitak approaches (biochemistry, cellular
and molecular biology, behavioural and cognitivedsts, etc.) usually have a “preferred”
scale set by default, mainly due to the principietq@cols and experiments being designed to
work only at a specific scale. This makes back famnith interactions between different scales
in observations, experimentations, models and sitiuls a very exciting transdisciplinary
challenge.

Variation in biological systems raises the issuarfiverage, typical or representative
behaviour. Determining such quantities, and knowihghey are scientifically useful,
requires characterizing and measuring variabilitg Huctuations at the molecular, single cell,
cell population and physiological levels. The amigind functional significance of fluctuations
in biological systems, even the scales of spacetiam& on which they occur, remain largely
unknown. Their functional significance might be eggrhed through their multiscale
transmission and possible amplification, reductianiping or role in mediating bifurcations.

Obviously, understanding will not arise from a doesne description and modeling of
organisms (virtual cell, virtual organism) but ratHrom the correct identification of which
components are relevant for a given problem anadbenstruction of models focused on the
mechanisms involved. Such a reconstruction shoskl mathematical and physical tools,
some borrowed from out-of-equilibrium thermodynasnand dynamical systems. New tools
will also be required to answer specific questioh®iology. Ultimately, injecting systemic
vision and using complex systems principles andceptual frameworks for a better
understanding of human physio-pathology could leachovel differential diagnosis and
improve medical care.

Main Challenges

1. Fluctuations and noise in biological systems
2. Stability in biology

3. Multiscaling

4. Human physiopathology

2.2.1. Fluctuations and noise in biological systems

Modern biology has in its development dependealihe on the notion of average
behaviours and average individuals. But this conm@pframework has recently been
challenged by empirical observation. Quantitativeasurements of living single cells, or
within such cells, have revealed extensive vaiigbdnd fluctuation of cellular dynamics
between different cells or between different timathin the same cell. These observations
open a new conceptual framework in biology, in whimise must be fully considered if we
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are to understand biological systems; this viewadspfrom the classical framework which
considered noise and fluctuations it mere measureereor or as "simple" thermodynamic
fluctuations which should be suppressed by cells.

This new point of view raises many questions, alé ageboth practical and theoretical

issues likely to deeply modify our understandingobadlogical systems. However, to tackle
these questions, we need to develop a completatificigorogram of investigation ranging
widely from precise measurements through to amalgsithe origin and functional role of
stochasticity in biological systems. Among the maieakthroughs, we need to:

to):

Improve the technology for quantitative measuremeaftnoise and fluctuations in
single cells, cell populations, tissues, organs iadd/iduals. In particular, it will be
necessary to identify the characteristic timesaahdevel of organization and the most
appropriate experimental indicators.

Identify the mechanisms by which noise and fluctret arise in biological systems.
In particular, what are the modalities of multisc&ansmission of fluctuations? Are
fluctuations amplified or reduced/damped from owales to the others? Are they
important with respect to bifurcations in the ongam'cell fate?

Understand the functional significance of fluctoas in different biological systems.
For instance, it has been proposed that fluctuaticen enhance the robustness of
living beings. However, other processes can besaged (e.g. stochastic resonance,
increased signaling rates, cell differentiationolation, etc.). Such a functional
significance supposes that biological systems laleata control the level of noise.
Delineate possible mechanisms by which biologigatesns may control their level of
fluctuation (negative/positive feedback loops irodhiemical networks, neuronal
adaptation in cortical networks, adaptive mutatiand mutation hotspots, regulations
and networks in the immune system).

Question the meaning of usual averaging processexperimental biology. In the
case of biochemical networks, can data gatheredetirpopulations be used to infer
the actual network in a given single cell? Similasues arise in the case of
connectivity structures of cortical networks and lbeeage reconstruction.

These issues can be addressed in various biolagysegms including (but not limited

Transcription and regulation networks: it is nowasl that the transcriptional activity
of the cell is highly stochastic. Some of the malac causes of this stochasticity have
been identified, yet its precise origin and reguhat mechanisms remain to be
discovered. Doing so will first require the devetggnt of adequate measurement
methodologies to enable us to quantify these fatcdus at different time scales in
single cells.

Neurons and neuronal networks: the so-called "dnegfoactivity within cortical
circuits is a spontaneous activity generated byrélocarrent nature of these networks.
It has long been considered a mere noise addedeoetnvironmental signals.
However, more recent studies have proposed a weatidbnal role in which ongoing
activity could facilitate signal spreading and lmplicated in adaptive processes.
Inhibitory effects have been shown to reduce vdigkat both the single-cell and
population level.

Diversity of the immune system: The immune systermharacterized by diversity at
different levels. Lymphocyte receptor diversity, pptations of effectors and
regulators, cell-population dynamics, cell selectend competition, and migration
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through the whole organism are the result of stsiheor selection mechanisms
whose impact on the overall efficiency of the systeeeds to be further characterized.

« Uncontrolled variability is often accused of beiagource of major perturbations in
the fate of organisms. Examples can be found in glfecess of aging, cancer,
autoimmunity, infections or degenerative disea¥es.the precise influence of noise
is still open to debate. In particular, one poiatto determine to what extent
degenerative processes are a consequence of mois@wation, a variation in noise
properties or of rare stochastic events.

« Variability at the genetic level is the major ergyiof evolution. But genetic variability
may be indirectly regulated according to the spstiaporal characteristics of the
environment (selection for robustness, for examptefor evolvability). Moreover,
clonal individuals may be very different from easther due to intrinsic and extrinsic
phenotypic variability. The mechanisms by which itaéte and non-heritable
variability are regulated still need to be charazeésl and their influence on the
evolutionary process is largely unknown.

Concerning the modeling of fluctuations, severathramatical and physical tools
exist, but these need to be improved. Thus:

« Stochastic models are largely used in molecular systems biology. The simulation
algorithms (Gillespie algorithm) use the DelbrickrBiolomay-Rényi representation
of biochemical kinetics as jump Markov processes. drder to improve the
performance of these methods (which are costlyme)tseveral approximate schemes
have been proposed, for instance the approximafidtoisson variables by Gaussians
(tau-leap method). Hybrid approximations are mqerapriate when the processes are
multiscale and these approximations could be deeeldy combining averaging and
the law of large numbers. In certain simple cates master equation can be exactly
solved.

« It is also interesting to transfer ideas from statistical physics to biology. For
instance, fluctuation theorems, which concern theuoence of out-of-equilibrium
fluctuations in heat exchanges with the surround@ingronment and work theorems,
concerning thermodynamic fluctuations in small egst close to equilibrium, could be
applied to characterize fluctuations in gene nek@/oDNA transcription processes and
the unfolding of biomolecules.

2.2.2. Stability in biology

We encounter various definitions of stability degieg on the phenomenon, the
model or the community proposing the concept. Featly invoked concepts include
homeostasis in relation to metabolic control, theel RQueen concept in evolution describing
continuous development to sustain stable fitnesa shanging environment, robustness in
systems biology referring to insensitivity with pest to perturbations, or canalization and
attractors in developmental biology and ecology.

The main challenges are:
1) In seeking to understand the stability of biadag systems, which are always subject to
both intrinsic and extrinsic perturbations, we needevelop the notion of steady state, or

more generally attractor. We need new mathematmatepts to capture the subtleties of
biological stability.
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+ Finite-time stability is a concept that can be usedefine stability in the case when
the system is known to operate or to preservetitetsire unchanged over a finite
time. We are interested in the conditions underctvlihe system's variables remain
within finite bounds. Can we extend such formalignother properties (oscillations,
optimal biomass production, etc.)?

+ Finite time stability depends on the existenceufsystems with different relaxation
times. It is thus important to develop methods vaithg to estimate the largest
relaxation time of subsystems. For compound systedmesv can we relate the
relaxation times of the elements to that of theéesy®

+ The notion of resilience is also a generalizatidnstability that is particularly
appealing in this context. Indeed, it focuses oa #bility to restore or maintain
important functions when submitted to perturbatiolibe formalizations of this
concept, founded on dynamical system propertieagore of attraction basin sizes),
or even on viability theory (cost to return intwiability kernel) should become more
operational to favour a wider diffusion.

2) The functioning of multicellular organisms ocsuat the level of the cellular
population, not of the individual cell. Furthermprhe stability of a cell population
(tissue) is generally different from that of thediwidual cell. Cells extracted from
tumours, for example, can reverse to normal agtiwiten injected into healthy tissue. In
this context, how can we define and study the Btalmf a population in relation to the
stability of individuals? In addition, the sameat®n should be considered in the context
of a developing organism taking into account défération and organogenesis. These
processes are examples of symmetry-breaking, andoudd like to determine whether
symmetry arguments can be used in the study oilisggiyoperties.

3) Systems biology studies robustness as an iapoorganizing principle of biological
systems. As pointed out by H. Kitano, cancer i®laust system with some points of
fragility. Thus, finding treatments and cures fasedises may consist in determining the
fragility points of a robust system. In order tsaer this question, we need good models,
new mathematical theories and computer tools tdys@groperties of models and new
experimental techniques to quantify robustness.

4) Complexity and stability. In the modeling progewe should be able to zoom in and
out between various levels of complexity. Stableperties of the system could be those
that are common to several levels of complexity.rdlgenerally, is there a connexion
between stability and complexity?

2.2.3. Multiscaling

Biological processes involve events and processidadg place over many different
scales of time and space. A hierarchical relatignamong these scales enters our description
only because it corresponds to our subjective viewsually based on our limited
experimental access to the system. Multiscale @ges drawn from theoretical physics
have been developed essentially in an unidiredtigomdtom-up) way, to integrate parameters
and mechanisms at a given scale into effective,hempefully reduced, descriptions at higher
scales. However, lower-scale properties are dyrexdupled with properties of the higher
scales (e.g. 3D chromosome distribution in the euglpartly governs gene expression, which
itself participates in nuclear architecture). Theryw complexity of living systems and
biological functions lies partly in the presencdladse bidirectional feedbacks between higher
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and lower scales which have become establishechgluhe course of evolution. Self-
consistent or iterative “up-and-down” approachesdfore need to be introduced to account
for the strong interconnections between the leaetsensuing circular causal schemes.

2.2.3.1. Multiscaling vs. self-scaling

To properly account for the behaviour of a biol@gisystem, a multiscale approach
should jointly tackle all the scales, with no way $kip any microscopic details or
macroscopic assemblies. Obviously, such modelingldveapidly reach a high level of
complexity, and would ultimately be intractable.ig imitation on multiscale descriptions
imposes a drastic challenge to the paradigm undgrthe modeling of biological systems.

To reduce the level of complexity, it has been pemul (Lavelle/Benecke/Lesne) to
devise models taking the biological function astatsg point and guideline for directing
integrated modeling and using supervised data sisaly parallel the biological logic.
Decomposition is achieved by dissecting its logid amplementation into basic processes
involving features at different scales and areaalyeintegrated in their formulation. More
generally, such a decomposition results in “sedflest” functional modules, independent of
the arbitrary description or observation scale. fAsction-dependent representations are
inherently multiscale in nature, and the functiaanmot be discontinuous, this paradigm-
transition consequently requires a scale-continumoogel. Scale-continuous descriptions may
at first sight look prohibitively complex and noeatistic; however, when such a scale-
continuous model is constructed in the context d@iraction-dependent representation, the
dimensionality of the variable-vector to be considecollapses.

2.2.3.2. Emergence vs. immergence

Modeling of biological systems requires new mathirah formalisms capable of
reflecting the complete dynamics of a system begrdating its many levels. This can be
achieved by defining "micro to macro” (emergence§l dmacro to micro" (immergence,
microemergence or downward causation) functions iatefrating intra-level (horizontal)
and inter-level (vertical) couplings. The definitimf pertinent variables at each level of
organization, and a description of their relatioissnecessary to obtain emergence (resp.
immergence) functions that allow analysis to jumgnf a microscopic (resp. macroscopic)
level to a macroscopic (resp. microscopic) levehefgence and immergence phenomena are
well-known in biology, such as the links betweer #tructure topology of tissues and cell
behaviour. But these causal relationships arecditfto decipher, mainly because the scales at
which they occur are not necessarily those at whedearchers make observations and do
experiments.

+ How should we select relevant space and time scales our
experiments/models/theories (self scaling rathan #xhaustive multiscaling)?
+ How can we perform multiscale reconstructions fidata recorded at different scales?

On which spatial and temporal scales will the mii@ulation obtained be valid?

2.2.4. Human physiopathology and animal models

Human physio-pathology creates uncertainties witmstantly moving frontiers
between disciplinary fields such as neurology, asctiences, psychiatry, immunology,
cardiovascular, metabolism and endocrinology. Huipaimo-physiology is characterised by
the progressive dysfunction and deterioration aicpsses acting on multiple space and time
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scales with non-linear interactions between phggighl/biological functions, cognition,
emotions and social consequences. Problems calt ir@gally from local conflict between
internal and external signals (e.g. dizziness),thigt conflict can expand, diffuse and create
additional causal loops with multiple pathogenicipeocal interactions. Functional problems
can be primary or secondary effects of spontanadaptive mechanisms aiming to counter
primary injury and dysfunction, and it is importaatdissociate them.

Two main challenges are:

+ To apply complex systems principles and theoreticaneworks to the design of
experimental studies and the analysis of data #erent scales (neurological,
physiological, behavioral, neuro-psychological, immalogical) from individual or
large patient populations;

+ To search for cross-correlations and interactionsrder to obtain new insights into
pathogenic primary or secondary mechanisms. Thikdldead to new, more sensitive
differential diagnostic tools, but also to bettezdital care or functional re-adaptation.
There is a need to go beyond a limited multi-discgeity of parallel different

approaches and use complex systems tools to cordbiaefrom different fields and
gain further insight.

This issue concerns the whole of internal and ge#neredicine, immunology,
neuroscience, psychiatry, geriatrics, pediatricgictional re-education, public health, and
complex systems science. Examples of functionalblpros, some of which have no
measurable organic basis, include vertigo - dizanend equilibrium problems and fear of
falling in the elderly, isolated hearing loss, iims, learning problems — dyslexia, and also
neuro-degenerative diseases, types of dementiay-Baay and Alzheimer's diseases. What
causes the switch from physiological auditory naseerceived unwanted signal in the case
of tinnitus in the absence of neuro-ontologicatlings?

Major questions include the significance of instaeous fluctuations of
measurements (physiologic, behavioural, e.g. incee of dementia) in relation to patho-
physiology and progressive degeneration of corSadlcortical circuits. Other examples
could be given in immunology: analysis of the fumealities of the immune system in
physiological (ontogeny to aging, gestation) andthplagical conditions (cancer,
autoimmunity, infections), and interactions witthet biological systems such as the nervous,
endocrine, metabolic systems. This is based onrdiah analysis of fluid lymphoid cell
populations, quantification and identification ohgmotype and functions, repertoires,
genomics and proteomics.

48



2.3. Physiological functions

Contributors: Catherine Christophe (INRA), Christophe Lecerfqieades Mines Ales),
Nadine Peyrieras (Institut de Neurobiologie CNRI¢gn Sallantin (CNRS LIRMM)

Keywords: in vivo observation and measurement devices,idpand temporal multiscale
observations, subcellular and supra-cellular fumstj organism-environment interaction,
ontogenesis, physiological disorders.

Introduction

Physiological functions result from the integratiai cells, tissues and organ
properties in the context of the whole organisnenatting with its environment. A complex
system approach to physiological functions shodddlto an iterated cycle combining
relevant measurements and experimentation, modahgsimulation. Such a goal requires
building multimodal investigation devices for sirtarieousin vivo recording at different
spatial and temporal scales of relevant parametensell as designing theoretical methods
and tools for appropriate modeling and computeutation.

Expected results include the design efvninvestigation devices and theoretical
methods and tools for observing, modeling, undeditey and possibly controlling
physiological functions.

Main Challenges

1. Integrating multimodal measurements and obsensabf physiological activities
at different spatial and temporal scales.

2. Characterizing the contextual features whiclemheine the onset of a physiological
function, or their maintenance and modulation.

3. Investigating the relationship between the oetagis of a physiological function
and its potential disorders.

2.3.1. Integrating multimodal measurements and observations of
physiological activities at different spatial and temporal sc ales.

An integrated observation of sub cellular and suethular processes requires either:
(i) To translate in the same spatial and tempatrence frame heterogenous data recorded
in the same organism but at different moments, or
(i) To design new devices capable of simultaneptestording multimodal data.

The first goal can be achieved through availabléhods going from spatio-temporal
matching to data fusion. These methods are limitgdecalibration problems and errors
(whatever the rigid or elastic transformations &apl

The second option would be a real breakthroughpnodide a generation of totally
new instrumentation offering instantaneous accessedsential structural and dynamic
variables (chemical, electrical, mechanical, e#t.pll relevant spatio temporal scales. The
trend in this direction is exemplified by macrosicogiata acquisition in medical imaging with
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optical-PET and PET-CT devices and, for vital pbimgical variables, by ambulatory

integrated sensors providing real-time patientestegicking in a normal environment. In the
domain of vegetal biology, phenotypic plant platfgrlead to the observation of flow from

roots to leaves at different time scales. Integgauch synchronous, multimodal, multiscale
observations in relevant models should provide adgbasis for the reconstruction of
physiological functions.

2.3.2. Characterizing the contextual features determining t he onset of
a physiological function, or its maintenance and modulation.

The objective is here to view the function as aegration of subfunctions which can
be investigated from different perspectives or ggarturbative and comparative approaches.
Different factors or conditions, such as restingsue moving, diet-nutrition, or training, can
influence and move the system towards new funcaigpnnodes. Comparative physiology
provides a way to study the conservation or divecgeof physiological functions. This
approach is relevant for respiration and locomotiothe animal kingdom as well as for fruit
maturation in the field of vegetal biology.

Physiological functions should be characterizeduph the extraction of high-level
variables, loosely akin to “thermodynamics variableor along the lines of allometry i.e.
preservation of characteristics over the size viana. More generally, we should be able to
define invariants (or invariant relationships) eltad to physiological functions and the
conditions for their conservation.

2.3.3. Investigating the relationship between the ontogenesis of a
physiological function and its potential disorders.

Physiological functions should be explored throtigéir set up during ontogenesis,
maturation and maintenance during growth, adulthered ageing. The dynamical behaviour
of physiological functions should be explored aswing pathological events.

Examples:

- Heart embryology: progressive formation of anatomical structures and
functional patterns with ill-posed problems relatedhe partial observations at
our disposal (i.e interpolation of objects witlgtnistructural variation from the
architectonic viewpoint, installation of nodal tigsfunctions or sinusal electric
waves, etc.)

« Schizophrenia: effects on the highest cognitive levels of the roations
induced by the disease at the level of more eleangmieurological functions
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2.4. Ecosystemic complexity
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Keywords. ecological dynamics, adaptation and evolution, laggoal services, multi-
functionality of the ecosystems, integration ofadatoupling of models, space-time dynamics,
multiscale models, disturbance and resilience,ilgtaland dynamic transition, emerging
behaviour, feedback and retroaction, functionahoization.

Introduction

Defined as the close association of an abioticrenment and a collection of living
organisms, an ecosystem is characterized by a gueaber of physicochemical factors and
biological entities which interact with each oth&he multiplicity and diversity of these
interactions as well as their involvement of a vasige of levels of organization and a broad
spectrum of space and temporal scales justifyxpesssion of “ecosystemic complexity.”

Moreover, ecosystems, whether natural, managed rtificial, are subjected to
“perturbations” (e.g. natural hazards or biotic atmotic stresses) and deliver many and
diversified commercial and non-commercial produatel “services.” To account for this
ecosystemic complexity, to understand the resi@enicthe ecological processes and to open
the possibility of ecosystem management and cqni@ineed to articulate various strategies
-- for reconstructing the spatial and temporal dawyita, starting from observations and from
increasingly instrumented experiments, for theoadly and experimentally identifying the
retroactive mechanisms and emergent phenomenafoantodeling and validating these
models.

Main Challenges

1. Develop observational and experimental systemthé reconstruction of the
long-term dynamics of ecosystems.

2. Model the relationships between biodiversity #mafunction and dynamics of
ecosystems.

3. Associate integrative biology and ecology toipleer evolutionary
mechanisms.

4. Simulate virtual landscapes (integration andptiog of biogeochemical and
ecological models into dynamic landscape mock-ups).

2.4.1. Develop observation and experimental systems for t he
reconstruction of the long-term dynamics of ecosystems

The rapid development oh situ systems of measurement (metrology and sensors) is
making possible the integration of data collectethiw networks of observation (spatial and
temporal sampling strategies, environmental rebealservatories) and/or of experiments
(microcosms, mesocosms) in models of ecosystemsthdfu progress requires the
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development of information systems based on a ganakmodeling of studied ecosystems
and tools for the multidimensional analysis of dateming from multiple sources (“meta-
analysis”).

2.4.2. Model the relationships between biodiversity, functioning a nd
dynamics of the ecosystems

These relations, which play a central part in tlast\field of biodiversity studies,
describe various functions (production, transfefsnmatter and energy, resistance and
resilience to perturbations, etc.), at differenales of space (station, landscape, area,
continent) and of time. Historically, researcheasé approached the study of these relations
either by wondering about the way the environmemdi #he functioning of the living
organisms and their interactions determine thenalses of species, or, more recently, and in
a reciprocal way, by studying the role of the riebs and specific diversity in the way
ecosystems function.

2.4.3. Associate integrative biology and ecology to decipher
evolutionary mechanisms

To understand and model the response of ecologazamunities (in their structure,
functioning and dynamics) to the changes of theuirenment (climatic changes, pollution,
biological invasions, etc.) we require a better poghension of the adaptive mechanisms.
This task can now be supported by conceptual, ndetbhgical and technological progress
made in integrative biology (genomic functional ctdiis, biology molecular, genetic,
physiology and ecophysiology) and by the convergeat approaches from population,
molecular and quantitative genetics.

2.4.4. Simulate virtual landscapes (integration and coupling of
biogeochemical and ecological models into dynamic landscape mock-

ups)

The concept of virtual mock-ups, based on a categorepresentation of the
landscape mosaic, would make it possible to buitgpalogy of representative landscapes
(hedged farmland, open field, mixed landscapesestsy peri-urban areas, etc...). The
following phases would consist in modeling, firte functioning of the landscape (i.e.
biogeochemical cycles, transfers and exchangegaaiiculate transport, determinism of the
microclimate, transport of water and of associgiellutants in the soil and the watersheds)
with as a deliverable the production of functionglations between landscape topology and
structure of the exchanges. Second, it is also itapb to model the dynamics of the
landscape (i.e. evolution of its space organizatioer the effect of the human activities and
of certain ecological processes (for example, dadion of spaces by the vegetation). Such a
tool would have a great utility in ecology or epidelogy, in the agronomic disciplines and
for the local management of land and land use.

2.4.5. Design decision-support systems for multifunctional
ecosystems

All decision making linked to the ecosystem managietivould be greatly assisted by
the qualification and quantification of the produeind services provided by the ecosystems,
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and the integration of these services and prodnctsystems of policy-relevant indicators
(dashboards, tools of decision-making assistaifeeg\cle analysis and eco-balance analysis,
etc.). Policy formulation and implementation aleguire much more sophisticated modeling
and quantification of human practices and techrsgee management systems relating to
ecosystems, and fully coupled models taking intcoant stochastic components (whether
those are intrinsic or that they are related toitttemplete character of knowledge on the
elements of these systems, their interactions lame@xtrinsic factors likely to disturb them).
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2.5. From individual cognition to social cognition
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CNRYS)
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Keywords. Social dynamics, decision criteria modeling, quative social measurement,
social cognition, inter-individual heterogeneity.

Introduction

Cognition is information processing, understood iwide sense; that is, including all
related aspects such as, for instance, interpoetgtiocesses. A cognitive system is thus an
information processing system. It can be embeddedsingle individual or distributed over a
large number of individuals. We speak of individaagnition or distributed cognition. Social
cognition is a cognitive process distributed oMemembers of a society, interacting within a
social network. Individual cognition as well midgh# considered as distributed cognition over
a neural network.

In social networks, as information reaches agetssontent is then processed by the
social network, producing other pieces of informatand other social links following series
of interactions. This process of social cognitianuld thus lead to a transformation of the
social network.

At the individual and collective levels alike, cative processes obey strong constraints:
individuals cannot achieve anything outside of wtiety are able to do themselves or in
interaction with others; nothing can be anticipabediside of what they can predict alone or
by interacting with others. Both the network sturetand the nature of interactions act as
strong constraints on cognitive processes. Newopodé appear which make it possible to
describe or quantify these constraints at the 4mfdavidual, individual and collective levels,
thus suggesting, in turn, new models. The quickratign of social interactions towards
digital media enables the massive collection o aet social cognition, from the viewpoint of
both its processes (spatial structure of interastidcemporal distributions, etc.) and its
products (online documents, user-focused data,). eithe coexistence of these two
phenomena opens today new perspectives for thg sfuddividual and social cognition on
the basis of benchmarking models with empiricabddthis ought to be a major focus of
research initiatives for a better understandinthefevolution of our societies.

Main Challenges

1. Individual cognition, cognitive constraints and ide&m processes
2. Modeling the dynamics of scientific communities

3. Society of the Internet, Internet of the society
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2.5.1. Individual cognition, cognitive constraints and decision
processes

The relationship between high-level and low-levebmitive processes remains an
unsettled issue: the link between dynamic processdbe neural network and symbolic
processes as they are being studied by psycholodyyirgguistics is still open to question. A
promising approach consists in exploring in a more precise manner meso-scale spatio-
temporal dynamics, such as, for example, cortioAlrans or synchronized neural assemblies
(or, more broadly, polysynchronic assemblies). €hepatio-temporal dynamics may be
useful in elucidating the microscopic dynamics hdhsymbolic processes. In order to
understand better the links between dynamic andsiimprocesses, further theoretical and
methodological exploration, as well as sharing diaden very large databases provided with
their metadata, is required.

Significant progress towards this challenge wounltat only lead to unifying an
essential aspect of cognitive science, but wousth #unch much more strongly the new
discipline of neuroeconomics: observing neuralvagtbrings a novel viewpoint on the study
of human behaviour towards "nature” or in relatiath strategic and social interactions with
other individuals. From the perspective of cogmitiegconomics, this brings hopes that
decision theory could be revisited, as well asddath game theory, including the notions of
"preference” and "utility" which are foundational feconomic theory.

2.5.2. Modeling the dynamics of scientific communities

Scientific communities constitute a privileged afeathe study of social cognition
because both the structure of the underlying nédsvdteam organization, collaboration
networks, co-authorship networks, or citation neksp and the production of these
communities (conferences, journals, papers) is knawa dynamic fashion. In order to
exchange concepts, scientific communities create tdwn language whose evolution reflects
their own activity.

This makes it possible to address very precisesgpertaining to how these scientific
communities are collectively processing informatiblow are new concepts or issues being
adopted? What are the dynamics by which innovatuiffase (effect of authorities, local
traditions, etc.)? What is the effect of the breakd of individuals in communities or the
creation of links between communities on the dgwelent of knowledge? Which are the
relationships between individual trajectories andhmunity evolutions? What tools should
we create to visualize dynamically the evolutiorsoientific paradigms, taking into account
the continuing input of scientific production?

Examples:

« Emergence and diffusion of new concepts in bibkpical databases

« Detection of emerging scientific fields

« Dynamics of collaboration networks

« Paradigmatic comparison of distinct scientific conmities or institutions

2.5.3. Society of the Internet, Internet of the society

The quantity of information stored on the Intermt have soon easily surpassed that
stored on paper. The Internet concentrates todagugtypes of knowledge storage systems
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(papers, encyclopedias, etc.). It is also a plaber& discussions (weblogs, forums) and
commercial transactions (auction and trade weblstdesur, referencing is being produced
(for individuals through personal webpages as aglfor institutions and organizations), and
it serves as an external memory for relationshigvoeks (friendship networks, work groups,
etc.). It is also a " world agenda" with hundrefithousands of events being announced every
day. What modifications is this new tool bringirgprocesses of social cognition (new kinds
of encounters, new kinds of exchange, new kinddebftes, new kinds of collective building
of knowledge)? For the first time, we may empirigalork on this type of data with a fairly
large spatio-temporal precision. How can we ussdheew sources of information to better
understand social dynamics and create tools toakrithe complexity of social activity
which the Internet is revealing? A major challemgéo transform raw information available
from the Internet into structured flows of infornoet which make it possible to visualize,
model and rebuild social cognition processes akwarthe web.

Examples:

« Impact of weblogs in political and civil debates,

+ New dynamics for the collective elaboration of kiesge (Wikipedia, open-source
software, etc.) ,

+ Measuring the propagation of social emotion follegviimportant social events,
through the number of requests (ex: Google trends)

« Comparative study of cultural differences througkeo-pcalized informations
(semantics in webpages, tags, requests on seagtheen etc.), reconstruction of
cultural territories.

+ Formation of epistemic communities, friendship ratsg
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2.6. Individuals, structures, societies

Reporter: Denise Pumain (Université Paris 1)

Contributors: Frédéric Amblard (Université de Toulouse), Cyrileertelle (LITIS UFR
sciences technologies), Paul Bourgine (Ecole Pciytigjue), David Chavalarias (Institut des
Systémes Complexes de Paris lle-de-France/CNR®ri¥@agrain (consultante technologie
information), Guillaume Deffuant (Meteo-France & Raris-Est Cemagref), Silvia De Monte
(ENS), Sara Franceschelli (Paris Jussieu), Francesmelli (Institut des Systemes
Complexes de Paris lle-de-France), Pablo Jenseis (BMn), Maud Loireau (IRD), Jean-
Pierre Miller (CIRAD), Denise Pumain (UniversitéiBd.).

Keywords: Institutions, heterarchies, multilevel methodaésg flocking, collective behavior,
(evolutionary) game theory, cooperation, quanti@tineasurements, evolution, perturbation
response, spatial organization, social insectsjsiian to multicellularity, synchronous
oscillations, social differentiation, cognitive eéxmics, social networks, social learning.

Introduction

Interacting individuals create organisations ared(eg)created by them. The behaviour
of societies is not the simple sum of its elemelniss,often displays true emergent properties.
For the sake of analysis, we can distinguish betwseak and strong emergence. While
certain questions — such as the emergence of ghgtand/or flocking behavior - can be
regarded as common to any biological populatiomndiu societies included, culture and
reflexivity introduce new challenges to descriptieffiorts. Moreover, geographical entities
(regions, spatial organisations, networks, landssaetc.), influence the interactions between
individuals. Complex systems methods provide tremtétical framework to understand the
coevolution of the different description levelsr(iiries, societies and individuals) and the
evolutionary processes which shape collectivekelps to analyze the reasons which lead to
inequalities between different entities.

This challenging question is especially relevant fmderstanding the multilevel
dynamics of geographical entities: (places, regiospatial organisations, networks,
landscapes, etc.). Most often, stylised facts canobtained from the co-evolution of
territories at the macro-geographical level. Modélsomplex systems can help to reconstruct
individual behaviours which, under given societales and historical context, generate
inequality between territories. Territorial ent#imust be understood not only as geographical
subdivisions but also as systems with particularegoance rules and associated collective
representations which define feelings of belonguhgch characterise individual identities.

Challenges summary: the main research questiomignarea is to identify which
universal properties at the macro level may bearpt by collective behaviours (described
and quantified from societal surveys). For undeditay the process of social (or
geographical) differentiation, we require two typet modeling of strong emergence
phenomena: firstly of the retroaction of collectpatterns on individual representations and
practices, and secondly, of the emergence of utstits at collective levels out of the
interactions between individuals and changing ctile rules. Another very important
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challenge, when comparing the development of saci@nces with the “hard” sciences, and
for enabling the transfer of models from studiespbfsical matters to societal ones, is to
properly collect in vivo or in vitro data (adaptsttistics, data from experimental economics,
etc.)

Main Challenges

1. Emergence of collective behavior in biological plapons
2. Co-evolution of individuals and society

3. Co-evolution of individuals, structures and temigs

4. Heterarchies, multiscale organisations

2.6.1. Emergence of collective behavior in biological populatio ns

Animal societies are commonly described at theectite level due to the evidence
and immediateness of population-level observati@ften, the characteristics of individual
agents shape the collective behaviour in a noatrimanner. One of the most interesting
challenges of the complex systems approach is tinemveil the relationship between the
individual and society levels in biological popudais.

This is, for instance, the key question when onadpos “flocking” behaviour in
animal species such as birds, fish, herding mamraats bacteria. Another fascinating
phenomenon is spatial organization which emergestapeously in the nesting behaviour
and food foraging trails in social insects. At tbelular level, collective synchrony may
emerge as a result of the interaction of indiviuascillating cells. Moreover, the transition
from unicellular to multicellular organizationsasmajor issue of evolution theory. The study
of excitatory (neuron-like) units interacting vianirivial connectivity graphs has recently
shownrich behaviour related to coherence and/digbaynchronization.

In recent years, tools imported from nonlinear ptg/frave supported a considerable
effort through theory and modeling to characterthese emergent phenomena. Basic
mechanisms leading to collective behaviour haven identified, some universal properties -
common to different biological systems - have belrumented and new predictions
formulated at the theoretical level. While a quiite agreement with observations has been
generally reached, we need quantitative measuresmenbiological populations to further
advance our comprehension of these phenomena.

The emergence of coherence among oscillating céfls, so-called Kuramoto
transition, for instance, is expected to occur mide class of cellular populations. Yet, it has
been quantitatively demonstrated so far only insptat and chemical systems. Superdiffusive
behaviour and anomalous number fluctuations hawen libeorized to occur in flocking
groups, but have not be studied in empirical ole@ms. The transition to multicellularity,
described by game theoretical models, has nevar beserved in experiments of directed
evolution.

Furthermore, a novel set of questions arises camgethe stability of such emergent
social structures with regard to external forcing perturbations. For instance, has the
interaction between birds in a flock been optimizsdevolution for resilience against the
disruptive effects of an attacking predator? Igassible to control an entire animal group by
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influencing a few of its elements? How do ants reamew obstacles introduced into their
foraging ground? What is the robustness of synaustbehaviour with respect to individual
diversity?

2.6.2. Co-evolution of individuals and society

The renewal of transdisciplinary research in theladcsciences reflects the need to
integrate numerous aspects of human behaviourlip daderstand the diversity of human
cultures and socio-economic institutions. This &tipularly clear in the debate among
economists who, after long commitment to the hommnemicus paradigm, are increasingly
abandoning this view and seeking a new paradigdedd, many phenomena do not fit with
traditional explanations of socio-economic equiéibin particular the observed heterogeneity
of socio-cultural patterns, the fact that we oftane transitory phases and local attractors
instead of stable equilibria and the accumulatibevadence about the importance of social
influence and others’ beliefs in decision-makinggasses, even in economic settings. On the
other hand, policy-makers are pointing out ever enoften the fact that new societal
challenges such as global warming or persistengfpyn certain areas require us to address
the issue of changing mentalities (i.e. the distitn of preferences or types of agents in
population) rather than just changing behaviomsc&mainstream economics, and most of the
time formal social sciences, consider preferencedixed over time, this leads to new
theoretical challenges for economics, and for tiead sciences more generally, as explained
by the Nobel prize-winner Vernon Smith (2005):

“Technically, the issue can be posed as one ofngskiow most productively to
model agent ‘types’ by extending game theory sotiiees are an integral part of
its predictive content, rather than merely importad an ex post technical
explanation of experimental results.”

This question about the origin of types, prefersrme in a more comprehensive view,
the representations, beliefs and values of agentse of the more tricky issues that social
system modeling has to tackle. Since all the agestsision-making processes are derived
from them, it is hard to imagine the correct grangdof models and their conclusions
without addressing the question. However, very feadels tackle the question directly.
Moreover, most rely on a mechanism of social canfty to make types of agents evolve,
while it is not clear that the diversity of agerigies in a society can be acounted for only by
this mechanism.

To go beyond this view, we have to imagine formrahfeworks to represent social
differentiation where the process of differentiaticc neither an optimization of a given
quantity nor the sole by-product of social confdgmi

We thus have to find an alternative between metlogitcal individualism and holism,
where both social influences and individual moiwat contribute to the process of
differentiation of agent types. A third alternatiat could be namembmplex methodological
individualism(Jean-Pierre Dupuy 2004).

To make this programme concrete, we need to addsessral methodological
questions:
1) We need to investigate mechanisms driving changdseliefs, goals, preferences and
values from the point of view of psychology, cogrétsciences and philosophy. This will
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2)

3)

4)

5)

6)

help to develop suitable tools to represent foryndlle dynamics of change at an
individual level. We need to account at the samme tior individual agency (the ability to
choose according to one's own personality) anddoral influence on the evolution of the
individual personality. We must bear in mind thetfénat people are able to decide not to
follow some rules and to create new rules. Howwango from "simplistic" interaction
mechanisms (optimum, copy, etc.) towards more imeaines? It may be argued that
people, in many important cirumstances, do notnjsée) follow algorithmic rules.
Instead, their expertise adapts intuitively to ¢batext: how can we take this into account
in simulations?

We need to better understand the way people siwgesbcial network, how they form
new links, how they prune old ones, how they p&eaiocial groups and to what extent
their decisions are socially and spatially embedttegarticular, it is important to succeed
in representing social groups as endogenous ougamsocial dynamics rather than as
entities given top-down by the modeler, as theyodiien described in the literature.

We need to develop methods to articulate behawabuhe individual level as well as
emergent collective behaviours at all scales ircesmnd time. In particular, we should
address the question of how emergent behaviouiiropact retroactively on individual

behaviour (bottom-up and top-down influences) ahatinfluence network topology has
on the dynamics a network supports.

We need to better understand the roles of hisfmath-dependence and perturbations. In
the real social world, structure is the product just of contemporary actions but of
history. It is there as we act, and our action$ lbonstitute history and change it. In other
words, for a simulation to be adequate as a reptaisen of the social sphere, it cannot
start from agents alone. It is important to inclutie history in simulations, and pay
attention to path-dependence. Often, this depemdanses from "errors"” in the inference
and transmission of information, from variations the environment or from the
heterogeneity of individual responses. Studies yfachical systems reveal that these
pertubations are a key component in the deternoinati system behaviour.

Can we express clearly how social reality feedskhatroactively on agents? At the

intermediate level of "habits of thought,” in Hodg%s terms, "The effect of institutions is

to frame, channel, constrain individuals, givingerito new perceptions and dispositions.
From these new habits of thought and behavior eeneeyv preferences and intentions,
changing the institutions, which in turn affect thanner of seeing."”

What are social models? When evaluating the ret®af a model, it is interesting to

estimate the representation of the "social" inrttealel. The relevance of "simple” models
of social systems (in the style of Schelling's sggtion model) is an open question which
deserves careful epistemological investigation s questions include: to what extent
is the reflexivity of the agents taken into acc@uiVhat intermediary levels between
individuals and society (such as institutions, unds) are taken explicitly into account?

2.6.3. Co-evolution of individuals, structures and territorie S

Territorial entities (towns, landscapes, regiorts,)eare coevolving with individuals

and social structures (point 2). Territorial eetiact as a context that constrains (both enables
and limits) individual capacities, while the indivals and the collective social structures,
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through their practices and interactions, maintairiransform the territorial structures. The

very existence of territories, through the resosirtdeey give access to, or the symbols
representing them, or the control they have orebsfit aspects of life, acts as a constraint on
(as well as a resource in) the evolution of indials. This coevolution involves processes
which take place on different time scales. Theti@iabetween space and time scales is not
trivial and requires specific investigation.

One problem is to identify the relevant time sdalethe observation of spatial entities
(for example, in the acquisition of remote sensiatp). Another problem to solve is how to
identify relevant territorial entities over time dalbetween different territorial systems (for
example, identifying a “city” as an agglomeratidrudban population).

Another challenge is to identify which processesdtéo increase the inequalities
between territorial entities (for example, of inec@wr GDP between countries, or population
size or total urban GDP between cities), and hogitpe feedbacks and scaling laws are
related to the co-evolution of individuals and sbarganisations. This raises the issue of the
role of the social or cultural or economic diveysissociated with large size as compared with
the role of specialisation.

How can we understand transition between stage®@seof time, regimes) where the
dynamics is constrained by the limitation of looagources (ecological systems), and stages
where innovations or the expansion of spatial ngtasaemoves constraints on system
expansion?

Territorial entities are organised in social andtg&h networks through relations
depending on the state of communications and toategpn. Over historical time, spatial
distance has been a heavy constraint on socialgctiens, even if long-distance relations
have always existed. Today, many relationships seebe no longer or less constrained by
distance (and its interpretation as a cost or gthkeaf time). The apparent contraction of space
over time seems to increase territorial inequaliti€hanges in the configuration of
transportation networks have strong effects onpfapagation of epidemics, whereas the
consequences of changes in communication netwoeksiach more difficult to estimate.

Three main components of the dynamics of territ@mities (such as their growth in
demographic and economic terms or their potenaglacity in terms of sustainability) are
already well-identified, but remain to be quantifi@as possible factors of sustainable
development. These are intrinsic resources (inoptAndscapes, human capital, portfolio of
economic activities, value of heritage), geograghsituation (relative position in economic,
financial, geopolitical or cultural networks, evislg through time), and the path dependence
which both enables and limits a subset of dynamaiedtories of individual territories. For
instance, it is possible to estimate in probaliliserms the future of rural localities as
depending on their economic specialisation, thewggaphical situation relative to cities of
different size and functions, their own potentiesaurces, and the capacity of initiative of
their main decision-makers. In the case of citied metropolitan areas, the weight of these
factors is different. These weights can be estichéiteam comparative studies of scaling laws
for the distributions of city and metropolitan szeevealing the incidence of the main
innovation cycles on urban development.

A major research challenge in this domain is abfding the right data for
quantifying the interactions between territoriesnited data on material interactions between
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cities, regions and countries (as migration flowsrade exchanges) can be collected, but we
often lack data on energetic, financial or infonmat exchanges between them. These
invisible flows are actually those which maintaimdabuild the dynamics of unequal growth
and development among territories. They reflect anehte the interactions generating
material flows, yet are generally analysed in ayvedirect way, as “network effects”, or
summarised under “generalised distance measuremghish seek to capture the relative
situation of each place within a larger system. Aray of improving knowledge about these
crucial energetic, financial or informational irdetions, at any level, would enable significant
progress in the analysis of territorial dynamics.

Experimental models of urban sustainability couddphin developing policies to face
the challenges of either an increasing scarcitynargy or a change in the organisation of the
global financial and information networks connegtithe metropolitan areas around the
world. A major question concerns the threat to glatability that will soon emerge from the
growing divergence between demographic and econgromth: over the next two or three
decades, the largest metropolises in the worl@nms of population will also be the poorest
in terms of economic production. we need to sineutae reorganisation of global flows at the
scale of national territories and of metropoliteatworks to estimate the probable costs of
sustainability.

2.6.4. Heterarchies, multiscale organisations

A first distinction can be made between embeddedahthies in which the macro-
level entities recursively embed the lower levditess, such as hierarchies in ecology (e.g.
cells, organs, organisms, etc.), and non-embedgedrbhies where entities are representative
of and/or command the lower level entities (astincsures of government). In both cases, the
hierarchy depends on the point of view: typicallypbedded hierarchies can be observed by
looking at the relative time scales of the dynam@sd a higher level entity in a non-
embedded system can be a lower level entity inhemadrganization (e.g. representative or
not representative). Many questions about complgstems require the combining of
heterogeneous embedded and non-embedded hieraréhiesimber of abstractions are
proposed for dealing with the description of sugltems, such as multi-hyper-networks
(Jeffrey Johnson) and holonic structures (Koestler)

The remaining questions are:
«  how to represent holonic structures and theiadyigs;
how to reconstruct both holonic structures andtirhyper-networks dynamics from
observed data;
. how to represent these structures and their diasatim perform predictions.

When holons are used, the question is how to matfage Janus’s double face
(autonomy with regard to the lower level / hetemogowith regard to the upper level) and
how to choose the best-suited model of autonomy.

Applications might include accounting for differdands of hierarchies in modern and
traditional cultures, the intertwinning of goverearmechanisms on a given territory, etc.

The processes which generate and maintain heterakratructures (partly embedded

and partly intertwined interaction networks) aregmlly the same. The structure is defined
both by qualitative differences and quantitativegunalities between the territorial entities,
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which are sufficiently pervasive over periods ohéi longer than the behavioural regime or
even the generational renewal of their componeltiese structures are transformed either
smoothly or more rapidly through innovation proessgvhich use part of the structure (and
the potential “comparative advantage” of the teryi} for introducing new social practices or

new artefacts.

To establish better predictions of the territorc@pacity to evolve and capture
innovation, we need better knowledge of the hetéreal structures. Which methods and
instruments can be used for describing and comgpdraterarchical organisations, including
the number of levels, their degree of flexibility embeddedness, and their functional
articulation?

To be able to predict the capability of adaptatma innovation of a territorial entity,
we need an analysis and classification of the hestb trajectories of territorial entities,
including their sensitivity to internal organizaial features and to external perturbations.
This means large explorations (data mining and ehynanodeling) of the evolutions of
territorial entities in socio-economic and geogiaphcontext.
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2.7. Innovation, learning and co-evolution

Reporter: Denise Pumain (Université Paris 1)

Contributors: David Chavalarias (Institut des Systémes Compledes Paris lle-de-
France/CNRS), Nadine Peyrieras (Institut de Newlogie CNRS), Denise Pumain
(Université Paris 1).

Keywords. innovation, emergence, bifurcation, co-evoluti@arhing, acceptance, society of
information.

Introduction

Novelty in complex systems appears through a wamétprocesses including the
emergence of new entities and new categories, théification of interaction processes,
changes of their temporal or spatial scales, oir tthgnamical transformation. Within the
perspective of complex systems science, the maastoun is whether the modes of change
are comparable when moving from natural or artfisystems towards social systems. A first
challenge is to identify which dynamic conditions &avourable to innovation. Is innovation
always associated with jumps, ruptures or bifucredj or can it proceed from more regular
trends? Which processes explain the frequent oasernvof innovation cycles? A second
challenge is to determine whether there is an aca@bn of innovation in human society
through time, by identifying relevant measures @€istal changes. A third challenge is to
understand how intention and reflection frame iratmn in social systems and how the
feedback effect of learning affects individual aadlective cognition over historical time.

Main Challenges
1. Understanding dynamic conditions of innovation
2. Modeling innovations and their rhythms
3. Understanding the relation between cognition andwation

2.7. 1. Understanding the dynamic conditions of innovation

Can innovation only be analysed-post or can it be predicted, and if so, from which
indicators and explanatory variables? Are the stgasannounce coming change evident in a
specific part of the system’s dynamics, through adneplification of fluctuations around a
trajectory, intensification of pre-existing process or the transition between quantitative
toward qualitative variations? How does innovatimtome accepted, either by introducing
itself into existing structures or replacing theor, by inducing modifications of these
structures? Which relationships are establishedwdst new artefacts and their
functionalities, and the new practices based arcimeit use? How can we explain how
groups of many innovations lead to the observatidarge cycles in social evolution?
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2.7.2. Modeling innovations and their rhythms

Certain analysts suggest that there is an acceleraf the production frequency of
innovations, especially through the technical ratiohs and the evolution towards a society
of information. Is this reality or illusion? Answeg that question requires a rigorous
definition of innovation and of information and e&ul determination of the time intervals that
measure its frequency. How can we build referemned that are relevant for characterizing
the rhythms of emergence, succession and co-presgnonovations? In other words, is the
regular hour time meaningful or should one imagitieer measures of societal time?

2.7.3. Understanding the relation between cognition and innovation

Societies also build and assimilate innovationsceamng the artefacts they produce
in their own practices and institutions. Is it pbss to understand the social dynamics of
innovation without introducing the individual andllective intentionality and reflexivity? Is
social innovation in cooperation or conflict witholmgical evolution? Does the fact that
innovation is targeted, and that the processesanhing and acceptance are conveyed through
legal, economic or cultural regulations, introdutiferent characteristics for innovation in
human societies? Within these processes, is itilgest identify at meso-levels social
milieux or networks or geographical spaces thatlditnse more favourable to innovation, or
loaded with a specific innovative capacity? Whag #ne expressions of the interactions
between innovation and individual cognition? Caa #locial control on innovation reach as
far as the biological transformations?
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2.8. Territorial intelligence and sustainable development

Reporter: Denise Pumain (Université Paris 1)

Contributors: Pierre Auger (ISC-IRD-Geodes), Olivier Barreté@emagref), Jean-Bernard
Baillon (Université Paris 1), Rémy Bouche (INRA)jidae Bourcier (CNRS), Paul Bourgine
(Ecole Polytechnique), Elisabeth Dubois-Violette NKS), Jean-Pierre Gaudin (IEP),
Elisabeth Giaccobino (CNRS ), Bernard Hubert (INR2¢an-Pierre Leca (Université Paris
1), Jean-Pierre Muller (CIRAD), loan Negrutiu (ENgon), Denise Pumain (Université Paris
1).

Keywords. geographical space, territorial configuration, haad urban regions, networks,
systems of cities, multi-level and multi-actor gowance, resources, regulation, sustainable
development, negotiation, geographical informatisystems, cellular automata, spatial
simulation, multi-agents systems.

Introduction

A physical territory is a system that naturallyeigtates a variety of processes usually
analysed by a diversity of disciplines (econommsgiology, and so on). These processes
require natural and social resources and includivigtual and collective actions, which
together act in building the territory. Householfisms or government bodies take both
planned and unplanned actions, as well as reitérptactices and strategic anticipations.
Physical infrastructures as well as immaterial ldagting socio-spatial configurations
constrain these actions and also shape the tgrrébrseveral scales in space and time.
Penetrating this complexity requires simulation eled- for understanding the relationship
between processes and structures, for evaluatidgpagparing individual and collective
actions, or for measuring their impact on the \igbof spatial structures. Such models are
important tools for intelligent decision-making amday then contribute to change the
evolution of territories.

Main Challenges

1. Understanding territorial differentiation.

2. Towards a reflexive territorial governance
3. Viability and observation of territories

2.8.1. Understanding territorial differentiation

Territories are reorganized at different scalesmfrlocal to global, through the
expansion of material and immaterial networks ahd diversification of levels where
decisions take place. “Network territories” are apdorming through telecommunications-
based links, ignoring the need for physical prokymat the level of individuals and of global
firms. At the same time, contiguous territories peatially intersecting, for instance when
their future is governed by several decision centége the classical territorial models still
valid for representing geographical differenceswitan they be replaced?
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The evolution of territories is usually describedterms of geo-history, territorial
viability, or adaptation and innovation capacitlyymust be related to processes such as the
development of institutions, technological innowas, transformations of social practices and
representations. Within this context, modes ofutatton and concentration of information
are essential. Very often, networks conveying irtgrdrinformation are not observable, and
have to be reconstructed through simulation modEte challenge is to couple dynamic
models representing spatial interactions at a tyaoé scales and geographical information
systems which can integrate and visualize the éacabformation and the evolution of
networks and territories.

2.8.2. Towards a reflexive territorial governance

Territorial governance no longer takes place thhosgnple hierarchical top-down
control, but a multi-level process involving mamgtas. Intermediate control structures are
emerging between territorial scales. New model¢egitimating power are being invented
between representative and participative demoaaadyinclusive governance. Moreover, the
growing interest for sustainability invites us &risusly take note of the natural dynamics that
operate at different scales of time and space #s we

The building of well-informed governance relies the invention of new decision
models which consider processes and institutiors®figurations of competition and
cooperation, and also symbolic and practical irtévas. Natural and social dynamics have to
be coupled in identifying organization levels, ssalof time and relevant territorial
subdivisions for a reflexive control. A further fitulty is to include the diversity of the
strategies of the actors in such models. Genesalaking, the question is to identify which
structures are emerging at the meso level and derstand what are the linkages between
micro, macro and meso levels.

2.8.3. Viability and observation of territories

The retrospective and prospective analysis ofttereis is essential for improving
knowledge about the long-term sustainability of graphical entities in their social,
economic, ecological and ethical dimensions. Qasestiof measurement are fundamental.
Choosing indicators, their weighting, defining netnidentifying objectives and stakes are
specific problems for territories that are both pbementary and competitive. More reliable
spatio-temporal databases are needed for meaghengvolutions and comparing territorial
dynamics.

A major issue is to adapt sources of informationiclwhwere established for
administrative or political units, at a given perim time, for their future use in evaluating
territorial entities (cities, regions, networks) ialh have their own dynamics. The problem is
crucial for long-term studies of the resilience andnerability of urban systems, or for a
comparative evaluation of agenda 21 programs (wlzcimbine societal, economic and
ecological objectives).
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2.9. Ubiquitous computing
Contributors: Marc Schoenauer (INRIA)

Keywords : Peer to peer networks (P2P) , ad hoc netwothservation of multiscale spatio-
temporal phenomena (trophic networks, agricultmneteorology, ...), epidemic algorithms
computational models and information theory , gpatiomputing, self-aware systems ,
common sens, privacy.

Introduction

Today's technology makes it possible and even sacgs$o radically change the way
we gather and process information, from the madniglitapproach to the networked
collaboration of a huge number of possibly hetenegeis comping units. This new approach
should be based on distributed processing andg&pead will allow us to add intelligence to
the many different artefacts which are increasingigortant in our lives, and to compensate
the foreseeable limits of classical Computer Sa@gead of the Moore era).

This long term objective requires :
« solving issues related to physical layout and comiations (distributed routing and
control)
« setting up self-regulating and self-managing preess
+ designing new computing models
« specifying adaptive programming environments (usftaghine Learning, retro-action
and common sense).

It seems clear that we have today reached the dtmdioal limits of Von Neumann's
sequential computational model. Hence new paradigmsnecessary to meet the ever-
growing demand for computational power of our madsociety. The heart of these new
paradigms is the distribution of computing tasksdaentralized architectures (e.g. multi-
core processors and computer grids). The complexisyich systems is the price which must
be paid to address the scaling and robustnesssisgulecentralized computing. Furthermore,
it is now technologically possible to flood the @aomment with sensors and computing units
wherever they are needed. However, an efficientafiseidely distributed units can only be
achieved through networking — and physical constsalimit the communication range of
each unit to a few of its neighbours (ad hoc nekajprAt another scale, the concept of P2P
networks also implies a limited visibility of thehwle network. In both cases (ad hoc and P2P
networks), the issue is to make an optimal usé@fcomplete data which is available for the
whole network. The challenges in this framework tegeted toward new computational
systems, but will also address some issues rarsasgdial or environmental networks, also
treated in other pages of this road-map.
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Main Challenges

1. Local design for global properties (routing, cohtomnfidentiality)

2. Autonomic Computing (robustness, redundancy, faldgtrance)

3. New computational models: distributing processing storage, fusion of spatial,
temporal and/or multi-modal data, abstraction emecg

4. New programming paradigms: creation and groundfrgymbols (including
proof and validation)

2.9.1. Local design for global properties

Routing, control and privacy

In order to better design and maintain large netgjowe need to understand how
global behaviours can emerge even though each etemméy has a very limited vision of the
whole system, and makes decisions based on lot@imation. A base model is that of
epidemic algorithms, in which each element exchang®rmation with its neighbours only.
The important issues are the type of informatiomdpexchanged (which should take into
account privacy constraints) and the selection afesponding neighbours. Both choices
influence the global behaviour of the system.

Methods: Information theory; dynamical systems; statigtighysics; epidemic algorithms;
bio-inspired algorithms

2.9.2. Autonomic Computing

Robustness, redundancy, fault tolerance

The large-scale deployment of computational systentisnot be possible without
making those systems autonomous and, thereby, emgldtvem with properties of living
systems such as natural robustness, reliabilisjlieace and homeostasis. However, the size
and heterogeneity of such systems makes it diffictumlcome up with analytical models;
moreover, the global behaviour of the system alspedds on the dynamical and adaptive
behaviour of the whole set of users.

Methods. Bio-inspired systems, self-aware systems.
2.9.3. New computing paradigms

Distributed processing and storage, fusion of spatiemporal and/or multi-modal
data, abstraction emergence

The networking of a large number of possibly heger®ous computational units
(grids, P2P, n-core processors) requires a hugeutational power. However, in order to
efficiently use such power, we need new computingagigms that take into account the
distribution of information processing on weak twvs units, and the low reliability of those
units and of the communication channels. Similatbta distribution (sensor networks, RFID,
P2P) raises specific challenges such as integrdtision, spatio-temporal reconstruction or
validation.

Methods: Neuro-mimetic algorithms, belief propagation.
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2.9.4. Specification of adaptive programming environments

Machine learning, retro-action and common sense

Programming ambient intelligence systédwmmotic, aging, fitness) must include the
user in the loop. The specification of the expeaiser behaviour requires a transparent link
between the low-level data that are available deduser's natural concepts (e.g. symbol
grounding). On the other hand, the research agensa start by studying actual habits; such
co-evolution of the user and the system leads boithgomplex systems.

Methods: Brain Computer Interface, programming by demaigin, statistical learning.
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2.10. Geosciences and the environment
Reporter: Michael Ghil (ENS Paris)

Contributors: Pierre Baudot (Inaf CNRS), Francois Daviaud (CEB&rengere Dubrulle
(CEA), Patrick Flandrin (CNRS ENS Lyon), Cedric @Gharel (INRA), Gabriel Lang (Agro
Paris Tech), Francesco d'Ovidio (ENS), Daniel Scker(Méteo France), Eric Simonet
(CNRS).

Keywords: Climate change, predictability and uncertaintiespsystems and landscapes,
multiple scales and heterogeneity, climate andniopetworks, emergent diseases, transport
and mixing, climate -weather interactions, stodcast. deterministic modeling.

Introduction

The physical, chemical and biological environmefthamans — from the local,
community level to the global, planetary one — espnts a rapidly increasing concern of the
post-industrial era. Its study involves all the sygiems of the Earth system — the atmosphere,
oceans, hydro- and cryosphere, as well as the &alith’s upper crust — along with their
interactions with the biosphere and with humanviams. We are therefore dealing with a
highly complex, heterogeneous and multiscale systeand with an exceedingly
interdisciplinary set of approaches to it. The @pis and tools of complex-system theory
seem particularly useful in attacking three majuaillenges. Firstly, the range of uncertainties
still prevailing in future climate change project®ohas until now been attributed largely to
difficulties in parameterising subgrid-scale preessin general circulation models (GCMs)
and in tuning semi-empirical parameters. Recertistualso point to fundamental difficulties
associated with the structural instability of climanodels and suggest applying the theory of
random dynamical systems to help reduce the unctes Secondly, the Earth system varies
at all space and time scales and is thus out of @obably far from thermodynamic
equilibrium. The methods of statistical physics #nerefore of interest in modeling the
system’s near-equilibrium behaviour and then extepdhe results farther away from
equilibrium. Finally, much of the interest in thagsea arises from concern about the socio-
economic impact of extreme events. The study af #tatistics and dynamics can lead to a
deeper understanding and more reliable predictidhese events.

The physical, chemical and biological environmefthamans — from the local,
community level to the global, planetary one — espnts a rapidly increasing concern of the
post-industrial era. The system’s complexity idaiety comparable to that of systems studied
in the life or cognitive sciences. It therefore egrs highly appropriate to include this major
area of applications of complex-system theory theoconcerns of this road map.

The Earth system involves several subsystems -atthesphere, oceans, hydro- and
cryosphere, as well as the solid Earth’'s uppertcrugach of which in turn is highly
heterogeneous and variable on all space and tialessdVioreover, this variability is affected
by and in turn affects the ecosystems hosted bi sabsystem, as well as humans, their
economy, society and politics. We are thus dealiitly a highly complex, heterogeneous and
multiscale system, and so the scientific discigimeeded to better understand, monitor,
predict and manage this system are diverse andmouselhey include various subsets of the
physical and life sciences, mathematics and infaosiaand of course the full set of the geo-
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and environmental sciences, from geology, geophyait geochemistry to the atmospheric
and oceanic sciences, hydrology, glaciology andsstnce.

Among the key interdisciplinary issues that arise¢his major area are future climate
change, change in the distribution of and intecacbetween species given past, present and
future climate change, the way that the biogeocbeimcycles of trace chemicals and
nutrients interact with other changes in the systama the connection between health issues
and environmental change. On the methodologica, sithjor objectives that would help to
solve these issues include better prediction addaten of uncertainties, better description
and modeling of the transport and mixing of planefaids, understanding the net effect of
weather on climate and the changes in weatherimatel changes. Understanding the best
uses of stochastic, deterministic or combined mnodeh this highly complex setting is also
essential.

To deal at the same time with some of these kexessand attempt to achieve some of
the associated major objectives, we propose tosfocuthe following three main challenges:
() to understand the reasons for and reduce tleertainties in future climate change
projections; (ii) to study the out-of-equilibriuntasistical physics of the Earth system, across
all scales; and (iii) to investigate the statisacgl dynamics of extreme events.

The range of uncertainties in future climate chamgejections was originally
determined in 1979 as an equilibrium response abajl temperatures of 1.5-4.5 K for a
doubling of atmospheric CO2 concentration. AftarrftPCC assessment reports, it is still of
a few degrees of end-of-century temperatures fgr given greenhouse gas scenario. This
persistent difficulty in reducing uncertainties hastil recently, been attributed largely to
difficulties in parameterising subgrid-scale pramssin general circulation models (GCMs)
and in tuning their semi-empirical parameters. Bagent studies also point to fundamental
difficulties associated with the structural instipiof climate models and suggest applying
the theory of random dynamical systems to helpgedie uncertainties.

The Earth system varies at all space and time sciitem the microphysics of clouds
to the general circulation of the atmosphere arghos, from micro-organisms to planetary
ecosystems, and from the decadal fluctuations efmhgnetic field to continental drift. The
entire system, as well as each of its subsystesasfarced and dissipative system and is thus
out of thermodynamic equilibrium and probably farag from it. The methods of statistical
physics therefore seem of interest in modelingsysem’s near-equilibrium behaviour and
trying to derive results that might then be extehtte more realistic settings, farther away
from equilibrium.

Finally, much of the interest in the geoscienced #re environment arises from
concern about the socio-economic impact of extrewents. The standard approach to such
events rests on generalized extreme value thedgyAts assumptions, however, are rarely
met in practice. It is therefore necessary to pairsore sophisticated statistical models and to
try to ground them in a better understanding ofdyx@amics that gives rise to extreme events.
Based on better statistical and dynamical modetsskould be able to provide more reliable
predictive schemes for extreme events, and subijeein to extensive testing across
disciplines and data sets.

The geosciences have a long tradition of contniiguto the study of nonlinear and

complex systems. The work of E.N. Lorenz in thdyed960s has provided a major paradigm
of sensitive dependence on initial state. His wamkl that of C. E. Leith have yielded deep
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insights into error propagation across scales dfianoMultiscale phenomena in the solid-
earth and fluid-envelope context have helped refweunderstanding of multi-fractality and
its consequences for prediction across discipliaesn in the social and political sphere. We
hope and trust that the work proposed here wilv@requally inspiring and fruitful for the
theory of complex systems and its applications amynother disciplines.

Main Challenges
1. Understanding and reducing uncertainties.
2. Out-of-equilibrium statistical physics of the Eagystem

2.10.1. Understanding and reducing uncertainties

Charney et al. (Natural Academic Press, 1979) wleeefirst to attempt a consensus
estimate of the equilibrium sensitivity of climatkange in atmospheric CO2 concentrations.
The result was the now famous range of 1.5K to ©6&n increase in global near-surface air
temperatures Ts given a doubling of CO2 concepotatiEarth's climate, however, never was
and probably never will be in equilibrium. In addit to estimates of equilibrium sensitivity,
the four successive reports of the Intergovernmdtdaael on Climate Change (IPCC: 1991,
1996, 2001, 2007) therefore focused on estimatedimfite change over the 21st century,
based on several scenarios of CO2 increase owetithé interval. The general circulation
models’ (GCM) results of temperature increase ¢lvercoming 100 years have stubbornly
resisted any narrowing of the range of estimatét, results for end-of-century temperatures
still ranging over several degrees Celsius, fakedf CO2 increase scenario. This difficulty in
narrowing the range of estimates is clearly coretetd the complexity of the climate system,
the nonlinearity of the processes involved and dhstacles to a faithful representation of
these processes and feedbacks in GCMs.

One obvious source of errors is the difficulty epresenting all the processes that fall
below the spatial and temporal resolution of thelehoThis problem is especially evident for
biochemical processes, where the microphysicalnaistbbiogical dynamics is coupled to the
turbulent dynamics of the ocean and atmosphereerdtlices a spatiotemporal variability at
virtually any scale of observation. One examplphgtoplankton, whose fundamental role in
absorbing CO2 is affected as much by the nutriduéetion due to the large-scale circulation
(basin scale, years), as by the presence of umgdilaments (1-20 km, days), the ecological
interaction with zooplankton (mm/m, hours/days)tha turbulent and biological processes at
the cell scale. The study of such biochemical phema requires the development of novel
theoretical tools that are beyond the capabilityndfvidual disciplines but which, because of
their characteristics, fall naturally into the frawork of complex systems. Such studies
should be able to:

« deal at the same time with the various spatial tmdaporal scales of transport and
tracer dynamics;

+ integrate descriptions of different disciplinestaiily transport and mixing properties
from turbulence theory, and the biological andfemical processes of the advected
tracer;

« provide results in a form that can be compared wibr-expanding observational
datasets;

« and finally, allow to formulate a computationallifieient parameterization scheme
for circulation models.
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A second source of errors lies in the fundameniféitdlty related to the structural
instability of climate models. It is well-known thahe space of all deterministic,
differentiable dynamical systems (DDS) has a hightyicate structure: the structural stable
systems are unfortunately not typical of all defeistic dynamics, as originally hoped
(Smale, 1967). Indeed, what is modeled by DDS doésippear to be typically robust from a
qualitative, topological point of view, even for alinsystems like the Lorenz (1963) model.
This disappointing fact has led mathematicians tasg the problem of robustness and
genericity with the help of new stochastic appresc(Palis, 2005). On the other hand, work
on developing and using GCMs over several deca@dssamply demonstrated that any
addition or change in a model's "parametrisationst. in the representation of subgrid-scale
processes in terms of the model's explicit, larggdes variables - may result in noticeable
changes in the model solution's behaviour.

The range of uncertainties issue, far from beimgeae practical difficulty in "tuning"
several model parameters, could be related tortherént structural instability of climate
models. A possible way of reducing this structuiradtability is the use of stochastic
parametrizations with the aim of smoothing the ltesyidynamics through ensemble average.
A key question is then to determine whether ad-$tochastic parametrisations add some
form of robustness to known deterministic climatedels, and how they can reduce the range
of uncertainties in future climate projections. IPne@ary results indicate that noise has
stabilizing effects that need to be investigatewss a hierarchy of climate models from the
simple to the most complex GCMs. Such an idea cbeldested using theoretical concepts
and numerical tools from the theory of random dyitahsystems (RDS; L. Arnold, 1998). In
this purely geometrical theory, noise is parametfiso as to treat stochastic processes as
genuine flows living in an extended phase spacteda "probability bundle". Random
invariant sets such as random attractors can tkeshebned and rigorously compared, using
the RDS concept of stochastic equivalence, theesiabling us to consider the structural
stochastic stability of these models.

2.10.2. Out-of-equilibrium statistical physics of the Earth system

The Earth and its various components (hydrosphetejosphere, biosphere,
lithosphere) are typical out-of-equilibrium systerdse to the intrinsic dissipative nature of
their processes, they are bound, without forciagjdcay to rest. However, in the presence of
permanent forcing, a steady state regime can lablestted, in which forcing and dissipation
equilibrate on average, allowing the maintenancenaf-trivial steady states, with large
fluctuations covering a wide range of scales. Tamlmer of degrees of freedom involved in
the corresponding dynamics is so large that assitatl mechanics approach - allowing the
emergence of global relevant quantities to desdtibesystems - would be welcome. Such a
simplification would be especially welcome in theaeling of the fluid envelopes, where the
capacity of present computers prohibits the fudlscnumerical simulation of the (Navier-
Stokes) equations describing them. Similar probleans ubiquitous in biology and
environment, when the equations are known.

Another interesting outcome of a statistical appho&ould be to derive an equivalent
of the Fluctuation-Dissipation Theorem (FDT), tofeofa direct relation between the
fluctuations and the response of the system tamiteBimal external forcing. Applied to the
Earth system, such an approach could provide ndunass of the impact of climate
perturbation through greenhouse gas emissions.
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Various difficulties are associated with the defon of out-of-equilibrium statistical
mechanics in the earth system, including:

+ the problem of the definition of an entropy (po$sin infinite hierarchy of them) in
heterogeneous systems;

+ the identification of the constraints;

« the problem of the non-extensivity of the statativariables, due to correlations
between the different components of the systems{plyssolved by introducing
effective (fractional) dimensions).

On the physical side, several advances have bede neaently in the description of
turbulence, using tools borrowed from statisticagéctmanics for flows with symmetries.
Variational principles of entropy production arealvorth considering. Other advances have
been made with regard to the equivalent of the HDI physical systems far from
equilibrium. Experimental tests in a glassy magnsyistem have evidenced violation of the
FDT through non-linearities in the relation betwefuctuation and response. General
identities between fluctuation and dissipation hbeen theoretically derived only for time-
symmetric systems. They have been experimentadtedesuccessfully in dissipative (non
time-symmetric) systems like electrical circuitstorbulent flow. It would be interesting to
extend these results to the Earth system.
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A “complex system” is in general any system com-
prised of a great number of heterogeneous entities,
among which local interactions create multiple levels
of collective structure and organization. Examples
include natural systems ranging from bio-molecules
and living cells to human social systems and the
ecosphere, as well as sophisticated artificial systems

such as the Internet, power grid or any large-scale
distributed software system. A unique feature of
complex systems, generally overlooked by traditional
science, is the emergence of non-trivial superstruc-
tures which often dominate the system’s behaviour
and cannot be easily traced back to the properties of
the constituent entities. Not only do higher emergent
features of complex systems arise from lower-level
interactions, but the global patterns that they create

affect in turn these lower levels — a feedback loop
sometimes called immergence. In many cases,
complex systems possess striking properties of
robustness against various large-scale and poten-
tially disruptive perturbations. They have an inherent
capacity to adapt and maintain their stability.

Because complex systems require analysis at many
different spatial and temporal scales, scientists face
radically new challenges when trying to observe
complex systems, in learning how to describe them
effectively, and in developing original theories of
their behaviour and control.

The aim of this roadmap is to identify a set of wide
thematic domains for complex systems research over
the next five years. Each domain is organized around
a specific question or topic and proposes a relevant
set of “grand challenges”, i.e., clearly identifiable
problems whose solution would stimulate significant
progress in both theoretical methods and experi-
mental strategies.
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