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Abstract
A new method for identifying toroidal mode numbers in Mirnov data from
toroidal plasmas has been found, and benchmarked with simulated and real
data from the JET tokamak. Embodied in the SparSpec code, and originally
developed for the analysis of unevenly time-sampled astronomical data, this
new method fits signals which are unevenly sampled in the toroidal coordinate
to a sum of an arbitrarily large number of toroidal modes with integer mode
numbers. The method has proven to be extremely robust, and is especially
useful for resolving the amplitudes and phases of multiple Alfvén eigenmodes
(AEs) which are ringing with the same or nearly the same frequency. The great
efficiency with which the SparSpec method detects multiple modes in large
datasets suggests that it may be used in real-time applications such as resistive
wall mode or tearing mode control, among others. Examples involving unstable
AEs as well as stable AEs, (excited by an array of external antennas) in the JET
tokamak are used to illustrate the efficacy of the method. Some additional
general considerations regarding optimized spatial sampling strategies are also
briefly addressed.

(Some figures in this article are in colour only in the electronic version)

1. Background

Analysis of magnetic fluctuations external to toroidal plasmas is important for understanding
the magneto-hydrodynamic (MHD) properties of the plasma, among other things. These
properties affect nearly all aspects of behavior of magnetic confinement, and thus are of interest
in topics ranging from gross global plasma stability, control and disruption avoidance to the

5 See annex 1 of M L Watkins 2006 21st IAEA Fusion Energy Conf. (Chengdu, China).
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more subtle areas such as are involved with passive and active MHD spectroscopy, to name a
few examples. Mode number analysis is generally accomplished by interpreting signals from a
finite number of external Mirnov coils, which typically are unevenly spaced in the toroidal and
poloidal coordinates. The toroidal mode number, n, is usually easily determined in tokamaks
because different modes generally oscillate at well separated and distinct frequencies, because
of toroidal symmetry, and because n is often very low (n � 2). On occasion, however, multiple
modes of various origins may overlap in frequency, and then the signals in the individual sensors
are the result of a superposition of these modes. In that case the task of spatial decomposition
becomes a difficult problem.

The variety of methods in common use to determine the spatial structure of MHD
phenomena in toroidal plasmas from external magnetic measurements is quite small. In
the standard tokamak coordinate system, magnetic perturbations at the plasma edge are
represented well by functions involving toroidal and poloidal harmonics, written as ψm,n =
ei(nφ)

∑
m ei(mθ), where each mode has one single toroidal mode number, but will include

several poloidal Fourier harmonics due to toroidicity and other geometric effects. As a result,
the poloidal quantum number is not well defined, even in very large aspect ratio plasmas with
cylindrical cross-section. In the poloidal dimension, uniform spacing between sensors does
not result in any gain in terms of ease of analysis, because the distance between sensor and
plasma surface is invariably a function of poloidal angle θ , and because a Shafranov shift
and plasma shaping effects will result in effective spacing periods �θ that are anything but
constant. Additionally, because poloidal mode structure can never be represented by a single
Fourier term, a technique such as singular value decomposition (SVD) is appropriate, since it
makes no assumptions about the nature of the spatial basis functions [1].

For the toroidal aspect of the analysis, however, the eigenfunctions describing
perturbations are best represented by simple sinusoids. When sensors are evenly spaced in the
toroidal dimension, a simple discrete Fourier transform will reveal the mode amplitudes for
each n separately [2], up to the Nyquist mode number given by nmax = π/�φ (here �φ is the
angle between adjacent probes). Unfortunately, evenly spaced sensors are often not available
due to engineering constraints. Furthermore, it can be shown that even spacing does not
represent an optimum arrangement for magnetic pickup coils, because of the aforementioned
Nyquist limitations and aliasing effects [3].

2. Classical methods and SparSpec

A standard approach for determining the n-number of an MHD mode is to fit the phases of
data from two or more sensors separated by their toroidal angle to a straight line. The slope
of the line then represents the n-number. When there is only one dominant mode with one
single n-number, phase fitting is relatively successful and simple (i.e. fast), but when there are
multiple modes with multiple n-numbers some other means to resolve the mode numbers must
be used.

Other tools employed to estimate sinusoidal contributions in sets of unevenly sampled data
have traditionally involved the so-called Lomb periodogram [4], and this method was recently
applied to Alfvén eigenmode (AE) identification in the Wendelstein 7-AS stellarator [5], in
the single mode case. The maximum of the periodogram corresponds to a least squares (LS)
fitting of the data to a single sinusoid, so it is statistically coherent and practically works well
if there is only one dominant mode. In the case where multiple modes are present in the data,
selecting the most important maxima of the periodogram is no longer statistically coherent
in terms of LS fitting. Indeed, the periodogram is perturbed by the spectral window (i.e. the
Fourier transform of the sensor positions) and the Lomb periodogram may have many maxima
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which do not correspond to actual modes. This is illustrated in the example of figure 1, where
it can be seen that, even when the number of actual modes (M) is known (M = 4 in this
example), selecting the modes corresponding to the M higher values of the periodogram leads
to erroneous mode detection. Such aliases have already been noticed in the case of a single
mode in [5], but they generally do not lead to wrong detection in this case. Moreover, it is
quite difficult to select a value for M from such a representation if it is not known a priori.

An optimal LS fitting of multiple sinusoids requires a combinatorial exploration of all
possible modes. A recent publication by Hole and Appel [6] describes such an approach which
uses SVD methods to fit magnetic data to a predetermined number (M) of Fourier modes, but
it was only tested in [6] in the case of a single mode (note that this method is equivalent to
the periodogram approach in this case). The principle of such a method is simple: for every
combination of M modes it estimates the mode amplitudes by LS fitting (and the use of an SVD
technique is a way to compute these amplitudes). The method then selects the combination of
modes and corresponding amplitudes which produced the smallest residual (as defined in [6]).
The drawbacks of this method are twofold: first, for a chosen M , the number of detected
modes will always be M , even if there is only one mode in the data. If the actual number
of modes is lower than M , the additional modes will hopefully have a low amplitude, and a
posterior thresholding step is necessary to detect the correct number of modes present in the
data. However, if the chosen M is smaller than the number of modes in the data, the method
will fail. Second, for M > 1, it rapidly becomes computationally expensive to run through all
possible combinations of M modes, the number of which is given by the binomial coefficient,
(2nmax + 1)!/M!(2nmax + 1 − M)! (here nmax is the maximum allowed mode number, and we
must consider negative mode numbers as well). For example, for the maximum n-number
limited to n � 20, there are, respectively, 820, 10 660, 101 270 and 749 398 combinations, for
M = 2, 3, 4 and 5. For nmax = 30 and M = 5, there are 5949 147 combinations! Although the
computation of the Moore–Penrose pseudo-inverse matrices can be done just once and these
results stored, the LS solution must be computed for each combination.

The problem of finding periodic waveforms in unevenly sampled data is ubiquitous in the
field of astronomy, where much work has been done. It is easily seen that temporal frequencies
in astronomical data can correspond to spatial toroidal mode numbers in tokamaks, and that
unevenly sampled data in time is the analog of data from unevenly distributed Mirnov sensors in
the toroidal coordinate. However, in astronomy, the frequencies sought are obviously allowed
to take on any value, while periodic boundaries in toroids ensure that only modes with integer
n can exist. Since almost all astronomical data is unevenly sampled (due to weather conditions
and the earth rotation), considerable effort has gone into the problem of improving upon the
limitations of the Lomb periodogram. For example, the CLEAN [7] and CLEANEST [8]
algorithms attempt to remove some of the aliases arising from uneven sampling, to mention
only two.

Recently, a new method for fitting sinusoids to irregularly sampled data was proposed [9],
based on the principle of sparse representation of signals. It is implemented in the SparSpec
computer code (freely available at: http://www.ast.obs-mip.fr/Softwares). Applied to the
problem of toroidal mode number analysis, the underlying idea is to model the data as a large
number (possibly larger than the data size) of pure modes n = −K . . . K (with K = nmax).
Among the many representations fitting the data, we seek the one with the lowest non-zero
amplitude, i.e. a sparse solution. Strictly speaking, the sparsest solution minimizes the LS
criterion penalized with the L0 norm, i.e. the number of non-zero components of the solution.
However, minimizing such criterion requires a combinatorial exploration (as in the case of the
SVD method but for all M or less than M combination of modes). Such exploration is avoided
by considering an L1 norm instead of a L0 norm penalization. Such a norm consists of the
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sum of the absolute values of the mode amplitudes in the solution. Many theoretical works
have been done to determine conditions of equivalence of both settings, one example is found
in [10]. Thus, the solution is computed as the minimizer of the penalized LS criterion:

J (x) = 1

2
‖y − Wx‖2 +

λ

λMax

K∑

k=−K

|xk|

with

λMax = Max|W · y|.
Here y = {y1, y2, . . . , yP }T is the vector of data taken at position φp, W is a P × (2K + 1)

matrix with elements Wp,k = exp(i2πφpnk) and x = {x−k, . . . , xk}T is the vector of complex
amplitudes associated with mode numbers nk , k = −K . . . K . The hyper-parameter λ is
discussed further below.

This criterion is convex, with no local minima, but as it is not ‘strictly convex’, uniqueness
of the global minimizer is not guaranteed. However, it is shown in [11] that the global minimizer
is likely to be unique if it has less than N/2 non-zero components, where N is the data size.
A computationally efficient and convergent optimization strategy has been proposed in [9],
based on a block coordinate descent algorithm.

The hyper-parameter λ is unknown and must be fixed to obtain a satisfactory sparse
solution. An intuitive description of λ is that, since it increases the penalty for solutions which
invoke a large number of modes, it influences the resolution of SparSpec: smaller values of
λ will call upon a larger number of modes to fit the data, while larger values have the effect
of making the method more immune to the effects of noise. From a theoretical point of view,
lambda can be interpreted as the maximum peak amplitude allowed in the periodogram of
the residual [9], so that knowledge of the noise level (noise variance) may help to select this
parameter. An ‘L-curve’ technique described in [9] can also be used to choose the optimum
value of λ for a given data set. However, in our work, we selected this parameter in a more
empirical way: the general approach was to use λ values as small as possible while still avoiding
erratic or unlikely results in the output. The precise optimum value will depend on the data
set and the level of noise, as well as the number of sensors contributing to the input and the
number of modes contained in the data.

3. Benchmarking the SparSpec method for toroidal mode number analysis on JET

A batch processing code was developed for tokamak data in the following ways: first, the
SparSpec code was adapted to take complex data as input. Then, because of the penalization
term in J (x), the minimizing amplitudes are initially underestimated; the original version of
SparSpec involves a re-estimation of the detected frequencies using barycentric arguments,
which improves the precision when these frequencies can be off the discrete grid, which is the
case in astronomy. But in our case, we know that the frequencies are spatial mode numbers,
in other words they are integer n, so a simple LS fitting routine was written to re-estimate
amplitudes of the detected modes. The code was benchmarked with Monte Carlo simulations
using artificial, noisy data. It was found to be very robust, and very fast (2 ms for one time
point with 11 complex valued signals on a 2.2 GHz processor). To compare this result with the
SVD-based technique described in [6], on a similar processor and for M = 5 and nmax = 20,
it takes about 1 h to compute all required pseudo-inverse matrices, and 1 min to compute every
LS solution.

On the JET experiment, there are eleven Mirnov coils at one common poloidal angle,
unevenly spaced toroidally. The SparSpec method was applied to simulated data which
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Figure 1. SparSpec calculation using simulated data: top: data (points) and model fit (lines).
Bottom: input mode amplitudes versus estimation from SparSpec, along with Lomb periodogram.

mimicked data from JET, using identical sensor coordinates, with varying levels of noise.
An example calculation is shown in figure 1, where data were constructed from four random
modes (random n, amplitudes, phases), and with 5% random Gaussian noise added to each
sensor. (A noise figure of 10% represents the addition of a random number generated with a
mean of 0, standard deviation 1, divided by 10, on each of the eleven sensors.) The SparSpec
mode number grid was restricted to −40 < n < 40. SparSpec correctly identifies the dominant
four modes; the small-amplitude solution is due to the added noise. Throughout this paper,
the high levels of noise (in both simulated and real data) and the low number of data points
(11 sensors) limit the dynamic range of the analysis, and mode amplitudes are presented directly
(rather than the logarithm of the amplitudes or power in the modes).

A systematic scan was then performed to benchmark the ability for SparSpec to resolve
multiple modes in the Mirnov coil data. In the code, several parameters are set which
facilitate better convergence and accuracy of the analysis, depending on the size of the input
data array, the number of modes present in the data, the tolerance for precision, etc. The
aim of the modeling was to find that set of parameters that would allow for an efficient
and automated procedure for toroidal mode number separation. In particular, the results of
SparSpec calculations are very sensitive to the hyper-parameter λ. The size of the set mode
number grid (range of n to consider) can also play a role in the accuracy of the calculations,
and speed. Several levels of random noise were introduced to determine if and under what
conditions SparSpec can be trusted. Some of the results of these simulations are shown in
the following figures. In general, SparSpec produces very good results when the number of
modes in the data is less than five, and when noise levels are reasonable (less than 10% of
signal amplitudes). These results are consistent with the theoretical results which guarantee
uniqueness of the criterion minimizer only if it has less than five non-zero components for
N = 11 data [11].

First, in order to qualitatively characterize the ability of SparSpec to determine toroidal
mode amplitudes and phases, a set of artificial data was constructed which consisted of a ‘time’
series which included a superposition of 21 toroidal modes (−10 < n < 10), with varying
amplitude (An) and phases (θ ). Thus, at each time point the data in the sensor located at φk

consisted of: datak = ∑
n Anei(n·φk+θ).
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Figure 2. Amplitude and phase of input data for simulated time series. Different colors correspond
to different n-numbers, consecutively increasing starting with n = −10. The data shown here feeds
into SparSpec an average of six modes to identify at any given time.

The data sets were constructed such that each mode had maximum amplitude at a unique
time, within a Gaussian envelope. Each mode was designed to experience a full range of
phases (0–2π radians) within the time in which it had significant amplitude. Many different
data sets were constructed, with different widths of Gaussian mode envelopes, so that for
different sets the amount of mode overlap was varied. The more mode overlap, the greater
the challenge to SparSpec, since it is expected to identify a larger number of simultaneous
modes. The generated data contained no noise, i.e. the input to SparSpec represented ideal
measurements of amplitude and phase at each sensor (figure 2). One such data set is illustrated
in figure 3. SparSpec evaluated each set using three different values of the hyper-parameter, λ.
Other parameters in SparSpec were held fixed, for example the mode number grid in which
SparSpec searched was limited to −30 < n < 30.

The outcome of these calculations illustrates several trends as seen in figure 3: when
there is only one mode, nearly any λ value is adequate and SparSpec correctly identifies
the amplitude and phase. (For real data with noise, the λ parameter should be set higher in
order to preferentially suppress solutions containing multiple modes.) When there are several
simultaneous modes, for λ values between 0.2 and 0.9, SparSpec correctly identifies the modes
with the strongest amplitudes. This means that SparSpec is fairly robust, errors are expressed
in the form of missing information about lower amplitude modes, and SparSpec does not
indicate toroidal mode numbers which are not present in the input data. This trend however
has limits, and with the addition of noise is only held true by higher values of the λ parameter.
Fortunately, the general trend for higher λs is for SparSpec to ignore lower amplitude modes.

Next, in an attempt to quantify the accuracy of the SparSpec calculations, Monte Carlo
type simulations were carried out, using the following scheme: randomly generated data sets
with different mode numbers, phases, and relative amplitudes were input into SparSpec. Noise
was included in the input data by generating Gaussian noise on each sensor. In each case, the
input mode amplitudes were normalized (

∑ |Aq | = 1, Aq = amplitude in qth mode), and the
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Figure 3. SparSpec estimations for noiseless input data, −10 < n < 10, for a few λ parameters,
and three levels of ‘difficulty’(number of simultaneous modes in the data). Good performance is
characterized by good reproduction of top row of plots, which depict the input data.

error in the SparSpec output was evaluated by summing the difference between the input mode
amplitudes and output amplitudes at all mode numbers, i.e.

∑

n

|Ain
n | = 1, err =

nmax∑

−nmax

|Ain
n − Aout

n |.

If err � 0.5, the calculation was considered to be 100% wrong. This is a very conservative
way of estimating errors because an error for one mode number can throw the entire result into
the 100% error bin, even though there may be several modes which SparSpec has identified
correctly. Monte Carlo type simulations then produced results which were histogramed as
shown in figure 4. Evident in the figure is the fact that SparSpec either correctly identifies all
the modes and their amplitudes and phases, with little error, or completely misses the mark.
This can be understood by recognizing that there are several solutions (with vastly different
ns and amplitudes) which come close to reproducing the input data.

1000 calculations were performed for 10 different noise levels, 4 different n-number ranges
and 6 different input data types (from having only one n present to finally six distinct modes).
The result of one subset of the calculations is shown in figure 5. The full set of results is shown
in a set of bar charts in figure 6. The general conclusions are that SparSpec can handle up
to five simultaneous modes when the noise level is effectively 0. In the presence of sensor
noise, SparSpec calculations are mostly correct when there are four or less modes present in
the data even when the mode spectrum contains n � 40; a greater number of modes in the
output should probably not be trusted.

The SparSpec method was also used to look at unstable MHD fluctuations in JET where the
toroidal mode numbers were well determined by a phase-fitting technique. The data consisted
of ‘pure’ Alfvén and neoclassical tearing modes, in the sense that they contained only one
single n-number. These investigations covered the entire available frequency range up to the
sampling Nyquist frequency of the coils (5 kHz < f < 500 kHz), in order to ensure that
small differences in the transfer function of the coil/cable network between individual Mirnov
coils did not lead to any erroneous mode identification with SparSpec. In all cases, SparSpec
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Figure 4. Result of 1000 simulations with three modes included in input, comprised of random ns
(−40 < n < 40), amplitudes, and phases, with 5% noise, fixed λ = 0.5. Errors greater than 0.5
are binned into ‘1’, represented by red bar.

Figure 5. Error statistics for two random modes, −40 < n < 40, versus noise level, fixed
λ/λmax = 0.5. SparSpec correctly separates modes 94% of the time, even if there is 20% noise
present in the data.

correctly indicated the mode number, and also showed that there were no other small-amplitude
mode numbers with other mode numbers in the data. This detailed benchmarking against the
phase-fitting technique revealed a number of advantages of SparSpec over the standard phase-
fitting method, even when the data contained only one mode number.

First, SparSpec produced a result orders of magnitude faster than finding a best fit to the
phases of eight sensors, even when the maximum n-number for SparSpec to consider was set
to n = 30, while the phase-fitting algorithm was restricted to 0 < n < 7. Second, unless the
phase-fitting routine incorporates some method for disregarding bad fits, this method always
produces a result with a definite n-number. But with SparSpec, this is not necessarily the case.
Third, the phase-fitting technique does not yield any amplitude information about any of the
modes in the data. And finally fourth: when two modes with different mode numbers cross in
frequency, phase fitting no longer produces correct results.
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Figure 6. Error results for many noise levels, numbers of modes contained in the data, and
maximum mode number included in the data sets (= max n sought), fixed λ/λmax = 0.5.

4.25 4.3 4.4 4.5
Time (s)

Top Mode Numbers from SparSpec 

1

2

3

4

5

6

7

n
4.25 4.3 4.4 4.5

85

90

95

100

105

110

115

120

125

130

Time (s)

F
re

qu
en

cy
 (

kH
z)

Mode Numbers from Phase Fitting

Figure 7. Toroidal mode spectrum analysis for small frequency and time window in JET shot
#69436 using eight Mirnov coils. Left: result obtained with LS fit of phases to model of single
mode. Right: result obtained with SparSpec.

An example of a SparSpec result versus a phase-fitting result is shown in figure 7, which
depicts a period of reversed-shear Alfvén eigenmode (RSAE) activity in a JET discharge.
Such modes are common in shear-reversed plasmas when the minimum-q reaches an integer
value, characterized by a ‘grand cascade’ of AEs with mode numbers n = 1, 2, 3, . . . RSAEs
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Figure 8. Toroidal mode spectrum analysis for small frequency and time window in JET shot
#69436 using eight Mirnov coils. Left: dominant mode numbers obtained with SparSpec, right:
detailed mode amplitude evolution during this time/frequency window.

are usually observed to chirp up to the TAE gap frequency [12]. These plots were generated
in the following way: a windowed fast-Fourier transform (FFT) was performed on signals
from eight Mirnov coils to produce amplitude and phase in frequency and time space for each
coil. Only amplitudes in the top 5% were retained for the mode analysis, the rest were set to
produce a white space. On the left, the phase-fitting analysis considered only mode numbers
with 0 < n < 7, and took several minutes to complete. The SparSpec figure on the right
shows only the most dominant mode found by SparSpec for each pixel. Mode numbers with
−30 < n < 30 were considered, and the plot was produced within 20 s after the FFTs were
complete. Finally, in each plot only modes with toroidal mode numbers 0 < n < 7 are
displayed. Clearly, the two plots are identical, with the exception that SparSpec has eliminated
some noise, because it found noisy data to be composed of high n-numbered modes (which
are filtered from the plot).

To further illustrate how SparSpec can provide detailed insight into MHD phenomena
using magnetic pick up coil data, a smaller sub-region of the same time and frequency window
is shown in figure 8. On the left, the RSAEs are seen to sweep in frequency and overlap at
some points, depicted in the same manner as in figure 7. On the right are the sum of the
modes found by SparSpec (1 < n < 7) during this time and frequency window, showing the
amplitude evolution of the individual modes. Interestingly, coupling between modes can be
observed, so that near t = 4.33 the n = 2 mode seems to gain energy from the mode with
n = 3. With SparSpec, such observations can be made routinely.

4. Resolving stable AEs on JET

One area in which the detailed mode number identification of MHD fluctuations is desired
is known as MHD spectroscopy [13]. The term refers to a broad topic in which fluctuations
are used to deduce information about bulk plasma parameters, for example some properties
of the q-profile are revealed with the observation of RSAEs. The TAE antenna project on
JET [14, 15] is an example of active MHD spectroscopy, where small magnetic perturbations
are actively produced by external antennas, and the plasma response delivers information about
toroidal (and other kinds) of AEs. The motivation is that multiple AEs with several toroidal
mode numbers are known to be excitable by supra-thermal ion populations, which in some
circumstances can lead to rapid loss of fast particle confinement [16, 17]. This would pose
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problems for a burning plasma scenario, and therefore measuring the damping rates of AEs in
the absence of fast particle drive and in a variety of plasma conditions will aid in understanding
some underlying physics relevant to burning fusion plasmas.

The TAE antennas on JET consist of an array of small coils which can excite medium
and high-n AEs, depending on the polarity of the individual antennas (one amplifier is the
common source). Because of the small spatial extent of the antenna arrays (figure 7, left), the
magnetic perturbations to the plasma surface necessarily are composed of a broad spectrum of
toroidal mode numbers (figure 7, right). Data from Mirnov coils are obtained via synchronous
detection hardware, i.e. a very sharp bandpass filter (±100 Hz) produces the in-phase and
quadrature signal components only at the antenna frequency, and these signals are then used
to facilitate real-time resonance detection and tracking [8]. The damping rate of the detected
resonant mode is determined post-shot by evaluating the poles and residues in the transfer
function between Mirnov signals and antenna currents [14].

On JET, for unstable modes driven by fast ions, multiple AEs with medium toroidal mode
numbers (3 < n < 12) typically oscillate with nearly the same frequency of a few 100 kHz, but
the observed frequencies in the lab frame are separated by a small Doppler shift due to plasma
rotation (since the mode rotates with the plasma fluid, �f = �n × �), typically by a few
kilohertz. This is enough to determine toroidal mode numbers separately at each frequency
using standard techniques. By contrast, for the case of externally excited (stable) AEs, any
modes near resonance with the driving frequency will be excited at that same frequency.

In the presence of only one dominant resonant mode, n-number identification is straight
forwardly accomplished with straight line phase fitting. The resonances of other, less dominant
(more stable or more core-localized) modes with different n-numbers will be missed, however.
In addition, when the phase-fit is very bad or jumps from one n to another with incremental
changes in frequency, it is a strong indication that there are several modes being detected
simultaneously (see figure 10). This latter case can completely prevent n-number identification
by traditional methods such as straight line phase fitting. It is however essential to be able to
resolve individual toroidal modes, to determine their damping rates accurately and compare
these results with theoretical predictions, and it is for this reason that SparSpec was originally
adapted for use with toroidal plasma fluctuations.

An example of a SparSpec application is shown in figure 11 for JET shot #70723, which
depicts SparSpec output for the six most dominant modes in the time interval 6.4 < t < 7 s.
In this plot, there are two types of regions: near t = 6.75 s, region ‘A’, there is clearly one
dominant mode (n = −1), which could have been identified using other methods for n-number
analysis. In the same region, some other modes (with n = −2, −3) are also excited, but at a
much lower level. Another region near the beginning of this time interval, region ‘B’, shows
an example of when the antennas are driving several modes with several n-numbers, with
competing amplitudes.

The reader should note that negative mode numbers in this context do not relate to the
helicity of the modestructure, nor to the toroidal propagation direction of the detected modes;
rather they are merely the consequence of calculations which involve complex data (the I and Q
from the synchronous detectors). Helicity (and poloidal mode structure) cannot be determined
using data sampled at only one poloidal angle, and the mode propagation is determined by
the time evolution of the phase of a mode when the antenna frequency is fixed. Pairs of mode
numbers with equal amplitudes and opposite sign (±n) do indicate standing waves, i.e. pairs
of counterpropagating modes, which are characterized by the presence of toroidal nodes where
the sensor response is always small. This is rarely seen on the JET TAE antenna diagnostic,
as any plasma rotation will separate counterpropagating modes due to a Doppler shift in the
mode frequency according to ωlab = (ωmode + n × ωplasma).
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Figure 9. Left: active MHD antenna location in the JET tokamak. Right: calculation of approximate
toroidal mode spectra (only positive n shown) being driven in vacuum with four different antenna
phase configuration.

Figure 10. Stable TAEs excited by external antennas in JET shot #69570. Active antennas sweep in
frequency to repeatedly scan over a detected resonance. Determination of n-number using simple
straight line phase fitting of three closely spaced Mirnov coils shows drastic jumps in n-number
for incremental frequency changes and indicates the presence of multiple modes.
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Figure 12. Left: damping calculation using SparSpec output for JET shot #70723 from 6.6 < t <

6.9 (region A in figure 11). Left: real and imaginary component of n = −1 mode versus antenna
frequency, right: complex plane representation (solid lines fit according to [14].

When a very small time interval is analyzed, the changes in amplitude and phase of an
individual mode as a function of incremental changes in antenna frequency can be used to
calculate the damping rate, γ , of the mode in that time interval [14]. Such calculations are
shown in figures 12 and 13, for both region A and B of figure 11. When plotting the in-phase and
quadrature (real and imaginary) components in the complex plane, a circle results. SparSpec
is able to track amplitude and phase evolution of multiple modes, and calculation of stability
parameters for each mode is possible (figure 13).

5. Further considerations

While perhaps obvious, it is nevertheless important to note that in the presence of significant
variation across sensors in terms of frequency dependent complex gain (amplitude and phase),
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Figure 13. Left: damping calculation using SparSpec output for JET shot #70723 from 6.4 <

t < 6.6 (region B in figure 11). Left: real and imaginary component of modes with n =
−2, −4, 8 versus antenna frequency, right: complex plane representation (solid lines fit according
to [13].

the SparSpec method no longer produces correct toroidal mode numbers. Such differences
may be the result of conducting structures nearby individual probes, subject to different eddy
current patterns, or due to differences in probe construction or electrical transmission line
characteristics. Thus, for accurate toroidal mode number reconstruction the transfer function
of each individual probe must be known, and the data calibrated, at least relatively. Of course,
such is also the case for any other mode number identification method. For the magnetic
probes on JET, uncertainties in the relative calibration of Mirnov coils at high frequencies
lead to systematic errors in the analysis, so for example pure low-n modes will appear to
be accompanied by a small-amplitude high-n mode (e.g. n = 29) at high frequencies. To
thoroughly discuss these errors is beyond the scope of this paper; suffice it to say that such
errors are small for JET data below 300 kHz.

Another topic which is of some importance in evaluating the abilities of SparSpec deals
with the spacing and positioning of individual Mirnov coils, as well as the number of coils
available for use. We have investigated the effect of omitting one or more channels in the
analysis, characterizing the efficacy of SparSpec. We merely mention that even with three
sensors removed, the SparSpec method generally yields the same results as with all eleven
channels, but this depends somewhat on which channels are removed. Other tokamaks will
have their own sensor geometry, and entirely different applications will naturally have their
own sampling strategy. This paper presents a case study of the SparSpec method as applied
to JET data from eleven unevenly spaced Mirnov coils and which contains information about
small amplitude, medium-n numbered AEs. Of course the probe positions on JET are fixed,
but a general investigation might be worthwhile in view of the (not yet completed) design of
the magnetic probe diagnostics for ITER. Again it is well beyond the scope of this paper to
investigate these topics in any systematic way, because optimized sampling strategy is a topic
of some depth, the reader is referred to [3] for a detailed treatment.

Nevertheless, for illustrative purposes, one example of the effect of sensor positioning
will now be described. In the modeling of artificial data, it was observed that SparSpec
produces very small artifacts near n = ±10 and ±20, i.e. the output contains small peaks
at various mode numbers when the input data contains modes n = 9, 10, 11. These false
peaks, while negligibly small, seem to be result from the toroidal arrangement of the sensors.
They can be understood by considering that for regularly spaced coils, the spectral window
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Figure 14. SparSpec calculations estimations for input data with 5% noise, −20 < n < 20, λ

is fixed at 0.4. Interpretation as in figure 3. (a) Output using JET sensor geometry, (b) output
using suggested sensor spacing from [18]. (c) Zoom detail of amplitudes (left) and phases (right)
showing minor benefits of optimum spacing.

is a Dirichlet kernel of period N , where N is the number of coils. In the irregular sampling
case (such as at JET), the spectral window also can have secondary lobes, due to a hidden
regularity in the sampling: 8 of the 11 sensors in use on JET actually form part of an
array of 10 equally spaced Mirnov coils. Using simulated data, when the sensor spacing
is optimized according to results by Madore and Freedman (table 1 in [18]), SparSpec output
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calculations do not exhibit any errors of the kind described. A more noticeable difference
in performance emerges when processing data which contains some amount of noise and is
discernable in figure 14. This figure depicts SparSpec output data in the same fashion as
figure 3 in section 2. Two scenarios were modeled: one in which the sensor geometry is
JET-like (a), and one in which the spacing of eleven sensors was ‘optimized’ (b). The JET
geometry result has a slightly larger amount of errors, particularly when the phases of modes
in the input data take on certain values (figure 14(c)). What appears as missing data points is
caused by the failure for SparSpec to identify the particular mode(s). The optimized geometry
also allows slightly better resolution into lower amplitudes, as seen by studying the figures
closely.

6. Conclusion

A new method for identifying toroidal mode numbers in Mirnov data from toroidal plasmas
has been benchmarked. Embodied in the SparSpec code, this new method fits signals which
are unevenly sampled in the toroidal coordinate to a sum of an arbitrarily large number of
toroidal modes with integer mode numbers. By assigning a larger penalty to solutions that
invoke larger numbers of modes, SparSpec determines the best fit with the sparsest spectrum.
SparSpec has proven to be extremely robust, and is found to be especially useful for resolving
the amplitudes and phases of multiple AEs which are ringing with the same or nearly the same
frequency. Examples involving stable AEs in JET, excited by an array of external antennas,
were used to illustrate the efficacy of the method. The method also is superior in determining n-
numbers when there is only one dominant mode present, as compared with traditional straight
line phase-fitting techniques, because both amplitude and phase information is considered, and
thus discrimination against noise is improved.

The great efficiency with which SparSpec detects multiple modes in large datasets suggests
that it may be readily used in real-time applications such as resistive wall mode (RWM) or
tearing mode control, among others. For example, in large tokamaks the growth rates of RWMs
are typically orders of magnitude slower than the computation time of SparSpec even when it
incorporates dozens of magnetic signals. We plan to use SparSpec in feedback calculations in
order to target specific n-numbered modes during active Alfvén spectroscopy, using a subset
of eight Mirnov coils, and with loop rates �1 ms.
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