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Abstract

In supervised learning, an important issue usually not taken into

account by classical methods is the possibility of having in the test set

individuals belonging to a class which has not been observed during

the learning phase. Classical supervised algorithms will automatically

label such observations as belonging to one of the known classes in

the training set and will not be able to detect new classes. This work

introduces a model-based discriminant analysis method, called adap-

tive mixture discriminant analysis (AMDA), which is able to detect

unobserved groups of points and to adapt the learned classifier to the

new situation. Two EM-based procedures are proposed for parameter

estimation and Bayesian model selection is used for unobserved class

detection. Experiments on artificial and real data demonstrate the

ability of the proposed method to deal with complex and real word

problems.

Key-words: supervised classification, unobserved classes, adaptive

learning, novelty detection, model selection.

1 Introduction

The usual framework of supervised classification assumes that all existing

classes in the data have been observed during the learning phase and does

not take into account the possibility of having in the test set individuals

belonging to a class which has not been observed. In particular, such a sit-

uation could occur in the case of rare classes or in the case of an evolving
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population. For instance, an important problem in Biology is the detection

of novel species which could appear at any time resulting from structural or

physiological modifications. Unfortunately, classical supervised algorithms,

like support vector machines or linear discriminant analysis, will automati-

cally label observations from a novel class as belonging to one of the known

classes in the training set and will not be able to detect new classes. It

is therefore important to find a way to allow the supervised classification

methods to detect unobserved situations and to adapt themselves to the

new configurations.

In statistical learning, the problem of classification with unobserved classes

is a problem which has received very few attention. Indeed, both supervised

and unsupervised classification contexts have been widely studied but inter-

mediate situations have received less attention. We would like however to

mention two related topics in statistical learning called semi-supervised clas-

sification and novelty detection. Semi-supervised classification focuses on

learning with partially labeled data whereas novelty detection tries to detect

new or unknown data points in the test set. Unfortunately, both approaches

are unable to detect unobserved groups of points in the test set and to adapt

the classifier to the new situation.

To overcome this problem, this work introduces an approach based on

the mixture model which combines unsupervised and supervised learning for

detecting unobserved groups of observations in the test test and for adapt-

ing the supervised classifier to the new situation. The adapted classifier

could be then used to correctly classify new observations in the future. Two

EM-based approaches are proposed for parameter estimation: an inductive

approach, which is made of a learning and a discovering phase, and a trans-

ductive approach which considers all available observations for learning in

a unique step. The detection of the number of unobserved classes is done

using Bayesian model selection criteria. Finally, once the classifier adapted,

the classification of new observations can be then done through the classical

maximum a posteriori rule.

The paper is organized as follows. A brief review on generative super-

vised classification is given in Section 2 as well as a presentation of related

works in supervised learning with unobserved classes. Section 3 introduces

an adaptive discriminant analysis method based on the mixture model which

is able to detect unobserved classes and considers parameter estimation as
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well. Experimental results highlighting the main features of the proposed

method on simulated and real datasets are presented in Section 4. Finally,

Section 5 proposes some concluding remarks and discusses further works.

2 Related works

This section briefly reviews the supervised classification problem and solu-

tions based on the mixture model before to present related works on super-

vised learning with unobserved classes.

2.1 Generative supervised classification

Supervised classification, also known as discriminant analysis in the litera-

ture, aims to build a supervised classifier from a complete set of learning

observations {(x1, z1), ..., (xn, zn)} where xi is an observation described by p

variables and zi ∈ {1, ...,K} indicates the class of xi. The learned classifier is

then used for assigning a new observation x∗ to one of the K known classes.

Among all existing approaches, generative discriminant analysis is very pop-

ular because of its probabilistic background and its efficiency. Generative

supervised classification assumes that the observations {x1, ..., xn} and their

labels {z1, ..., zn} are respectively independent realizations of random vectors

X ∈ R
p and Z ∈ {1, ...,K} and that the conditional density of X given that

Z = k is a parametric density fk parameterized by θk. Consequently, the

marginal density of X is given by:

f(x) =
K
∑

k=1

πkfk(x; θk),

where πk is the prior probability of the kth class. The classification of a new

observation x∗ is done afterward using the maximum a posteriori (MAP)

rule which assigns x∗ to the class with the highest posterior probability

P (Z = k|X = x):

P (Z = k|X = x) =
πkfk(x; θk)

∑K
k=1 πkfk(x; θk)

.

We refer the reader to [26] for more details on generative discriminant anal-

ysis. The following paragraphs review the most used parametric densities in
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generative supervised classification.

Mixture of Gaussians Among all parametric densities, the Gaussian

model is probably the most used in classification. The Gaussian mixture

model has been extensively studied in the last decades and used in many

situations (see [3] and [27] for a review). Therefore, if the Gaussian model is

chosen, fk(x; θk) will denote the density of a multivariate Gaussian density

parameterized by θk = {µk,Σk} where µk and Σk are respectively the mean

and covariance matrix of kth component of the mixture.

Mixture of parsimonious Gaussians In some situations, modelling the

data with a full covariance matrix can be too expensive in terms of number

of parameters to estimate. In such a case, it is possible to make additional

assumptions on the structure of the covariance matrix. For example, in

the well-known Linear Discriminant Analysis (LDA) method, the covariance

matrices of the different components are supposed to be equal to a unique

covariance matrix. It is also possible to assume that the covariance matrix of

each mixture component is diagonal or proportional to the identity matrix.

These models are known as parsimonious Gaussian models in the literature

since they require to estimate less parameters than the classical Gaussian

model. Celeux and Govaert proposed in [11] a family of parsimonious Gaus-

sian models based on an eigenvalue decomposition of the covariance matrix

including the previous models. These parsimonious Gaussian models were

then applied in [5] to supervised classification.

Mixture of HD Gaussians Nowadays, many scientific domains produce

high-dimensional data like medical research, image analysis or Biology. Clas-

sifying such data is a challenging problem since the performance of classifiers

suffers from the curse of dimensionality [4]. Classification methods based on

Gaussian mixture models are directly penalized by the fact that the number

of parameters to estimate grows up with the square of the dimension. Un-

fortunately, parsimonious models are usually too constrained to correctly fit

the data in a high-dimensional space. To overcome this problem, Bouveyron

et al. proposed recently in [10] a family of Gaussian models adapted to high-

dimensional data. This approach, based on the idea that high-dimensional

data live in low-dimensional spaces, assumes that the covariance matrix of
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each mixture component has only dk +1 different eigenvalues where dk is the

dimension of the subspace of the kth mixture component. These Gaussian

models were then used in [9] for high-dimensional data clustering.

Mixture with a noise component Banfield and Raftery have intro-

duced in [3] a mixture model with a noise component in order to improve

the robustness of the cluster analysis on noisy datasets. The original work

proposed to add to the mixture model a uniform distribution over the con-

vex hull of the data as an additional component. Good results of the use

of this specific mixture model were observed in different situations. Hennig

and Coretto [19] proposed recently to use an improper uniform distribution

that does not depend on the data for improving the robustness and provide a

better approximation of the likelihood than the one proposed in the original

work. An application of noise detection is proposed in Section 4.

2.2 Semi-supervised classification

The first related topic to supervised classification with unobserved classes is

semi-supervised classification. Semi-supervised classification is a topic which

has been well studied for several years and which focuses on supervised classi-

fication with partially labeled data. Usually, unlabeled data are added to the

learning data in order to improve the efficiency of the final classifier. Such

an approach is particularly useful when only few labeled observations are

available for learning (applications with a high supervision cost like image

recognition or cancer detection). A good review on semi-supervised classifi-

cation can be found in [34] and [21]. Earlier approaches [25, 29] used the EM

algorithm to assign unlabeled observations to known classes. Most recent ap-

proaches include co-training algorithms [8] and graph-based techniques [21]

which used prior informations on unlabeled observations. However, all semi-

supervised classification methods are not able to detect unobserved groups

of points. More importantly, they will use those new points to re-estimate

the model parameters of known classes and the estimates of known classes

parameters will be therefore deteriorated.
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2.3 Novelty detection

The second and most related topic to supervised classification with unob-

served classes is novelty detection. Novelty detection focuses on the iden-

tification of new or unknown data for which the learned classifier was not

aware during the learning phase. This approach has become very popular in

several application fields such as fault detection [13], medical imaging (mass

detection in mammograms) [36] or e-commerce [22]. In the last years, many

methods have been proposed to deal with this problem. An excellent re-

view on novelty detection methods can be found in [23] and [24] which splits

novelty detection methods into two main categories: statistical and neu-

ral network based approaches. Approaches based on statistical assumptions

usually model the data on their statistical properties and use this informa-

tion for deciding whether test data comes from the same distribution or not.

Among parametric techniques, Chow [12] was the first to propose a thresh-

old for outlier rejection which has been improved in [17] by introducing the

classification confidence in the rejection. Gaussian densities were also used

in [31] for modelling the learning data and detect outliers using a measure

based on the Mahalanobis distance. Extreme value theory was also used

in [30] for novelty detection by searching for low or high values in the tails

of data distributions. Non-parametric approaches include k-NN based tech-

niques [18, 28] or Parzen windows [38] for estimating the distribution of the

data. Neural networks and kernel methods have been also widely used for

novelty detection. Bishop [7] used parametric statistics by post-processing

neural networks for detecting new data distribution whereas a probability

density estimation of neural network outputs is used in [15] as a measure of

novelty. Another approach based on neural networks was proposed in [32]

which used a thresholding on the neural network output for detection new

samples. Kohonen proposed also in [20] two types of novelty detectors based

on self-organizing maps (SOM). More recently, Tax and Duin [37] as well as

Schölkopf [35] used support vector machines (SVM) for distinguishing know

and unknown objects. However, even though all these methods are able to

detect new or unobserved data points, no one of them is able to recognize

unobserved homogeneous groups of points and to adapt the classifier to the

new situation for classifying future observations.
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3 Adaptive mixture discriminant analysis

We introduce in this section an adaptive model-based classifier able to detect

novel classes which have not been observed during the learning phase. Pa-

rameter estimation, model selection and classification of future observations

will be discussed as well.

3.1 The mixture model

Let us consider a classical parametric mixture model of K components: the

observations X = {x1, ..., xn} ∈ R
p are assumed to be independent realiza-

tions of a random vector X ∈ R
p with density:

f(x; Θ) =
K
∑

k=1

πkfk(x; θk), (1)

where πk ≥ 0 for k = 1, ...,K are the mixing proportions (with the constraint
∑K

k=1 πk = 1), fk(x; θk) is the density of the kth component of the mixture

parameterized by θk and finally Θ = {π1, ..., πK , θ1, ..., θK}. We refer to the

previous section regarding the choice of the mixture densities.

3.2 Parameter estimation: inductive approach

This paragraph focuses on the estimation of the mixture parameters in the

specific situation where one or several classes have not be observed during

the learning phase. In the mixture model framework, the maximum like-

lihood (ML) estimation method is usually used for estimating the model

parameters. For the mixture model (1), the complete log-likelihood has the

following form:

ℓ(x1, ..., xn; Θ) =
n
∑

i=1

K
∑

k=1

sik log (πkfk(xi; θk)) ,

where sik = 1 if xi belongs to the kth class and sik = 0 otherwise. How-

ever, this work considers a specific learning situation in which one or several

classes are not represented in the learning dataset. Therefore, the mixture

parameter estimation can not be done using the classical way and a two step

approach made of a learning phase and a discovery phase is proposed below.

7
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The learning phase For this first phase of the parameter estimation,

let us assume that only C classes are represented in the learning dataset

X = {x1, ..., xn} with 1 ≤ C ≤ K. Since the data of the learning set are

complete, i.e. a label zi ∈ {1, ..., C} is associated to each observation xi of

the learning set (i = 1, ..., n), we fall into the classical estimation framework

of model-based discriminant analysis. In such a case, the maximization of the

likelihood reduces to separately estimate the parameters of each class density

by maximizing the associated conditional log-likelihood ℓk, for k = 1, ..., C:

ℓk(X ; Θ) =

n
∑

i=1

sik log (πkfk(xi; θk)) .

The maximization of the conditional log-likelihood ℓk(X ; Θ), for k = 1, ..., C,

conduces to an estimation of πk by π̂k = nk

n
where nk =

∑n
i=1 sik is the

number of observations of the kth class and to an estimation of θk by θ̂k

which depends on the chosen component density. For instance, in the case of

a Gaussian density, the maximization of ℓk(X ; Θ) conduces to an estimation

of θk = {µk,Σk} by:

µ̂k =
1

nk

n
∑

i=1

sikxk,

Σ̂k =
1

nk

n
∑

i=1

sik(xi − µ̂k)(xi − µ̂k)
t,

for k = 1, ..., C. We refer respectively to [11] and [10] for parameter estima-

tion in the case of parsimonious and HD Gaussian models, and to [3] in the

case of a mixture with a noise component.

The discovery phase Usually, in discriminant analysis, the classification

phase consists only in assigning new unlabeled observations to one of known

classes. However, in this work, it is assumed that all the classes have not been

observed during the learning phase. It is therefore necessary to search for

new classes before to classify the new observations for avoiding to misclassify

observations of an unobserved class (by assigning them to one of the observed

classes). Using the model and the notations introduced above, it remains to

find K − C new classes in the set of n∗ new unlabeled observations X ∗ =

{x∗

1, ..., x
∗

n∗}. Since these new observations are unlabeled, we have to fit the

8
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mixture model in a partially unsupervised way. In this case, the completed

log-likelihood has the following form:

ℓ(X ∗; Θ) =

n∗
∑

i=1

(

C
∑

k=1

s∗ik log (πkfk(x
∗

i ; θk)) +

K
∑

k=C+1

s∗ik log (πkfk(x
∗

i ; θk))

)

,

where the parameters θk for k = 1, ..., C have been estimated in the previous

phase and the parameters θk for k = C +1, ...,K remain to estimate. Due to

the constraint
∑K

k=1 πk = 1 on the parameters πk, it is not possible to keep

the proportions estimated during the learning and the mixture proportions

have to be re-estimated on the new sample {x∗

1, ..., x
∗

n∗}. However, the test

set {x∗

1, ..., x
∗

n∗} is an incomplete dataset since the labels z∗i are missing and

the s∗ik are consequently unknown for all observations of this set. In such a

situation, the direct maximization of the likelihood is an intractable problem

and the Expectation-Maximization (EM) algorithm [14] is usually used to

estimate the mixture parameters by iteratively maximizing the likelihood

through the maximization of the expectation of the completed log-likelihood

conditionally to the posterior probabilities t∗ik = P (Z = k|X = x∗

i ). We

propose below a modified EM algorithm for estimating the parameters of

the K −C unobserved classes which alternates between the following E and

M steps at each iteration q:

• E step: the posterior probabilities t
∗(q)
ik = P (Z = k|X = x∗

i ), for

i = 1, ..., n∗ and k = 1, ...,K, are updated according to the mixture

parameters as follows:

t
∗(q)
ik =

π̂
(q−1)
k fk(x

∗

i ; θ̂
(q−1)
k )

f(x∗

i ; Θ̂
(q−1))

,

where π̂
(q−1)
k and θ̂

(q−1)
k are the mixture parameters estimated in the

M step at the step (q − 1).

• M step: the parameters of the K − C unobserved classes are esti-

mated by maximizing the expectation of the completed log-likelihood

conditionally to the posterior probabilities t
∗(q)
ik whereas the estimated

parameters of the observed classes remain fixed to the values obtained

in the learning phase except for the proportions which are re-estimated.

Therefore, this step only updates the estimates of parameters πk for

9
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k = 1, ...,K and θk for k = C + 1, ...,K. In the case of the Gaussian

mixture, for instance, the update formulas for the parameter estimates

are, for k = 1, ...,K:

π̂
(q)
k =

n
∗(q)
k

n∗
,

and for k = C + 1, ...,K:

µ̂
(q)
k =

1

n
∗(q)
k

n∗
∑

i=1

t
∗(q)
ik x∗

i

Σ̂
(q)
k =

1

n
∗(q)
k

n∗
∑

i=1

t
∗(q)
ik (x∗

i − µ̂
(q)
k )(x∗

i − µ̂
(q)
k )t,

where n
∗(q)
k =

∑n∗

i=1 t
∗(q)
ik .

Proofs of these results are given in Appendix A.1.

3.3 Parameter estimation: transductive approach

The previous paragraph proposed an EM-based algorithm which assumes

that model parameters of the C observed classes have been estimated in the

past (during the learning phase) and the modelling of new classes depends

naturally on the quality of these estimates. However, in some situations,

the cost of supervision is very high and only few labeled observations are

available for learning. In such cases, the model parameters of observed classes

could be badly estimated and the discovery phase could be consequently less

efficient in detecting new classes. As the learning sample X = {x1, ..., xn}

and the test sample X ∗ = {x∗

1, ..., x
∗

n∗} are assumed to come from the same

population, both samples could be used in the discovery phase to improve

the model parameters while searching for unobserved classes in the test set.

Such an approach should mainly benefit to the parameter estimation of the C

observed classes and, consequently, should benefit as well to the detection of

unobserved groups of observations. In this case, the completed log-likelihood

has the following form:

ℓ(X ,X ∗; Θ) =

n
∑

i=1

C
∑

k=1

sik log (πkfk(xi; θk)) +

n∗
∑

i=1

K
∑

k=1

s∗ik log (πkfk(x
∗

i ; θk)) ,

10
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and can be rewritten as follows:

ℓ(X ,X ∗; Θ) =
n
∑

i=1

K
∑

k=1

s̃ik log (πkfk(xi; θk)) +
n∗
∑

i=1

K
∑

k=1

s∗ik log (πkfk(x
∗

i ; θk)) ,

where s̃ik = sik if k = 1, ..., C and s̃ik = 0 for k = C+1, ...,K and that for i =

1, ..., n. An alternative version of the EM-based algorithm proposed in the

previous paragraph is presented below to jointly estimate model parameters

while searching for new classes. The joint estimation procedure alternates

between the following E and M steps at each iteration q:

• E step: on the one hand, the posterior probabilities P (Z = k|X = xi)

remain fixed for the learning observations {x1, ..., xn} and are equal to

s̃ik, for i = 1, ..., n and k = 1, ...,K. On the other hand, the posterior

probabilities t
∗(q)
ik = P (Z = k|X = x∗

i ) are updated for the test sample

{x∗

1, ..., x
∗

n∗}, i.e. for i = 1, ..., n∗ and k = 1, ...,K, according to the

mixture parameters as follows:

t
∗(q)
ik =

π̂
(q−1)
k fk(x

∗

i ; θ̂
(q−1)
k )

f(x∗

i ; Θ̂
(q−1))

,

where π̂
(q−1)
k and θ̂

(q−1)
k are the mixture parameters estimated in the

M step at the step (q − 1).

• M step: the parameters of the C observed classes and of the K − C

unobserved classes are estimated by maximizing the expectation of

the completed log-likelihood conditionally to the posterior probabilities

estimated in the E step. Therefore, this step updates now the estimates

of parameters πk and θk for k = 1, ...,K. In the case of the Gaussian

mixture, for instance, the update formulas for the parameter estimates

are, for k = 1, ...,K:

π̂
(q)
k =

n
(q)
k + n

∗(q)
k

n + n∗
,

µ̂
(q)
k =

1

n
(q)
k + n

∗(q)
k

(

n
∑

i=1

s̃ikxi +

n∗
∑

i=1

t
∗(q)
ik x∗

i

)

,

Σ̂
(q)
k =

1

n
(q)
k + n

∗(q)
k

(

S
(q)
k + S

∗(q)
k

)

.

11
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where S
(q)
k =

∑n
i=1 s̃ik(xi − µ̂

(q)
k )(xi − µ̂

(q)
k )t, S

∗(q)
k =

∑n∗

i=1 t
∗(q)
ik (x∗

i −

µ̂
(q)
k )(x∗

i − µ̂
(q)
k )t, n

(q)
k =

∑n
i=1 s̃ik and n

∗(q)
k =

∑n∗

i=1 t
∗(q)
ik .

Proofs of these results are given in Appendix A.2.

3.4 Model selection: determining the number of components

In the usual case of supervised classification, the number of classes is known

and the model selection consists only in choosing the most adapted densities

for the considered dataset. In the context of the studied situation, the total

number K of classes is assumed to be unknown and has to be chosen as

well as the conditional densities of the mixture model. Classical tools for

model selection in the mixture model framework are penalized likelihood

criteria and include the AIC [1], BIC [33] and ICL [6] criteria. The Bayesian

Information Criterion (BIC) is certainly the most popular and consists in

selecting the model which maximizes the quantity:

BIC(M) = ℓ(x1, ..., xn; Θ) −
ν(M)

2
log(n),

where ν(M) is the the number of parameters in model M and n is the

number of observations. For instance, the number of parameters for the

full Gaussian mixture model, i.e. full and different covariance matrices,

is equal to (k − 1) + kp + kp(p + 1)/2. The AIC criterion penalizes the

log-likelihood by ν(M) and the ICL criterion add to the BIC criterion the

penalty
∑n

i=1

∑K
k=1 tik log(tik) in order to favour well separated models. An

evaluation of both criteria in the context of unobserved class detection is

presented in the next section.

3.5 Classification with the adapted classifier

The previous paragraphs introduced a model-based discriminant analysis

method which adapts its mixture model to a new situation including unob-

served classes . Therefore, the adapted model can be used to classify new

observations in the future. In the classical discriminant analysis framework,

new observations are usually assigned to a class using the maximum a pos-

teriori (MAP) rule. The MAP rule assigns a new observation x ∈ R
p to

the class for which x has the highest posterior probability. Therefore, the

classification step mainly consists in calculating the posterior probability

12
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P (Z = k|X = x) for each class k = 1, ...,K. In the case of the model de-

scribed in this section, this posterior probability can be expressed classically

using the Bayes’ rule as follows:

P (Z = k|X = x) =
πkfk(x; θk)

f(x; Θ)
,

where f(x; Θ) =
∑K

k=1 πkfk(x; θk). Therefore, the posterior probabilities of

the new observations depend on both the classes observed in the learning

phase and the classes discovered in the test set.

4 Experimental results

This section presents experiments on toy and simulated datasets in order to

highlight the main features of the method introduced in the previous section.

4.1 An introductory example: the iris dataset

The dataset considered in this first experiment is a classical one: the iris

dataset made famous by its use by Fisher in [16] as an example for discrim-

inant analysis. This dataset, in fact collected by Edgar Anderson [2] in the

Gaspé Peninsula (Canada), is made of three classes corresponding to differ-

ent species of iris (setosa, versicolor and virginica) among which the classes

versicolor and virginica are difficult to discriminate (they are at least not

linearly separable). The dataset consists of 50 samples from each of three

species and four features were measured from each sample. The four mea-

surements are the length and the width of sepal and petal. This dataset is

used here as a toy dataset because of its popularity and its biological nature.

Detection of one unobserved class First, let suppose that botanists

are studying iris species and have only observed the two species setosa and

versicolor. For this experiment, the dataset has been randomly split into a

learning dataset without virginica examples and a test dataset with several

virginica examples. The top-left panel of Figure 1 shows what the botanists

are supposed to have observed in the past. The top-center panel of the same

figure presents a sample of new observations of iris for which the botanists

are asked to classify. However, as the top-right panel indicates, this new

sample contains individuals from a class which has not been observed by the

13
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Figure 1: Detection of 1 unobserved class with AMDA on the Iris dataset: the
classes “setosa” (red triangles) and “versicolor” (green plus-es) have been ob-
served during the learning phase whereas the class “virginica” (blue crosses)
has not.

botanists in the past and the iris experts will very likely classify all these new

observations as belonging to either the class setosa or the class versicolor.

The bottom-left panel of Figure 1 shows the result of such a scenario, using

Quadratic Discriminant Analysis (QDA) in place of the iris experts, which

yields to the classification of all virginica observations in the class versicolor.

Remark that, even though this result is disappointing from our point of view,

it is understandable both for an human expert and a classification method

since the classes versicolor and virginica are indeed very difficult to discrimi-

nate. The strategy proposed in the previous section, hereafter referred to by

Adaptive Model-based Discriminant Analysis (AMDA), was applied to this

dataset. The bottom-center and right panels of Figure 1 presents the results

provided by AMDA (with the inductive approach). On the one hand, it turns

out that Bayesian model selection criteria (AIC here) succeed in identifying

a new group of points in the test set. On the other hand, once the number

K of mixture components chosen, AMDA classifies almost perfectly (only 2

14
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Figure 2: Detection of 2 unobserved classes with AMDA on the Iris dataset:
the class “setosa” (red triangles) has been observed during the learning phase
whereas the classes “versicolor” (green plus-es) and “virginica” (blue crosses)
have not.

errors on this example) the observations of the unobserved class virginica.

Detection of two unobserved classes Here, the toy example turns to

be a serious problem because the botanists are now assumed to have only

observed one species, the species setosa, and will have therefore to discover

two unobserved classes, the species versicolor and virginica. For this second

experiment, the dataset has been randomly split into a learning dataset

without versicolor and virginica examples and a test dataset with several

versicolor and virginica examples. The top-left panel of Figure 2 shows what

the botanists are supposed to have observed in the past whereas the center

panel shows the new and unlabeled observations. As one can observe, the

new observations are clearly different from the data observed in the past but

it is actually not obvious to detect that these new observations come from

two different iris species (cf. top-right panel of Figure 2). If a supervised

classifier like QDA is used, the classifier will assign all the new observations
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Figure 3: Detection of 1 unobserved noise class with AMDA on 2-dimensional
simulated data: 3 observed classes and 1 unobserved noise class (light blue
diamonds).

to the only one known class, the class setosa, and will make an important

error (cf. bottom-left panel). In such a situation, there is no doubt that

novelty detection methods presented in Section 2 are able to detect that

the new observations do not belong to the species setosa. However, these

techniques are not able to detect that the unlabeled observations are made of

two homogeneous groups corresponding to two new iris species. The bottom-

center and right panels of Figure 2 demonstrate that AMDA is actually able

to detect the two unobserved iris species and can take this information into

account to adapt the classifier for classifying future observations.

4.2 Detection of an unobserved noise class

This experiment aims to evaluate the ability of AMDA to detect an un-

observed non Gaussian class of noise. For this, data were simulated in a

2-dimensional space according a mixture model made of 4 components: 3

Gaussian components and one uniform noise component. Means and co-
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Truth

Classif.
1 2 3 4

1 75 2 0 0

2 0 78 0 10

3 0 0 65 21

- - - - -

Truth

Classif.
1 2 3 4

1 75 2 0 0

2 0 77 0 0

3 0 0 64 0

4 0 1 1 31

(a) Confusion matrix for QDA (b) Confusion matrix for AMDA

Table 1: Confusion tables for QDA and AMDA on the test dataset for the
simulated data with one unobserved noise class (class #4).

variance matrices of Gaussians were chosen in order to obtain separated

enough groups. The learning set was made of 750 observations from the

three Gaussian classes. The top-left panel of Figure 3 shows the observa-

tions of the learning set. The test set was made of 250 observations from

the three Gaussian classes (observed during the learning) and 31 observa-

tions from the unobserved uniform noise class. The top-center panel of this

figure presents the unlabeled test observations and the top-left panel indi-

cates the true labels of these observations. The bottom-left panel of Figure 3

shows the classification of the test observations with the supervised classifier

Quadratic Discriminant Analysis (QDA). Unsurprisingly, QDA classifies all

the observations from the noise class to one of the three known Gaussian

classes. Table 1 presents confusion tables for QDA and AMDA (inductive

approach) on the test dataset and shows that all noise observations were

classified into the classes #2 and #3. The bottom-center and right panels

of Figure 3 show respectively the AIC values for AMDA with and without a

noise component and the classification provided by AMDA with a detected

noise component (as indicated by the largest AIC value). We can observe on

this quite complex example that AMDA succeeds in both detecting the unob-

served noise class and modelling it through a uniform component. Table 1.b

confirms that AMDA recognizes all noise observations as belonging to one

unobserved class in the past and makes only 2 false noise detections which

is very satisfying. Naturally, it could be also possible to detect both unob-

served classes and a noise component by comparing AIC curves with and

without a noise component for different numbers of Gaussian components.
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Figure 4: Classification with AMDA of simulated data: 3 observed classes
and 1 unobserved class (light blue diamonds) in R

2.

4.3 Monte Carlo simulations

This paragraph presents Monte Carlo experiments on simulated data in order

to both compare inductive and transductive approaches, evaluate Bayesian

model selection criteria in the context of unobserved class detection and

determinate the breakdown group size for the detection of new classes. For

the three following experiments, data were simulated according a Gaussian

mixture model made of 4 groups (3 observed groups and one unobserved

group) in a 2-dimensional space. Means and covariance matrices were chosen

in order to obtain separated enough groups. Figure 4 presents the simulated

learning dataset (left panel), the test dataset (center panel) and the true

labels of the test observations (right panel). For each of the 50 replications

of the Monte Carlo studies, 750 observations were simulated according to a

Gaussian mixture model (250 obs. for each of the observed classes) in order

to form the learning set and 250+η observations were simulated for the test

set where η is the number of observations of the unobserved class. For each

replication, the number η varied from 2 to 50.

Inductive vs. transductive approaches This first Monte-Carlo simu-

lation aims to compare the inductive and transductive approaches proposed

in Section 3. We choose to compare both approaches on modelling and

classification criteria since supervised classification has two main objectives:

efficiently classify new observations and correctly model the data for facilitat-

ing the understanding of classification results. For this simulation, the actual

number of components was provided to the algorithms in order to focus on
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modelling and classification abilities of both approaches. The left panel of

Figure 5 shows the log-likelihood value of the whole dataset (training + test

sets) divided by the number of observations for the inductive and transduc-

tive approaches according to the size of the unobserved class. In this figure,

the information in which we are interested in is the relative behaviour of the

inductive approach compared to the transductive one and not the the global

behaviour of both curves. Indeed, for each situation, the approach with

the highest log-likelihood value per point is the one which provides the best

modelling of the data. On the one hand, it appears that the log-likelihood

curve of the transductive approach is above the one of inductive approach

for sizes of the unobserved class larger than 10. This indicates that, for

large unobserved groups of points, the use of the all available observations

allows to better model the data than using only the test observations. On

the other hand, Figure 5 indicates as well that for small unobserved groups

(smaller than 10) the inductive approach seems to better model the data

than the transductive version of AMDA. This can be explained by the will

of the transductive approach to consider small unobserved groups of points

as extreme values of the observed classes. The right panel of Figure 5 shows

the correct classification on a second test data set (different from the test

set used for detecting new classes) for the two studied approaches according

to the size of the unobserved class. A test set different from the test set

used for detecting new classes is used here in order to evaluate the ability of

both approaches to classify future unlabeled data with the adapted classi-

fier including the discovered classes. One can observe that both classification

rates are very good (between 0.97 and 0.99) and that the inductive version of

AMDA appears to be slightly more efficient and stable than the transductive

one to classify new data with the adapted classifier. In view of this results,

we can recommend to use the transductive version for modelling purpose on

large datasets and to use the inductive approach for classification purpose

or modelling of small datasets.

Evaluation of model selection criteria This second Monte Carlo study

aims to evaluate Bayesian model selection criteria in the context of unob-

served class detection with AMDA. Figure 7 presents the rate of successful

selection of the actual number of groups by the three selection model criteria

AIC, BIC and ICL for both the inductive (left panel) and transductive (right
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Figure 5: Modelling ability and classification performance of the inductive
and transductive versions of AMDA according to the size of the unobserved
class on simulated data: 3 observed classes and 1 unobserved class in R

2.

panel) versions of AMDA. It appears that the three studied selection model

criteria select always the correct number of groups when the unobserved

group size is large (larger than 10 for the inductive approach and larger than

20 for the transductive one). For smaller sizes of the unobserved group, AIC

turns out to be the more stable criterion since it selects the correct number of

groups more frequently than the two other criteria. We therefore recommend

the use of AIC as model selection criterion in the context of unobserved class

detection.

Determination of the breakdown group size The two panels of Fig-

ure 7 shows three recognition rates averaged on the Monte Carlo replications

for both the inductive (left panel) and transductive (right panel) versions of

AMDA: total recognition rate, true positive rate and false positive rate. The

total recognition rate measures the overall correct classification rate for the

four classes (the three observed classes and the unobserved one). The true

positive rate measures the correct classification rate for observations of the

unobserved class (class #4). Conversely, the false positive rate evaluates how

many observations of the three observed classes are classified as belonging

to the new class. In a satisfying situation, the total recognition rate and the

true positive rate should be close to 1 whereas the false positive rate should

be close to 0. Both recognition rates were computed on a test dataset. Fig-
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Figure 6: Successful selection of the actual number of groups using AIC, BIC
and ICL with the inductive (left) and transductive (right) AMDA according
to the size of the unobserved class on simulated data: 3 observed classes and
1 unobserved class in R

2.

ure 7 shows that the three recognition rates are very good for sizes of the

unobserved class larger than 10 in the case of inductive AMDA (left panel)

and larger than 20 in the case of transductive AMDA (right panel). We

observe as well that for sizes of the unobserved class smaller than 5–10 the

true positive rate is very unstable and this means that the unobserved class

is not well modeled. This confirms the observation made in the previous

paragraph and the inductive approach seems more robust than transductive

AMDA in the case of unobserved classes of small sizes.

To summarize, these Monte Carlo experiments have first demonstrated that

the transductive version of AMDA must be used for modelling purpose on

large dataset whereas inductive AMDA can be used for detecting and mod-

eling small unobserved classes. They have also shown that AIC is the most

efficient criterion for detecting unobserved classes and that the inductive ver-

sion of AMDA is able to detect and model unobserved classes in the test set

for unobserved classes as small as 5–10 observations.

5 Conclusion and further works

This work has focused on the problem of learning a supervised classifier with

unobserved classes. An adaptive model-based discriminant analysis method
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Figure 7: Recognition rates with the inductive (left) and transductive (right)
AMDA according to the size of the unobserved class on simulated data: 3
observed classes and 1 unobserved class in R

2.

has been presented in this paper which is able to both detect unobserved

groups of points in a new set of observations and to adapt the supervised

classifier to the new situation. Two EM-based approaches have been pro-

posed for parameter estimation: an inductive approach, which is made of a

learning and a discovering phase, and a transductive approach which con-

siders all available observations for learning in a unique step. The detection

of the number of unobserved classes is done using Bayesian model selec-

tion criteria. Experiments on simulated and real datasets have shown that

the proposed method is able to detect different kinds of unobserved classes

(Gaussian, uniform noise, ...).

It remains however to deal in the future with the problem of label switch-

ing when C − K > 1. A way to solve this problem could be to ask domain

experts to classify some observations of the new detected groups in order

to associate a class name with the detected groups. Parsimonious Gaus-

sian models could be used as well for modelling small groups in order to

detect unobserved groups of points smaller than 5-10 observations. Finally,

it could be very interesting to study the evolution of the proposed strategy

in the context of dynamic classification.
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A Appendix: proofs of parameter estimators

This ultimate section presents the proofs of parameter estimators given in

Section 3 for both inductive and transductive approaches.

A.1 Inductive approach

At the iteration q of the M step, the expectation of the completed log-

likelihood Q(X ∗; Θ) conditionally to the posterior probabilities t∗ik has the

following form:

Q(X ∗; Θ) =

n∗
∑

i=1

(

C
∑

k=1

t∗ik log (πkfk(x
∗

i ; θk)) +

K
∑

k=C+1

t∗ik log (πkfk(x
∗

i ; θk))

)

,

where log (πkfk(xi; θk)) can be written as follows in the case of the multi-

variate Gaussian density:

log (πkfk(xi; θk)) = −
1

2

(

log(πk) + log(|Σk|) + (xi − µk)
tΣ−1

k (xi − µk)
)

+ C,

where C = −p log(2π)/2 is a constant which does not depend on mixture

parameters. In the case of the discovery phase of the inductive approach,

the maximization of Q(X ∗; Θ) according to the parameters πk, µk and Σk

can be done classically except that parameters µk and Σk have only to be

estimated for k = C + 1, ...,K. We therefore refer to [27] for ML inference

in finite mixture models.

A.2 Transductive approach

At the iteration q of the M step, the expectation of the completed log-

likelihood Q(X ,X ∗; Θ) conditionally to the posterior probabilities t∗ik has

the following form:

Q(X ,X ∗; Θ) =
n
∑

i=1

K
∑

k=1

s̃ik log (πkfk(xi; θk)) +
n∗
∑

i=1

K
∑

k=1

t∗ik log (πkfk(x
∗

i ; θk)) ,

where log (πkfk(xi; θk)) is given above. We recall that s̃ik = sik if k = 1, ..., C

and s̃ik = 0 for k = C + 1, ...,K and that for i = 1, ..., n.
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ML estimator for parameter πk The maximization of Q(X ,X ∗; Θ) ac-

cording to the mixture proportion πk under the constraint
∑K

k=1 πk = 1 is

equivalent to find a saddle point of the Lagrangian L(Θ, ω):

L(Θ, ω) = Q(Θ) − ω

(

K
∑

k=1

πk − 1

)

,

where ω is the Lagrangian coefficient. The partial derivative of the La-

grangian L(Θ, ω) according to πk is:

∂

∂πk
L(Θ, ω) =

(nk + n∗

k)

πk
+ ω,

where nk =
∑n

i=1 s̃ik and n∗

k =
∑n∗

i=1 t∗ik. The relation ∂
∂πk

L(Θ, ω) = 0

implies that, for all k = 1, ...,K:

(nk + n∗

k) + ωπk = 0, (2)

and summing up this quantity over k provides the value of the Lagrangian

coefficient ω:

ω = n + n∗,

where n =
∑K

k=1 nk and n∗ =
∑K

k=1 n∗

k. Finally, replacing ω by its value

in (2) allows to find the ML estimate of πk:

π̂k =
(nk + n∗

k)

(n + n∗)
.

ML estimator for parameter µk The partial derivative of Q(X ,X ∗; Θ)

according to µk has the following form:

∂

∂µk

Q(X ,X ∗; Θ) = −Σ−1
k

(

n
∑

i=1

s̃ik(xi − µk) +
n∗
∑

i=1

t∗ik(x
∗

i − µk)

)

.

The relation ∂
∂µk

Q(X ,X ∗; Θ) = 0 implies that:

n
∑

i=1

s̃ik(xi − µk) +
n∗
∑

i=1

t∗ik(x
∗

i − µk) = 0,
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which is equivalent to:

µk

(

n
∑

i=1

s̃ik +

n∗
∑

i=1

t∗ik

)

=

n
∑

i=1

s̃ikxi +

n∗
∑

i=1

t∗ikx
∗

i ,

and this finally yields to the ML estimate of µk:

µ̂k =
1

nk + n∗

k

(

n
∑

i=1

s̃ikxi +

n∗
∑

i=1

t∗ikx
∗

i

)

,

where nk =
∑n

i=1 s̃ik and n∗

k =
∑n∗

i=1 tik.

ML estimator for parameter Σk At the optimum for parameter µk, the

partial derivative of Q(X ,X ∗; Θ) according to Σk has the following form:

∂

∂Σk
Q(X ,X ∗; Θ) = −

1

2

∂

∂Σk

[

n
∑

i=1

s̃ik

(

log(|Σk|) + (xi − µ̂k)
tΣ−1

k (xi − µ̂k)
)

+
n∗
∑

i=1

t∗ik
(

log(|Σk|) + (x∗

i − µ̂k)
tΣ−1

k (x∗

i − µ̂k)
)

]

.

Using the classical trick of the trace of the 1 × 1 matrix, we can write that

(xi − µ̂k)
tΣ−1

k (xi − µ̂k) = tr
(

(xi − µ̂k)
tΣ−1

k (xi − µ̂k)
)

and, using the identity

tr(AB) = tr(BA), we get:

∂

∂Σk
Q(X ,X ∗; Θ) = −

1

2

∂

∂Σk

[

(nk + n∗

k) log(|Σk|) + tr
(

Σ−1
k Sk

)

+ tr
(

Σ−1
k S∗

k

)]

,

where Sk =
∑n

i=1 s̃ik(xi−µ̂k)
t(xi−µ̂k) and Sk =

∑n∗

i=1 t∗ik(x
∗

i −µ̂k)
t(x∗

i −µ̂k).

Using the additivity property of the trace of square matrices, we end up with:

∂

∂Σk
Q(X ,X ∗; Θ) = −

1

2

∂

∂Σk

[

(nk + n∗

k) log(|Σk|) + tr
(

Σ−1
k (Sk + S∗

k)
)]

.

Finally, using the matrix derivative formula of the logarithm of a determi-

nant, ∂
∂A

log(|A|) =
(

A−1
)t

, and of the trace of a product, ∂
∂A

tr(A−1B) =

−
(

A−1BA−1
)t

, the equality of ∂
∂Σk

Q(X ,X ∗; Θ) to the p × p zero matrix

yields to the relation:

(nk + n∗

k)Σ
−1
k = Σ−1

k (Sk + S∗

k) Σ−1
k ,
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and, by multiplying on the left and on the right by Σk, we find out the ML

estimate of Σk:

Σ̂k =
1

(nk + n∗

k)
(Sk + S∗

k) .
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