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Abstract

In supervised learning, an important issue usually not taken into

account by classical methods is the possibility of having in the test set

individuals belonging to a class which has not been observed during

the learning phase. Classical supervised algorithms will automatically

label such observations as belonging to one of the known classes in the

training set and will not be able to detect new classes. This work in-

troduces a model-based discriminant analysis method, called adaptive

model-based discriminant analysis (AMDA), which is able to detect

unobserved groups of points and to adapt the learned classifier to the

new situation. Two EM-based procedures are proposed for the param-

eter estimation. Experiments on artificial and real data demonstrate

the ability of the proposed method to deal with complex and real word

problems. The proposed method is also applied to the detection of

novel species in DNA barcoding.

1 Introduction

The usual framework of supervised classification assumes that all existing

classes in the data have been observed during the learning phase and does

not take into account the possibility of having in the test set individuals

belonging to a class which has not been observed. In particular, such a sit-

uation could occur in the case of rare classes or in the case of an evolving

population. For instance, an important problem in Biology is the detection
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of novel species which could appear at any time resulting from structural or

physiological modifications. Unfortunately, classical supervised algorithms,

like support vector machines (SVM) or Linear Discriminant Analysis (LDA),

will automatically label observations from a novel class as belonging to one

of the known classes in the training set and will not be able to detect new

classes. It is therefore important to find a way to allow the supervised clas-

sification methods to detect unobserved situations and to adapt themselves

to the new configurations.

1.1 Related works

In statistical learning, the problem of classification with unobserved classes

is a problem which has received very few attention. Indeed, both supervised

and unsupervised classification contexts have been widely studied but in-

termediate situations have received less attention. We would like however

to mention two related topics in statistical learning called semi-supervised

classification and novelty detection.

Semi-supervised classification Semi-supervised classification focuses on

supervised classification with partially labeled data. Usually, unlabeled data

are added to the learning data in order to improve the efficiency of the fi-

nal classifier. Such an approach is particularly useful when only few labeled

observations are available for learning (applications with a high supervision

cost). A good review on semi-supervised classification can be found in [16].

However, semi-supervised classification methods are not able to detect unob-

served groups of points and, more importantly, will use them to re-estimate

the model parameters of known classes and the estimates of known classes

parameters will be deteriorated.

Novelty detection Novelty detection focuses on the identification of new

or unknown data for which the learned classifier was not aware during the

learning phase. This approach has become very popular in several appli-

cation fields such as finance (fault and fraud detection), medical imaging

(mass detection in mammograms) or web mining. In the last years, many
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methods have been proposed to deal with this problem which can be split

into two main categories: statistical and neural network based approaches.

An excellent review on both categories of novelty detection methods can be

found in [17] and [18]. However, even though all these methods are able to

detect new or unobserved groups of points, no one of them is able to adapt

the classifier to the new situation for classifying future observations.

1.2 The proposed approach

This work introduces an approach based on the mixture model which com-

bines unsupervised and supervised learning for detecting in the test test

unobserved groups of observations and for adapting the supervised classifier

to the new situation in order to correctly classify new observations in the

future. In the learning phase, a generative classifier of C classes is learned

on the learning dataset in a classical way. The classification of the test set is

done through a two-step approach which first searches for unobserved groups

of points and then adapts the supervised classifier to the new situation. The

discovery step which identifies new classes relies on an unsupervised mod-

elling of the test data through EM-based strategies and on Bayesian model

selection tools. Finally, the classification of new observations can be then

done through the maximum a posteriori rule.

1.3 Organization of the paper

The paper is organized as follows. Section 2 introduces an adaptive discrimi-

nant analysis method based on the mixture model able to detect unobserved

classes. Section 3 presents experimental results highlighting the main fea-

tures of the proposed method on simulated and real datasets. Section 4

is devoted to the application of the proposed approach to the detection of

novel species in DNA barcoding. Finally, Section 5 proposes some concluding

remarks and discusses further works.
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2 Adaptive model-based discriminant analysis

We introduce in this section an adaptive model-based classifier able to de-

tect novel classes which have not been observed during the learning phase.

Parameter estimation and model selection will be discussed as well.

2.1 The mixture model

Let us consider a classical parametric mixture model of K components: the

observations {x1, ..., xn} ∈ R
p are assumed to be independent realizations of

a random vector X ∈ R
p with density:

f(x; Θ) =
K
∑

k=1

πkfk(x; θk), (1)

where πk ≥ 0 for k = 1, ...,K are the mixing proportions (with the constraint
∑K

k=1 πk = 1), fk(x; θk) is the density of the kth component of the mixture

parameterized by θk and finally Θ = {π1, ..., πK , θ1, ..., θK}. We discuss

briefly below the choice of the mixture densities.

Mixture of Gaussians Among all parametric densities, the Gaussian

model is probably the most used in classification. The Gaussian mixture

model has been extensively studied in the last decades and used in many

situations (see [3] and [19] for a review). Therefore, if the Gaussian model is

chosen, fk(x; θk) will denote the density of a multivariate Gaussian density

parameterized by θk = {µk,Σk} where µk and Σk are respectively the mean

and covariance matrix of kth component of the mixture.

Mixture of parsimonious Gaussians In some situations, modelling the

data with a full covariance matrix can be too expensive in terms of number

of parameters to estimate. In such a case, it is possible to make additional

assumptions on the structure of the covariance matrix. For example, in

the well-known Linear Discriminant Analysis (LDA) method, the covariance

matrices of the different components are supposed to be equal to a unique
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covariance matrix. It is also possible to assume that the covariance matrix of

each mixture component is diagonal or proportional to the identity matrix.

These models are known as parsimonious Gaussian models in the literature

since they require to estimate less parameters than the classical Gaussian

model. Celeux and Govaert proposed in [9] a family of parsimonious Gaus-

sian models based on an eigenvalue decomposition of the covariance matrix

including the previous models. These parsimonious Gaussian models were

then applied in [5] to supervised classification.

Mixture of HD Gaussians Nowadays, many scientific domains produce

high-dimensional data like medical research, image analysis or Biology (see

an application to DNA barcoding in Section 4). Classifying such data is

a challenging problem since the performance of classifiers suffers from the

curse of dimensionality [4]. Classification methods based on Gaussian mix-

ture models are directly penalized by the fact that the number of parameters

to estimate grows up with the square of the dimension. However, parsimo-

nious models are usually too constrained to correctly fit the data in a high-

dimensional space. To overcome this problem, Bouveyron et al. proposed

recently in [8] a family of Gaussian models adapted to high-dimensional

data. This approach, based on the idea that high-dimensional data live in

low-dimensional spaces, assumes that the covariance matrix of each mixture

component has only dk + 1 different eigenvalues where dk is the dimension

of the subspace of the kth mixture component. These Gaussian models were

then used in [7] for high-dimensional data clustering.

Mixture with a noise component Banfield and Raftery have intro-

duced in [3] a mixture model with a noise component in order to improve

the robustness of the cluster analysis on noisy datasets. The original work

proposed to add to the mixture model a uniform distribution over the con-

vex hull of the data as an additional component. Good results of the use

of this specific mixture model were observed in different situations. Hennig

and Coretto [14] proposed recently to use an improper uniform distribution

that does not depend on the data for improving the robustness and provide a
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better approximation of the likelihood than the one proposed in the original

work. An application of noise detection is proposed in Section 3.

2.2 Parameter estimation: inductive approach

This paragraph focuses on the estimation of the mixture parameters in the

specific situation where one or several classes can not be observed during the

learning phase. In the mixture model framework, the maximum likelihood

(ML) estimation method is usually used for estimating the model parameters.

For the mixture model (1), the log-likelihood has the following form:

L(x1, ..., xn; Θ) =
n
∑

i=1

K
∑

k=1

sik log (πkfk(xi; θk)) ,

where sik = 1 if xi belongs to the kth class and sik = 0 otherwise. How-

ever, this work considers a specific learning situation in which one or several

classes are not represented in the learning dataset. Therefore, the mixture

parameter estimation can not be done using the classical way and a two step

approach made of a learning phase and a discovery phase is proposed below.

The learning phase For this first phase of the parameter estimation,

let us assume that only C classes are represented in the learning dataset

X = {x1, ..., xn} with 1 ≤ C ≤ K. Since the data of the learning set are

complete, i.e. a label zi ∈ {1, ..., C} is associated to each observation xi of

the learning set (i = 1, ..., n), we fall into the classical estimation framework

of model-based discriminant analysis. In such a case, the maximization of the

likelihood reduces to separately estimate the parameters of each class density

by maximizing the associated conditional log-likelihood Lk, for k = 1, ..., C:

Lk(X ; Θ) =

n
∑

i=1

sik log (πkfk(xi; θk)) .

The maximization of the conditional log-likelihood Lk(X ; Θ), for k = 1, ..., C,

conduces to an estimation of πk by π̂k = nk

n
where nk =

∑n
i=1 sik is the

number of observations of the kth class and to an estimation of θk by θ̂k

6
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which depends on the chosen component density. For instance, in the case of

a Gaussian density, the maximization of Lk(X ; Θ) conduces to an estimation

of θk = {µk,Σk} by:

µ̂k =
1

nk

n
∑

i=1

sikxk,

Σ̂k =
1

nk

n
∑

k=1

sik(xi − µ̂k)(xi − µ̂k)
t,

for k = 1, ..., C. We refer respectively to [9] and [8] for parameter estimation

in the case of parsimonious and HD Gaussian models, and to [3] in the case

of a mixture with a noise component.

The discovery phase Usually, in discriminant analysis, the classification

phase consists only in assigning new unlabeled observations to one of known

classes. However, in this work, it is assumed that all the classes have not been

observed during the learning phase. It is therefore necessary to search for

new classes before to classify the new observations for avoiding to misclassify

observations of an unobserved class (by assigning them to one of the observed

classes). Using the model and the notations introduced above, it remains to

find K − C new classes in the set of n∗ new unlabeled observations X ∗ =

{x∗

1, ..., x
∗

n∗}. Since these new observations are unlabeled, we have to fit

the mixture model in a partially unsupervised way. In this case, the log-

likelihood has the following form:

L(X ∗; Θ) =

n∗

∑

i=1

(

C
∑

k=1

s∗ik log (πkfk(x
∗

i ; θk)) +

K
∑

k=C+1

s∗ik log (πkfk(x
∗

i ; θk))

)

,

where the parameters θk for k = 1, ..., C have been estimated in the previous

phase and the parameters θk for k = C +1, ...,K remain to estimate. Due to

the constraint
∑K

k=1 πk = 1 on the parameters πk, it is not possible to keep

the proportions estimated during the learning and the mixture proportions

have to be re-estimated on the new sample {x∗

1, ..., x
∗

n∗}. However, the test

set {x∗

1, ..., x
∗

n∗} is an incomplete dataset since the labels z∗i are missing and

7
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the s∗ik are consequently unknown for all observations of this set. In such a

situation, the direct maximization of the likelihood is an intractable problem

and the Expectation-Maximization (EM) algorithm [11] is usually used to

estimate the mixture parameters by iteratively maximizing the likelihood.

We propose below a modified EM algorithm for estimating the parameters

of the K − C unobserved classes which alternates between the following E

and M steps at each iteration q:

• E step: the conditional probabilities t
∗(q)
ik

= P (Z = k|X = x∗

i ), for

i = 1, ..., n∗ and k = 1, ...,K, are updated according to the mixture

parameters as follows:

t
∗(q)
ik

=
π̂

(q−1)
k fk(x

∗

i ; θ̂
(q−1)
k )

f(x; Θ̂(q−1))
,

where π̂
(q−1)
k and θ̂

(q−1)
k are the mixture parameters estimated in the

M step at the step (q − 1).

• M step: the parameters of the K−C unobserved classes are estimated

by maximizing the likelihood conditionally to the probabilities t
∗(q)
ik

whereas the estimated parameters of the observed classes remain fixed

to the values obtained in the learning phase except for the proportions

which are re-estimated. Therefore, this step only updates the estimates

of parameters πk for k = 1, ...,K and θk for k = C + 1, ...,K. In the

case of the Gaussian mixture, for instance, the update formulas for the

parameter estimates are, for k = 1, ...,K:

π̂
(q)
k =

n
∗(q)
k

n∗
,

and for k = C + 1, ...,K:

µ̂
(q)
k =

1

n
∗(q)
k

n∗

∑

i=1

t
∗(q)
ik x∗

i

8
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Σ̂
(q)
k =

1

n
∗(q)
k

n∗

∑

i=1

t
∗(q)
ik (x∗

i − µ̂
(q)
k )(x∗

i − µ̂
(q)
k )t,

where n
∗(q)
k =

∑n∗

i=1 t
∗(q)
ik .

2.3 Parameter estimation: transductive approach

The previous paragraph proposed an EM-based algorithm which assumes

that model parameters of the C observed classes have been estimated in the

past (during the learning phase) and the modelling of new classes depends

naturally on the quality of these estimates. However, in some situations,

the cost of supervision is very high and only few labeled observations are

available for learning. In such cases, the model parameters of observed classes

could be badly estimated and the discovery phase could be consequently less

efficient in detecting new classes. As the learning sample X = {x1, ..., xn}

and the test sample X ∗ = {x∗

1, ..., x
∗

n∗} are assumed to come from the same

population, both samples could be used in the discovery phase to improve

the model parameters while searching for unobserved classes in the test set.

Such an approach should mainly benefit to the parameter estimation of the

C observed classes and, consequently, should benefit as well to the detection

of unobserved groups of observations. In this case, the log-likelihood has the

following form:

L(X ,X ∗; Θ) =

n
∑

i=1

C
∑

k=1

sik log (πkfk(xi; θk)) +

n∗

∑

i=1

K
∑

k=1

s∗ik log (πkfk(x
∗

i ; θk)) .

An alternative version of the EM-based algorithm proposed in the previous

paragraph is presented below to jointly estimate model parameters while

searching for new classes. The joint estimation procedure alternates between

the following E and M steps at each iteration q:

• E step: on the one hand, the conditional probabilities P (Z = k|X =

xi) remain fixed for the learning observations {x1, ..., xn} and are equal

to sik, for i = 1, ..., n and k = 1, ...,K, where sik = 1 if xi belongs to

the kth class and sik = 0 otherwise. On the other hand, the conditional

9
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probabilities t
∗(q)
ik

= P (Z = k|X = x∗

i ) are updated for the test sample

{x∗

1, ..., x
∗

n∗}, i.e. for i = 1, ..., n∗ and k = 1, ...,K, according to the

mixture parameters as follows:

t
∗(q)
ik

=
π̂

(q−1)
k fk(x

∗

i ; θ̂
(q−1)
k )

f(x; Θ̂(q−1))
,

where π̂
(q−1)
k and θ̂

(q−1)
k are the mixture parameters estimated in the

M step at the step (q − 1).

• M step: the parameters of the C observed classes and of the K − C

unobserved classes are estimated by maximizing the likelihood condi-

tionally to the probabilities sik and t
∗(q)
ik . Therefore, this step updates

now the estimates of parameters πk and θk for k = 1, ...,K. In the

case of the Gaussian mixture, for instance, the update formulas for the

parameter estimates are, for k = 1, ...,K:

π̂
(q)
k =

n
(q)
k + n

∗(q)
k

n + n∗
,

µ̂
(q)
k

=
1

n
(q)
k + n

∗(q)
k

(

n
∑

i=1

sikxi +
n∗

∑

i=1

t
∗(q)
ik

x∗

i

)

,

Σ̂
(q)
k =

1

n
(q)
k + n

∗(q)
k

(

S
(q)
k + S

∗(q)
k

)

.

where S
(q)
k =

∑n
i=1 sik(xi − µ̂

(q)
k )(xi − µ̂

(q)
k )t, S

∗(q)
k =

∑n∗

i=1 t
∗(q)
ik (x∗

i −

µ̂
(q)
k )(x∗

i − µ̂
(q)
k )t, n

(q)
k =

∑n
i=1 sik and n

∗(q)
k =

∑n∗

i=1 t
∗(q)
ik .

2.4 Model selection: determining the number of components

In the usual case of supervised classification, the number of classes is known

and the model selection consists only in choosing the most adapted densities

for the considered dataset. In the context of the studied situation, the total

number K of classes is assumed to be unknown and has to be chosen as well

as the conditional densities of the mixture model. Classical tools for model

selection in the mixture model framework are penalized likelihood criterions

10
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and include the AIC [1], BIC [20] and ICL [6] criterions. The Bayesian

Information Criterion (BIC) is certainly the most popular and consists in

selecting the model which maximizes the quantity:

BIC(M) = L(x1, ..., xn; Θ) −
ν(M)

2
log(n),

where ν(M) is the the number of parameters in model M and n is the

number of observations. For instance, the number of parameters for the

full Gaussian mixture model, i.e. full and different covariance matrices,

is equal to (k − 1) + kp + kp(p + 1)/2. The AIC criterion penalizes the

log-likelihood by ν(M) and the ICL criterion add to the BIC criterion the

quantity
∑n

i=1

∑K
k=1 tik log(tik) in order to favour well separated models. An

evaluation of both criterions in the context of unobserved class detection is

presented in the next section.

2.5 Classification with the adapted classifier

The previous paragraphs introduced a model-based discriminant analysis

method which adapts its mixture model to a new situation. Therefore, the

adapted model can be used to classify new observations in the future. In

the classical discriminant analysis framework, new observations are usually

assigned to a class using the maximum a posteriori (MAP) rule. The MAP

rule assigns a new observation x ∈ R
p to the class for which x has the highest

posterior probability. Therefore, the classification step mainly consists in

calculating the posterior probability P (Z = k|X = x) for each class k =

1, ...,K. In the case of the model described in this section, this posterior

probability can be expressed classically using the Bayes’ rule as follows:

P (Z = k|X = x) =
πkfk(x; θk)

f(x; Θ)
,

where f(x; Θ) =
∑K

k=1 πkfk(x; θk). Therefore, the posterior probabilities of

the new observations depend on both the classes observed in the learning

phase and the classes discovered in the discovery phase.

11
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Figure 1: Classification with AMDA of the Iris dataset: the classes “setosa”
(red triangles) and “versicolor” (green plus-es) have been observed during the
learning phase whereas the class “virginica” (blue crosses) has not.

3 Experimental results

This section presents experiments on toy and simulated datasets in order to

highlight the main features of the method introduced in the previous section.

3.1 An introductory example: the iris dataset

The dataset considered in this first experiment is a classical one: the iris

dataset made famous by its use by Fisher in [12] as an example for discrim-

inant analysis. This dataset, in fact collected by Edgar Anderson [2] in the

Gaspé Peninsula (Canada), is made of three classes corresponding to differ-

ent species of iris (setosa, versicolor and virginica) among which the classes

versicolor and virginica are difficult to discriminate (they are at least not

12
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linearly separable). The dataset consists of 50 samples from each of three

species and four features were measured from each sample. The four mea-

surements are the length and the width of sepal and petal. This dataset is

used here as a toy dataset because of its popularity and its biological nature.

Indeed, let suppose that botanists are studying iris species and have only

observed the two species setosa and versicolor. For this experiment, the

dataset has been randomly split into a learning dataset without virginica

examples and a test dataset with several virginica examples. The top-left

panel of Figure 1 shows what the botanists are supposed to have observed in

the past. The top-center panel of the same figure presents a sample of new

observations of iris for which the botanists are asked to classify. However,

as the top-right panel indicates, this new sample contains individuals from

a class which has not been observed by the botanists in the past and the

iris experts will very likely classify all these new observations as belonging

to either the class setosa or the class versicolor. The bottom-left panel of

Figure 1 shows the result of such a scenario, using Quadratic Discriminant

Analysis (QDA) in place of the iris experts, which yields to the classification

of all virginica observations in the class virginica. Remark that, even though

this results is disappointing from our point of view, it is understandable both

for an human expert and a classification method since the classes versicolor

and virginica are indeed very difficult to discriminate. The strategy pro-

posed in the previous section, hereafter referred to by Adaptive Model-based

Discriminant Analysis (AMDA), was applied to this dataset. The bottom-

center and right panels of Figure 1 presents the results provided by AMDA.

On the one hand, it turns out that Bayesian model selection criterions (BIC

here) succeed in identifying a new group of points in the test set. On the

other hand, once the number K of mixture component chosen, AMDA clas-

sifies almost perfectly (only 2 errors on this example) the observations of the

unobserved class virginica.
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Figure 2: Classification with AMDA of simulated data: 3 observed classes
and 1 unobserved class (light blue diamonds) in R

2.

3.2 Novelty detection with a multi-class classifier

This paragraph presents a Monte Carlo experiment on simulated data in

order to both evaluate Bayesian model selection criterions in the context

of unobserved class detection and to determinate the breakdown group size

for the detection of new classes. For this experiment, data were simulated

according a Gaussian mixture model made of 4 groups (3 observed groups

and one unobserved group) in a 2-dimensional space. Means and covariance

matrices were chosen in order to obtain separated enough groups. Figure 2

presents the simulated learning dataset (left panel), the test dataset (cen-

ter panel) and the true labels of the test observations (right panel). For

each of the 50 replications of the Monte Carlo study, 750 observations were

simulated according to a Gaussian mixture model (250 obs. for each of the

observed classes) in order to form the learning set and 250 + η observations

were simulated for the test set where η is the number of observations of the

unobserved class. For each replication, the number η varied from 2 to 50.

The left panel of Figure 3 presents the number of times where the correct

number of groups was selected by the three selection model criterions AIC,

BIC and ICL. It appears that the three studied selection model criterions

select always the correct number of groups when the unobserved group size

if larger than 10. For smaller sizes of the unobserved group, AIC turns out

to be the more stable criterion since it selects the correct number of groups

14
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Figure 3: Selection of the number of classes and recognition rates according
to the size of the unobserved class with AMDA on simulated data: 3 observed
classes and 1 unobserved class in R

2.

more frequently than the two other criterions. We therefore recommend the

use of AIC as model selection criterion in such a context. The right panel of

Figure 3 shows three recognition rates averaged on the Monte Carlo replica-

tions: total recognition rate, true positive rate and false positive rate. The

total recognition rate measures the overall correct classification rate for the

four classes (the three observed classes and the unobserved one). The true

positive rate measures the correct classification rate for observations of the

unobserved class (class #4). Conversely, the false positive rate evaluates how

many observations of the three observed classes are classified as belonging

to the new class. In a satisfying situation, the total recognition rate and the

true positive rate should be close to 1 whereas the false positive rate should

be close to 0. Both recognition rates were computed on the test dataset.

The right panel of of Figure 3 shows that the three recognition rates are

very good for sizes of the unobserved class larger than 10. We observe as

well that for sizes of the unobserved class smaller than 5 the true positive

rate is very unstable and this means that the unobserved class is not well

modeled. To summarize, this experiment demonstrates that AMDA in com-
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Figure 4: Classification with AMDA of simulated data: 3 observed classes
and 1 unobserved noise class (light blue diamonds) in R

2.

bination with AIC succeeds in detecting and modelling an unobserved class

in the test set for unobserved classes as small as 5–10 observations.

3.3 Detection of an unobserved noise class

This new experiment aims to evaluate the ability of AMDA to detect an

unobserved non Gaussian class of noise. For this, data were simulated in a

2-dimensional space according a mixture model made of 4 components: 3

Gaussian components and one uniform noise component. Means and covari-

ance matrices of Gaussians were again chosen in order to obtain separated

enough groups. The learning set was made of 750 observations from the

three Gaussian classes. The top-left panel of Figure 4 shows the observa-

tions of the learning set. The test set was made of 250 observations from the

three Gaussian classes (observed during the learning) and 31 observations
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Truth

Classif.
1 2 3 4

1 75 2 0 0

2 0 78 0 10

3 0 0 65 21

- - - - -

Truth

Classif.
1 2 3 4

1 75 2 0 0

2 0 77 0 0

3 0 0 64 0

4 0 1 1 31

(a) Confusion matrix for QDA (b) Confusion matrix for AMDA

Table 1: Confusion tables for QDA and AMDA on the test dataset for the
simulated data with one unobserved noise class (class #4).

from the unobserved uniform noise class. The top-center panel of this figure

presents the unlabeled test observations and the top-left panel indicates the

true labels of these observations. The bottom-left panel of Figure 4 shows the

classification of the test observations with the supervised classifier Quadratic

Discriminant Analysis (QDA). Unsurprisingly, QDA classifies all the obser-

vations from the noise class to one of the three known Gaussian classes.

Table 1 presents confusion tables for QDA and AMDA on the test dataset

and shows that all noise observations were classified into the classes #2 and

#3. The bottom-center and right panels of Figure 4 show respectively the

BIC values for AMDA with and without a noise component and the classifi-

cation provided by AMDA with a detected noise component (as indicated by

the largest BIC value). We can observe on this quite complex example that

AMDA succeeds in both detecting the unobserved noise class and modelling

it through a uniform component. Table 1.b confirms that AMDA recognizes

all noise observations as belonging to one unobserved class in the past and

makes only 2 false noise detections which is very satisfying.

4 Application to DNA barcoding

Determining to what species an organism belongs is probably the most com-

mon problem in Biology. The answer concerns many areas of practical im-

portance such as protecting endangered species, sustaining natural resources,

stopping disease vectors or monitoring environmental quality. Created in
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2003, the Consortium for the Barcode of Life1 is an international initiative

devoted to developing DNA barcoding as a standard tool to identify species.

Its purpose is to provide a simple and automatic method to correctly iden-

tify the species, with no or limited recourse to taxonomic expertise. The

5’ half of the mtDNA gene COI has been chosen as the barcode locus for

most animals, and gene markers with similar barcoding properties are inves-

tigated in plants, fungi, and protists. Traditionally, the barcoding procedure

is based on an algorithm combining k-NN with neighbour-joining trees [15].

Several alternatives to this method were quite successfully applied to various

kinds of organisms, although several major problems remain. One of them is:

how to detect new or unobserved species? This section aims to demonstrate

that AMDA can be used in such an application to detect new or unobserved

species.

4.1 The data

The data considered for this application come from a study on neotropical

bats within Guyana [10]. The original dataset contains DNA barcodes of 840

bat specimens representing 87 species. Each of the 840 DNA sequences has

a length of 657 variables and where each variable is coding for the “A”, “C”,

“G”, “T” nucleotides. Among the 840 observations of the original set, we only

kept for our study the 471 observations belonging to the 6 most represented

species (most of the original species only contain few observations). The 657

qualitative variables were also transformed to quantitative variables using

Multiple Correspondence Analysis (see [13] for details) and the 176 axes

associated to the largest eigenvalues (explaining more than 90% of the total

variance) were kept for the remaining of the experiment. Finally, duplicates

observations were removed from the dataset since many observations were

not unique due to the nature of the data (DNA sequences). The final dataset

contains 199 observations from 6 bat species described on 176 quantitative

variables.

1http://www.barcodingoflife.org
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Figure 5: Classification with AMDA of the DNA barcode data: 5 observed
bat species and 1 unobserved bat species represented on the two first prin-
cipal axes.

4.2 Experimental results

For this experiment, the preprocessed dataset was split into a learning set

of 100 observations without observations of the 6th class and a test set of

99 observations containing 8 observations of the 6th class (assumed to be

unobserved). The top panels of Figure 5 show the learning and test data on

the two first principal axes. We can first observe that the different species

are globally well separated and that some classes have inhomogeneous distri-

bution. In particular, the classes #1 (red triangles) and #5 (purple inverse

triangles) seem to be made of several sub-species. It appears as well that

the observations of the unobserved class (yellow squares) are very close to

observations of classes #1, #2 and #5 and this could complicate the discov-

ery and classification tasks. Unsurprisingly, the supervised classifier QDA
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Truth

Classif.
1 2 3 4 5 6

1 8 0 0 0 0 6

2 1 42 0 0 0 2

3 0 0 20 0 0 0

4 0 0 0 9 0 0

5 0 0 0 0 11 0

- - - - - - -

Truth

Classif.
1 2 3 4 5 6

1 8 2 0 0 0 0

2 0 42 0 0 0 0

3 0 0 20 0 0 0

4 0 0 0 9 0 0

5 0 0 0 0 11 0

6 1 0 0 0 0 8

(a) Confusion matrix for QDA (b) Confusion matrix for AMDA

Table 2: Confusion tables for QDA and AMDA on the the DNA barcode test
dataset: 5 observed bat species and 1 unobserved bat species (class #6).

assigned the observations of the new class to the known classes #1, #2 and

#5 as the bottom-left panel of Figure 5 shows. AMDA was also applied

to these data and BIC indicates (cf. bottom-center panel) that the most

adapted model is a mixture model with 6 components which means that the

test set contains 1 unobserved class. The bottom-right panel of Figure 5

shows the final classification of the test dataset provided by AMDA. As we

can see, AMDA has correctly detected and classified the 8 observations of

the unobserved species but misclassified 1 observations from class #1 (cf.

Table 2). However, the belonging to the class #1 of this observation could

be discussed regarding its DNA sequence. It is indeed natural to suspect a

labelling or a sequencing error in this case. To summarize, this experiment

has demonstrated the ability of AMDA to detect new species in a complex

real-world context and to adapt the supervised classifier to the new situation.

5 Conclusion and further works

This work has focused on the problem of learning a supervised classifier with

unobserved classes. An adaptive model-based discriminant analysis method

has been presented in this paper which is able to both detect unobserved

groups of points in a new set of observations and to adapt the supervised

classifier to the new situation. A two step approach made of a learning

phase and a discovery phase has been proposed for parameter estimation
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and two EM-based procedures have been presented for the discovery phase.

Experiments on simulated and real datasets have shown that the proposed

method is able to detect different kinds of unobserved classes (Gaussian,

uniform noise, ...). The proposed strategy has been also applied with success

to an important problem in Biology: the detection of novel species in DNA

barcoding. It remains however to deal with the problem of label switching

when C − K > 1. A way to solve this problem could be to ask domain

experts to classify some observations of the new detected groups in order to

associate a class name with the detected groups. Finally, it could be very

interesting to study the evolution of the proposed strategy in the context of

dynamic classification.
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