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Abstract. This article 3 presents a new adaptive texture model. Locally
parallel oscillating patterns are modeled with a weighted Hilbert space
defined over local Fourier coefficients. The weights on the local Fourier
atoms are optimized to match the local orientation and frequency of
the texture. We propose an adaptive method to decompose an image
into a cartoon layer and a locally parallel texture layer using this model
and a total variation cartoon model. This decomposition method is then
used to denoise an image containing oscillating patterns. Finally we show
how to take advantage of such a separation framework to simultaneously
inpaint the structure and texture components of an image with missing
parts. Numerical results show that our method improves state of the art
algorithms for directional and complex textures.

1 Introduction

The analysis and modeling of textures is a central topic in computer vision and
graphics. Texture modeling is fundamental for a large number of problems, such
as image segmentation, object recognition and image restoration.

1.1 Previous Works

Image Decomposition. A variational decomposition algorithm seeks a decompo-
sition f = u + v of an image f where u should capture the sketch of the image
and v the texture content. This decomposition is often defined as the solution
of a minimization problem involving two norms, one for each component. Total
variation [1] is broadly used as a cartoon model since it allows to recover piece-
wise smooth functions without smoothing sharp discontinuities. On the other
hand, the norm on v, the texture component, should be small for typical texture
patterns one wants to extract.

Following [1], where Rudin, Osher and Fatemi proposed to capture the noise
of an image by using the usual L2 norm, Yves Meyer [2] pushed forward the idea

3 This work has been done with the support of the French “Agence Nationale de la
Recherche” (ANR), under grant NATIMAGES (ANR-08-EMER-009), “Adaptivity
for natural images and texture representations”.
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of using more complex norms || · ||T to capture oscillating patterns. In particular
he proposed a weak norm dual of the TV norm. This idea inspired several works
[3–5]. An alternative to this dual norm approach has been presented in [6], the
Morphological Component Analysis: it uses the ℓ1 norm of decompositions on
bases such as a local cosine dictionary for the texture component and a wavelet
dictionary for the cartoon one.

Inpainting. The problem of inpainting can be stated as follows : given a region Ω
to be restored, use the valid surrounding information for synthesizing the most
plausible data in Ω. Several classes of methods have been considered. In the first
category of approaches, the focus has been on recovering the geometry. These
methods [7–11] use partial differential equations that propagate the information
from the boundary of the missing region to its interior. The drawback of this
kind of methods is their well-known incapacity to restore texture. In parallel to
these geometry-oriented approaches, the exemplar-based methods [12, 13] turned
out to be very efficient for reconstructing isotropic and non-geometric textures.
Different approaches have been proposed in combination with an exemplar-based
inpainting, either based on a manual intervention by the user [14], or trying to
combine texture and geometric interpolation in the most automated possible
way [15]. A last class of approaches relies on sparse regularization in several
transform domains (e.g. Fourier, wavelet or framelet) and also aims to deal with
geometric and texture information simultaneously [16, 17].

1.2 Contributions

The main contribution of this work is a new adaptive texture model. We propose
methods for using this new model in some applications such as image decom-
position, denoising and inpainting, and we present algorithms for solving these
problems. We model locally parallel textures in order to extract oscillating pat-
terns which present spatial and frequency variability. We start (section 2) by
defining a texture norm || · ||T = || · ||ξ depending on a parameter ξ(x) which is the
instantaneous frequency of the oscillating texture. For a point x in the image,
ξ(x) gives the local frequency ||ξ(x)|| and the local orientation ξ(x)/||ξ(x)|| of
the texture around x. The norm || · ||ξ is small for an oscillating pattern around
x if its main frequency is close to ξ(x). We then use this norm for a decom-
position problem (section 3): we want to separate the image into three layers,
f = u + v + w where u is the geometric layer, v is the texture modeled by
our norm and w is the noise. And finally the interest of such a texture norm is
highlighted in section 4 by its use in an inpainting method which simultaneously
inpaints the geometric and the texture layers. Numerical examples are shown
for decomposition, denoising and inpainting and our results are compared with
other methods.

In the following, we suppose that f ∈ R
N is a discrete image of N = n × n

pixels and the two operators gradient and divergence are discretized by forward
finite difference (for example, we refer the reader to [18] for details). In this
framework, we have ||∇|| =

√
8.
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2 Texture Modeling Using an Adaptive Hilbert Norm

2.1 Hilbert Texture Norm

In [18], Aujol and Gilboa proposed to use a linear Hilbert norm defined by some
symmetric positive kernel K: ||v||2T = 〈Kv, v〉L2 . This norm can be computed
using a frame {ψℓ}ℓ that is a possibly redundant family of P > N atoms ψℓ ∈
R

N . The decomposition of an image in this frame reads

Ψf = {〈f, ψℓ〉}P−1
ℓ=0 ∈ R

P , (1)

where Ψ : R
N → R

P is the frame operator.
Given a set of positive weights γℓ > 0, a norm can then be defined as

||f ||2T =
∑

ℓ

γ2
ℓ |〈f, ψℓ〉|2 = ||γΨf ||2L2 , (2)

where γ = diagℓ(γℓ). This corresponds to a Hilbert space associated to the kernel
K = Ψ∗γ2Ψ .

2.2 Texture Norm Over a Local Fourier Basis

The original construction in [18] uses the Fourier basis so that Ψ corresponds
to the discrete Fourier transform. This defines a translation-invariant kernel K.
This paper proposes to replace the global Fourier basis by a redundant local
Fourier basis, to capture the spatially and frequentially varying structures of
locally parallel textures.

Local Fourier Frame A discrete short time Fourier atom, located around a
position xp = p∆x and with local frequency ξk = k∆ξ = k/q is defined as

ψp,k[y] = q−1g[y − p∆x]e
2iπ

q
(y1k1+y2k2), (3)

for k ∈ {−q/2, . . . , q/2 − 1}2 and p ∈ {0, . . . , n/∆x}2, where g is a smooth
window, centered around 0, and the size of its support is q × q pixels with
q > ∆x. In this paper, we use a Haning window function: g[x] = sin(πx1/q −
π/2)2 sin(πx2/q − π/2)2.

The local Fourier frame {ψp,k}p,k is a redundant family of P = (q/∆x)2N
vectors of R

N . The decomposition Ψf = {〈f, ψp,k〉}p,k ∈ R
P of an image f in

this frame can be computed with the 2D Fast Fourier Transform of the q × q
image f [y]g[∆xp− y]. The computation of Ψf thus requires O(NQ log2(Q)/∆2

x)
operations.

The dual operator Ψ∗ reconstructs an image Ψ∗c ∈ R
N from a set of coeffi-

cients c[p, k] ∈ R
Q×N

Ψ∗c =
∑

p,k

c[p, k]ψp,k. (4)
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This dual operator is implemented using N/∆2
x inverse Fast Fourier Transforms.

The operator Ψ∗Ψ is in fact diagonal, and one has

Ψ∗Ψ = diagx(
∑

y

go[∆xy − x]2). (5)

and the norm of the operator Ψ∗Ψ is maxx

∑

y g
o[∆xy − x]2.

2.3 Weight Design

We define a Hilbert norm || · ||T adapted to oscillating texture as a weighted norm
over the local Fourier coefficients. The general formulation (2) is instantiated
using a local Fourier frame ψℓ = ψp,k for ℓ = (p, k) as follow

||f ||2T =
∑

p,k

γ2
p,k|〈f, ψp,k〉|2, (6)

where each γp,k > 0 weights the influence of each local Fourier atom in the
texture model.

Intuitively, γp,k should be small when the texture f contains a local oscillation
of frequency close to ξk around the point xp. We consider a locally oscillating
texture model, where typical texture patterns are locally well approximated by
a single atom.

The texture norm ||·||T is therefore parametrized by a vector field ξ : R
N 7→ R

2

which represents the local frequency of the texture component of f . For a point
x of the image, the local frequency around x is given by |ξ(x)| and the local
orientation of the texture is given by ξ(x)/|ξ(x)|. The norm || · ||T = || · ||ξ should
be small for an oscillating pattern around the point x if its main frequency is
close to ξ(x). As a consequence the weight γp,k should be small if ξk is close to
ξ(xp) or to −ξ(xp). By convention, ξ(x) is set to (0, 0) if there is no significant
oriented patterns around x in the image.

The weights are therefore defined as a function of ξ:

γp,k(ξ) =

{

1 if ξ(xp) = (0, 0)
(

1 −Gσ

(

||ξk + ξ(xp)||
)

)(

1 −Gσ

(

||ξk − ξ(xp)||
)

)

otherwise
(7)

where Gσ(x) = exp(−(x/σ)2/2)) and σ is a scale parameter reflecting the devia-
tion we are expecting to find in the frequency spectrum of the texture compared
to ξ(x) (in our numerical experiments we took σ = 1). When there is not a sig-
nificant oriented texture around xp, we choose γp,k = 1 for all k, in order not to
promote an arbitrary orientation in the extraction. The texture norm is finally
given by:

||v||2T = ||v||2ξ =
∑

p,k

γp,k(ξ)2|〈v, ψp,k〉|2 = ||Γ (ξ)Ψv||2L2 . (8)

where Γ (ξ) = diagℓ=(p,k)(γp,k(ξ)). This is actually a semi-norm since ||v||T = 0
does not imply v = 0 but, for the sake of simplicity, we use the term of norm in
the following.
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3 Image Decomposition and Denoising Using an

Adaptive Hilbert Norm

Decomposing an image into meaningful components is an important problem in
image processing. Using the texture norm introduced in section 2, we present an
image decomposition framework which aims to separate an image f into three
components: f = u+v+w, where u should capture the sketch of the image, v the
texture content and w the noise. We define this decomposition as the solution
of the following minimization problem:

(u, v, ξ) = argmin
ũ, ṽ, ξ̃∈C

µ||ṽ||2
ξ̃

+ λ||ũ||TV +
1

2
||f − ũ− ṽ||2L2 , w = f − u− v. (9)

where ||||TV is the total variation norm, ||u||TV =
∫

|∇u| (the discrete total varia-
tion of u is then defined by ||u||TV =

∑

16i,j6n |(∇u)i,j |) and ||v||ξ is our texture
norm defined by (8).

C is a set of constraints on the orientation field ξ. We first force the frequency
|ξ| to be large enough in order not to extract low frequencies in the texture com-
ponent v: ∀p, |ξ(xp)| > τ , for some real positive parameter τ > 0. Furthermore,
an oscillating pattern of frequency ξ(xp) is assumed to be present in the image
f around the point xp only if |〈f, ψp,k〉| > ηp where k = ξ(xp)/∆ξ and ηp > 0
is a real positive parameter. In fact, one does not want to arbitrary select a
frequency for an area of the image where there is no oscillating pattern. In our
numerical experiments we take τ = 2/q, where q is the size of the local Fourier
windows, and ηp = 2|Ψfp| where |Ψfp| is the average value of |〈f, ψp,k′〉| for
k′ ∈ {−q/2, . . . , q/2 − 1}2. In short, we have:

C =

{

ξ : R
N/∆x 7→ R

2

∣

∣

∣

∣

∀p, |ξ(xp)| > τ
∀p,

(

∀k, |〈f, ψp,k〉| 6 ηp

)

⇒ ξ(xp) = (0, 0)

}

(10)

The minimization (9) iterates between two steps: one on ξ and one on u and
v. We detail these two steps in the next two sections. Although the energy is
decreasing at each step, this algorithm is not guaranteed in general to converge
to a minimum. However we did not encounter any optimization problems during
our numerical experiments.

3.1 Minimization with respect to the Orientation Field ξ

If u and v are fixed, we search for the frequency field ξ verifying:

ξ = argmin
ξ̃∈C

||v||2
ξ̃
.

This requires, for each p, to compute:

ξ(xp) = argmin
ξ̃(xp)∈C

∑

k

γp,k(ξ̃(xp))
2|〈v, ψp,k〉|2.
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where γp,k(ξ̃(xp)) is given by (7).
If σ in the weight definition (7) is small enough, this minimization boils down

to compute maxk |〈v, ψp,k〉|, which allows us to speed up the computation by
taking:

ξ(xp) = ∆ξ argmax
k> τ

|∆ξ|

|Ψv[p, k]|. (11)

Figure 1 illustrates the underlying principle of this orientation estimation:
for a given point xp, a unique direction and frequency ξ(xp) is selected and the
corresponding weights γp,k(ξ) are constructed according to (7).

(a) (b) (c) (d)

Fig. 1. Illustration of the orientation estimations. From left to right: (a) the input
image f , (b) the windowed image around some point xp, (c) the corresponding local
Fourier transform and (d) the weights γp,k(ξ) corresponding to the ξ estimated from
the local Fourier transform.

3.2 Minimization with respect to the Components u and v

If ξ is fixed, we search for u and v verifying:

(u, v) = argmin
ũ,ṽ

µ||Γ (ξ)Ψṽ||2L2 + λ||ũ||TV +
1

2
||f − ũ− ṽ||2L2 , (12)

where Γ (ξ) is defined at the end of section 2.3. This minimization is done itself
iteratively on u and v. Starting from some initial u(0) and v(0), one solves:

• v is fixed: one minimizes

u(i+1) = argmin
ũ

λ||ũ||TV +
1

2
||(f − v(i)) − ũ||2L2 . (13)

This minimization can be solved using iterations of the original algorithm
of Chambolle [19]. This algorithm is based on the observation that u(i+1) =
(f − v(i)) + λ div(w) where w is the solution of the following constrained min-
imization problem

w = argmin
||w̃||∞61

||(f − v(i)) + λ div(w̃)||, (14)
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where the infinite norm of a vector field w = (w1, w2) is

||w||∞ = max
i,j

√

w1[i, j]2 + w2[i, j]2. (15)

Chambolle proposed a fixed point algorithm to solve (14), and one can also
use a projected gradient descent by initializing w(0) = 0 and then iterating a
gradient step

w̄(ℓ) = w(ℓ) + ν∇(ū(k) + λ div(w(ℓ))) (16)

and a projection on the constraints

∀ (i, j), w(ℓ+1)[i, j] =
w̄(ℓ)[i, j]

max(||w̄(ℓ)[i, j]||, 1)
. (17)

The gradient step size should satisfy ν < 2/||∇||2 = 1/4 (with the discretization
used in this paper) so that f − v(i)) + λ div(w(ℓ)) converges with ℓ → +∞ to
u(i+1).

• u is fixed: one minimizes

v(i+1) = argmin
ṽ

µ||Γ (ξ)Ψṽ||2L2 +
1

2
||(f − u(i+1)) − ṽ||2L2 , (18)

Computing the gradient of (18), we obtain that v(i+1) satisfies:

(2µΨ∗Γ 2Ψ + Id)v(i+1) = f − u(i+1) (19)

and the solution can be obtained by conjugate gradient descent (notice that
A = µΨ∗Γ 2Ψ + Id is positive symmetric).

3.3 Decomposition of a Noise Free Image

If the input image f does not contain any noise, one can also decompose f into
only two components, the sketch u and the texture f − u:

(u, ξ) = argmin
ũ, ξ̃∈C

λ||ũ||TV +
1

2
||f − ũ||2

ξ̃
, (20)

In this case, a faster algorithm can be used. The minimization step on ξ is the
same as the one described in section 3.1, but the second step on v is different.
One can use an extension of Chambolle’s algorithm designed to deal with inverse
problem, see for instance [20, 21] for equivalent description of this method. From
an initial texture layer u(0) ∈ R

N , this algorithm iterates between a gradient
step of the functional u 7→ ||γΨu− y||2 (where y = γΨf):

ū(k) = u(k) + νΨ∗γ(y − γΨu(k)), (21)
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where ν > 0 is a step size that should obey ν < 2/||γΨ ||2, and a denoising step

u(k+1) = argmin
ũ∈RN

1

2
||ū(k) − ũ||2 + λν||ũ||TV. (22)

which is equivalent to (13) and therefore can be solved using the projected
gradient descent described in section 3.2.

3.4 Numerical Examples

The local Fourier transform described in section 2.2 depends on two parameters
q, which is the size of the local Fourier windows, and ∆x which measure the
overlapping of the windows. Let us note that an estimation of the lowest fre-
quency ξmin present in the texture component to extract is an indication for the
choice of the parameter q. As a matter of fact, if q is too small, the spectrum
of the local Fourier windows cannot differentiate very low frequency oscillating
patterns from geometric information. In fact, we have ξk = k/q and we can take
q = 3/ξmin to be sure that ξmin is detected. As for the parameter ∆x, which
verifies ∆x < q, it should be taken smaller for a texture which strongly varies
spatially than for a texture which is smoother. Good candidates for ∆x are for
example q/2 or q/4.

Figure 2 presents an example of the decomposition of a noise free image:
the input image 256 × 256, shown in the first row, is generated by addition
of a cartoon picture and a synthetic texture whose orientation and frequency
vary spatially. These two components are shown in the first column. We applied
the TV − L2 method [1] and we chose the smallest parameter λ (on the total
variation norm) which provides a total extraction of the texture (here λ = 0.9).
For our method we chose λ = 0.1, q = 16, ∆x = 4.

In Figure 3 an image f composed by a cartoon picture and a fingerprint tex-
ture is degraded by a Gaussian noise. The noisy image f is then decomposed into
three components u, v, and w using our method with the following parameters
λ = 0.1, µ = 0.3, q = 16, ∆x = 4. Since u captures the sketch of the image, v the
locally parallel patterns and w the noise, we can reconstruct a restored version
of the noisy image by addition of u and v.

With the same idea, we show in Figure 4 an example of result obtained by
this decomposition and denoising process on the ”barbara” image. Figure 5 com-
pares our result with two other denoising methods. Every parameter is chosen to
achieve the best SNR result. The decomposition between structure and texture
provides a better reconstruction of the texture and therefore a better SNR. Let
us remark that the former image decomposition frameworks (such as TV-G [2]
or TV-H−1 [4]) are not suitable for denoising. As a matter of fact, the G and the
H−1 norms are low for any high-frequency patterns and are then also low for a
large part of the noise. On the other hand, the TV norm penalizes strongly os-
cillating patterns and therefore these models are not able to separate efficiently
the texture from the noise. On the contrary our norm is low for patterns which
presents a certain frequency and orientation and is therefore more appropriate
for denoising.
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(a)

(b) (c) (d)

(e) (f) (g)

Fig. 2. A synthetic example: (a) the input image, first column: (b) original structure
and (e) texture components used to produce the image, second column (c) and (f):
decomposition results with TV − L2 and third column (d) and (g) : decomposition
results with our adapted TV-Hilbert method. The obtained result is almost perfect.

4 Inpainting With Adapted Hilbert Space

4.1 Simultaneous cartoon and texture inpainting

Inpainting aims at restoring an image f from which a set Ω ⊂ {0, . . . , n− 1}2 of
pixels is missing. It corresponds to the inversion of the ill posed linear problem
y = Φf + ε where Φ is defined as

(Φf)(x) =

{

0 if x ∈ Ω,
f(x) if x /∈ Ω.

(23)
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(a) f0

(b) f (c) u + v (d) ξ

(e) u (f) v (g) w

Fig. 3. First row: (a) the original noise free image. Second row: (b) the input noisy
image f , (c) the restored image u + v and (d) the estimated orientations of oscillating
patterns ξ. Third row: the decomposition into three components, (e) the sketch u of
the image, (f) the texture content v and (g) the noise w.

and ε is an additive noise. We search for the image f as a decomposition f ≈ u+v
where u has a low total variation and v has a small Hilbert texture norm. This
corresponds to the solution of

(u, v, ξ) = argmin
ũ, ṽ, ξ̃∈C

λ||ũ||TV + µ||ṽ||2
ξ̃

+
1

2
||Φ(ũ+ ṽ) − y||2L2 , (24)

where µ and λ should be adapted to the noise level and the regularity of f .
The inpainting is done similarly to section 3 by performing the minimization

iteratively on ξ, u and v. The minimization step on ξ does not change, see
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(a) (b) Noisy input image f (c)
Original image f0 (SNR = 10.25) Restored image u + v

(d) u (e) v (f) w

Fig. 4. first row: (a) the original noise free image f0, (b) the noisy input image f and
(c) the restored image u + v. second row: the decomposition (d) u the sketch of the
image, (e) v the texture content and (f) w the noise.

(a) SNR=17.34 (b) SNR=17.98 (c) SNR=19.93

Fig. 5. Comparison with other methods. Denoising of image f from Fig. 4. (a) TV-
denoising (λ is chosen to achieve the best SNR, λ = 0.1),(b) Translation Invariant
Wavelet Denoising (the threshold is chosen to achieve the best SNR) and (c) our result
which achieves a better SNR.

section 3.1. We describe here the second step, on u and v. Starting from some
initial u(0) and v(0), one solves
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• v is fixed: one minimizes

u(i+1) = argmin
ũ

λ||ũ||TV +
1

2
||Φũ− ȳ||2L2 (25)

where ȳ = y − Φv(i). Similarly to (20), this minimization can again be seen
as an ill-posed inverse problem from measurements ȳ = Φ(f − v(i)) + ε (in
(20), y = γΨf) with a total variation regularization. We can therefore use the
extension of Chambolle’s algorithm described in section 3.3.

• u is fixed: one minimizes

v(i+1) = argmin
ṽ

µ||γΨṽ||2 +
1

2
||Φṽ − ȳ||2L2 (26)

where ȳ = y−Φu(i+1) and where γ are the local Fourier weights. The solution
is computed by conjugate gradient descent to solve the linear system

(2µΨ∗γ2Ψ + Φ∗Φ)v(i+1) = Φ∗ȳ, (27)

If no noise is present, then the value of λ + µ can be decreased during the
iterations of the inpainting algorithm, in order to have a small norm for the
residual term 1

2 ||Φ(ũ+ ṽ) − y||2L2 .

4.2 Numerical Examples

Figure 6 presents an example of inpainting reconstruction of the image from
Figure 3 degraded by randomly placed holes (350 squares, 15 pixels by 15 pixels,
the image is of size 512×512). We used the same parameters as in Figure 3. Let
us notice that the texture is well reconstructed thanks to the estimation of the
orientations and to the overlapping of the local FD windows. On the other hand
the reconstruction of the geometric component is only accomplished by the effect
of the Total Variation norm. However since our method provides a separation
into two components (geometry and texture), one can imagine to apply a post-
processing on the geometric component using any method available in order to
improve the final reconstruction. Figure 7 shows a second example of inpainting
reconstruction for the image from Figure 4. For comparison, we also show the
result of the TV diffusion process and the MCA method [17], using a curvelet
dictionary for the cartoon component and a local discrete cosine transform for
the texture part. For images with locally parallel patterns, our method achieves
a better reconstruction of the directions of the texture inside the missing parts.

5 Conclusion

In this paper we presented a new adaptive texture model well-suited for locally
parallel oscillating patterns. The use of this adaptive norm improves state of
the art algorithms both in decomposition and inpainting for images which con-
tain oriented textures. The adaptivity is in fact crucial for this kind of images
where the texture is anisotropic, since it allows to take into account the texture
geometry.
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(a) y (b) u (c) v

(d) u + v (e) TV Inpainting

Fig. 6. First row: (a) y, the image to inpaint degraded by randomly chosen holes in
black, the original image is f0 in Fig. 3(a), (b) u the inpainted geometric component,
(c) v the inpainted texture component. Second row: (d) u + v the reconstruction using
our method, (e) ”TV Inpainting” using a simple TV diffusion.
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