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Coloring the square of the Cartesian product of two cycles
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The square G 2 of a graph G is defined on the vertex set of G in such a way that distinct vertices with distance at most 2 in G are joined by an edge. We study the chromatic number of the square of the Cartesian product C m 2C n of two cycles and show that the value of this parameter is at most 7 except when (m, n) is (3, 3), in which case the value is 9, and when (m, n) is (4, 4) or (3, 5), in which case the value is 8. Moreover, we conjecture that whenever G = C m 2C n , the chromatic number of G 2 equals ⌈mn/α(G 2 )⌉, where α(G 2 ) denotes the maximum size of an independent set in G 2 .

Introduction

A proper k-coloring of a graph G with vertex set V (G) and edge set E(G) is a mapping c from V (G) to the set {1, 2, . . . , k} such that c(u) = c(v) whenever uv is an edge in E(G). The chromatic number χ(G) of G is the smallest k for which G admits a proper k-coloring.

Let G and H be graphs. The Cartesian product G2H of G and H is the graph with vertex set V (G) × V (H) where two vertices (u 1 , v 1 ) and (u 2 , v 2 ) are adjacent if and only if either u 1 = u 2 and v 1 v 2 ∈ E(H) or v 1 = v 2 and u 1 u 2 ∈ E(G). Let P n and C n denote respectively the path and the cycle on n vertices. We will denote by G m,n the grid P m 2P n with m rows and n columns and by T m,n the toroidal grid C m 2C n with m rows and n columns.

The square G 2 of a graph G is given by V (G 2 ) = V (G) and uv ∈ E(G 2 ) if and only if uv ∈ E(G) or u and v have a common neighbor. In other words, any two vertices within distance at most 2 in G are linked by an edge in G 2 . Let ∆(G) denote the maximum degree of G. The problem of determining the chromatic number of the square of particular graphs has attracted very much attention, with a particular focus on the square of planar graphs (see e.g. [START_REF] Dvořák | Coloring squares of planar graphs with girth six[END_REF][START_REF] Havet | List colouring squares of planar graphs[END_REF][START_REF] Van Den Heuvel | Coloring the square of a planar graph[END_REF][START_REF] Lih | Coloring the square of an outerplanar graph[END_REF][START_REF] Molloy | A bound on the chromatic number of the square of a planar graph[END_REF]), following Wegner [START_REF] Wegner | Graphs with given diameter and a coloring problem[END_REF], who conjectured that every planar graph G with maximum degree at least 8 satisfies χ(G 2 ) ≤ ⌊ 3 2 ∆(G)⌋ + 1. Havet et al. proved in [START_REF] Havet | List colouring squares of planar graphs[END_REF] that the square of any such planar graph admits a proper coloring using ( 32 + o(1))∆(G) colors. In [START_REF] Chiang | On L(d, 1)-labeling of Cartesian product of a cycle and a path[END_REF], Chiang and Yan studied the chromatic number of the square of Cartesian products of paths and cycles and proved the following: Theorem 1 (Chiang and Yan [START_REF] Chiang | On L(d, 1)-labeling of Cartesian product of a cycle and a path[END_REF])

If G = C m 2P n with m ≥ 3 and n ≥ 2, then χ(G 2 ) =       

4

if n = 2 and m ≡ 0 (mod 4), 6

if n = 2 and m ∈ {3, 6}, 6

if n ≥ 3 and m ≡ 0 (mod 5), 5

otherwise.

Since C m 2P n is a subgraph of C m 2C n , Theorem 1 provides lower bounds for the chromatic number of the square of toroidal grids.

A proper coloring of the square G 2 of a graph G is often called a distance-2 coloring of G. In [START_REF] Pór | Colourings of the Cartesian product of graphs and multiplicative Sidon sets[END_REF], Pór and Wood studied the notion of F -free coloring. Let F be a family of connected bipartite graphs, each with at least three vertices. An F -free coloring of a graph G is then a proper vertex coloring of G with no bichromatic subgraph in F . This notion generalizes several types of colorings and, in particular, distance-2 coloring when F = {P 3 }. They obtained an upper bound on the F -free chromatic number of cartesian products of general graphs. Moreover, in case of distance-2 coloring, they proved that the chromatic number of the square of any graph given as the Cartesian product of d cycles is at most 6d + O(log d).

An L(p, q)-labeling of a graph G is an assignment φ of nonnegative integers to the vertices of G so that |φ(u)φ(v)| ≥ p whenever u and v are adjacent and |φ(u)-φ(v)| ≥ q whenever u and v are at distance 2 in G. The λ p q -number of G is defined as the smallest k such that G admits an L(p, q)-labeling on the set {0, 1, . . . , k} (note that such a labeling uses k + 1 labels). It follows from the definition that any L(1, 0)-labeling of G is an ordinary proper coloring of G and that any L(1, 1)-labeling of G is a proper coloring of the square of G. Therefore, χ(G) = λ 1 0 (G) + 1 and χ(G 2 ) = λ 1 1 (G) + 1 for every graph G. The notion of L(p, q)-labeling was introduced by Griggs and Yeh [START_REF] Griggs | Labeling graphs with a condition at distance two[END_REF] to model the Channel Assignment Problem. They conjectured that λ 2 1 (G) ≤ ∆(G) 2 for every graph G. This motivated many authors to study L(2, 1)labeling of some particular classes of graphs, and the case of Cartesian products of graphs was investigated in [START_REF] Chiang | On L(d, 1)-labeling of Cartesian product of a cycle and a path[END_REF][START_REF] Georges | Labeling products of complete graphs with a condition at distance two[END_REF][START_REF] Jha | Optimal L(2, 1)-labeling of Cartesian products of cycles, with an application to independent domination[END_REF][START_REF] Jha | Optimal L(2, 1)-labelings of certain direct products of cycles and Cartesian products of cycles[END_REF][START_REF] Jha | On L(2, 1)labelings of the Cartesian product of a cycle and a path[END_REF][START_REF] Kuo | On L(2, 1)-labelings of Cartesian products of paths and cycles[END_REF][START_REF] Schwarz | L(2,1)-labelings of Cartesian products of two cycles[END_REF][START_REF] Whittlesey | On the λ number of Q n and related graphs[END_REF].

In particular, Schwartz and Troxell [START_REF] Schwarz | L(2,1)-labelings of Cartesian products of two cycles[END_REF] considered L(2, 1)-labelings of products of cycles and proved the following: Theorem 2 (Schwartz and Troxell [START_REF] Schwarz | L(2,1)-labelings of Cartesian products of two cycles[END_REF])

If T m,n = C m 2C n with 3 ≤ m ≤ n, then λ 2 1 (T m,n ) =    6 if m, n ≡ 0 (mod 7), 8 if (m, n) ∈ A, 7 
otherwise.

where A = (3, i) : i ∈ {4, 10} or i = 2j + 1 with j ∈ N ∪ (5, i) : i ∈ {5, 6, 9, 10, 13, 17} ∪ (6, 7), [START_REF] Van Den Heuvel | Coloring the square of a planar graph[END_REF][START_REF] Lih | Coloring the square of an outerplanar graph[END_REF], [START_REF] Jha | Optimal L(2, 1)-labeling of Cartesian products of cycles, with an application to independent domination[END_REF][START_REF] Jha | On L(2, 1)labelings of the Cartesian product of a cycle and a path[END_REF], [START_REF] Jha | On L(2, 1)labelings of the Cartesian product of a cycle and a path[END_REF][START_REF] Kuo | On L(2, 1)-labelings of Cartesian products of paths and cycles[END_REF] .

Since every L(2, 1)-labeling is an L(1, 1)-labeling,

λ 2 1 (G)+1 ≥ λ 1 1 (G)+1 = χ(G 2
) for every graph G. Therefore, Theorem 2 provides upper bounds on the chromatic number of the square of toroidal grids (the upper bounds corresponding to the three cases of Theorem 2 are 7, 9, and 8, respectively).

Our main result will improve the bounds provided by Theorems 1 and 2 and by the general result of Pór and Wood [START_REF] Pór | Colourings of the Cartesian product of graphs and multiplicative Sidon sets[END_REF]:

Theorem 3 If T m,n = C m 2C n with 3 ≤ m ≤ n, then χ(T 2 m,n ) ≤ 7 except χ(T 2 3,3 ) = 9 and χ(T 2 3,5 ) = χ(T 2 4,4 ) = 8.

Coloring the squares of toroidal grids

In this section, we shall prove Theorem 3 and give more precise bounds for Cartesian products of some particular cycles. We shall construct explicit colorings using combinations of patterns given in matrix form. Each pattern can be thought of as a proper coloring of the square of the toroidal grid of the same size. For instance, the pattern E depicted in Figure 1 provides in an obvious way a proper 7-coloring of the square of T 3,7 . Moreover, by repeating this pattern, we can easily obtain a proper 7-coloring of the square of toroidal grids of the form T 3m,7q .

Let G be a graph and c be a proper coloring of G. Since every color class under c is an independent set, we have the following standard observation:

Observation 4 χ(G) ≥ |V (G)| α(G)
where α(G) denotes the maximum size of an independent set in G.

We shall extensively use a result of Sylvester. Given two integers r and s, let S(r, s) denote the set of all nonnegative integer combinations of r and s: S(r, s) = {αr + βs : α, β nonnegative integers}.

Lemma 5 (Sylvester) If r and s are relatively prime integers greater than 1, then t ∈ S(r, s) for all t ≥ (r-1)(s-1), and (r-1)(s-1)-1 / ∈ S(r, s).

We then have:

Theorem 6 If T m,n = C m 2C n with m ∈ S(4, 7) and n ∈ S(3, 7), then χ(T 2 m,n ) ≤ 7.
Proof. Let m ∈ S(4, 7) and n ∈ S(3, 7). We use the following 7 × 7 pattern A to prove the claim. It is easy to check that this pattern properly colors T 2 7,7 . For any pattern X, let X i , X ′ j be the subpatterns of X such that X i is obtained by taking the i first rows of X and X ′ j is obtained by taking the j first columns of X. It is again easy to check that the patterns A 4 and A ′ 3 provide proper colorings of T 2 4,7 and T 2 7,3 , respectively. Therefore, using combinations of A and A 4 , we can get a m × 7 pattern Y . Moreover, using combinations of Y and Y ′ 3 , we can get a m × n pattern that provides a proper 7-coloring of T 2 m,n , except when (m, n) = (7a + 4b, 7c + 3d) with a, c ≥ 0 and b, d > 0. In that case, it is enough to replace the color 4 in the upper-right corner of the rightmost copy of Y ′ 3 by 3 (see example below).

For example, the following pattern B provides a proper 7-coloring of T We now consider For the lower bounds, notice that the intersection of any independent set I in T 2 3,n with any two consecutive columns contains at most one vertex. Therefore, α(T 2 3,n ) ≤ ⌊n/2⌋. By Observation 4, χ(T 2 3,n ) > 6 when n is odd; also, χ(T 2 3,n ) > 7 when n = 5 and χ(T 2 3,n ) ≥ 9 when n = 3.

T 2 3,n . Theorem 8 If T 3,n = C 3 2C n with n ≥ 3, then χ(T 2 3,n ) =        6 if n is even, 7 if n is odd and n ≥ 7, 8 if n = 5, 9 if n = 3. C = 1 
As in the proof of Theorem 6, we can obtain proper colorings of T 2 3k,n , for k ≥ 1, by using combinations of the patterns given in Theorem 8. We thus get the following:

Corollary 9 If T 3k,n = C 3k 2C n with k ≥ 1 and n ≥ 3, then χ(T 2 3k,n ) ≤        6 if n is even, 7 if n is odd and n ≥ 7, 8 if n = 5, 9 if n = 3.
We now consider T 2 4,n . 

χ(T 2 4,n ) =    6 if n ≡ 0 (mod 3), 8 if n = 4, 7
otherwise.

Proof. For m = 3k, this follows from Corollary 9. Let F and G be the patterns given in Figure 2. These patterns clearly provide proper colorings of T 2 4,3 and T 2 4,5 , respectively. Thanks to Lemma 5, by using combinations of F and G, we can get a proper 7-coloring of T 2 4,n except when n ∈ {4, 7}. By using patterns H 1 and H 2 given in Figure 2, we obtain proper colorings of T 2 4,4 and T 2 4,7 , respectively. An independent set in T 2 4,n has at most two vertices in any three consecutive columns. Thus, α(T 2 4,n ) ≤ ⌊ 2n 3 ⌋. By Observation 4, χ(T 2 4,n ) > 6 when n is not a multiple of 3 and χ(T 2 4,n ) ≥ 8 when n = 4.

Using combinations of the patterns from Theorem 10, we get the following: We now consider T 2 5,n .

Corollary 11 If T 4k,n = C 4k 2C n with k ≥ 1 and n ≥ 3, then χ(T 2 4k,n ) ≤    6 if n ≡ 0 (mod 3), 8 if n = 4,
Theorem 12 If T 5,n = C 5 2C n with n ≥ 5, then χ(T 2 5,n ) =    5 if n ≡ 0 (mod 5), 7 if n = 7, 6
otherwise.

Proof. Let I and J be the patterns given in Figure 3; they provide proper colorings of T 2 5,5 and T 2 5,6 , respectively. We use combinations of I and J to get a proper 5-coloring (resp. 6-coloring) of T 2 5,n when n ≡ 0 (mod 5) (resp. when n ∈ S(5, 6)).

The remaining cases are n ∈ {7, 8, 9, 13, 14, 16, 19}. The corresponding patterns are given below, except for n = 16, in which case the corresponding pattern is obtained by combining two 5 × 8 patterns. Using combinations of the patterns from Theorem 12, we get the following:

Corollary 13 If T 5k,n = C 5k 2C n with k ≥ 1 and n ≥ 5, then χ(T 2 5k,n ) ≤    5 if n ≡ 0 (mod 5), 7 if n = 7, 6
otherwise.

At this point, we are able to prove our main result.

Proof of Theorem 3. By Corollaries 9, 11, and 13, we already proved that if one of m, n is a multiple of 3, 4, or 5, then Theorem 3 holds. By Lemma 5 and Corollary 7, the remaining cases are 11 × 11, 13 × 13, 13 × 17 and 17 × 17. Let K be the 7 × 13 pattern given in Figure 4. As in the proof of Theorem 6, we use combinations of K and K 3 (the corresponding pattern, not the complete graph) to obtain an m × 13 pattern X for m ∈ S(7, 3). We then use combinations of n ∈ S [START_REF] Pór | Colourings of the Cartesian product of graphs and multiplicative Sidon sets[END_REF][START_REF] Griggs | Labeling graphs with a condition at distance two[END_REF]. In this way, we can obtain proper 7-colorings of T 2 13,13 , T 2 17,13 , and T 2 17,17 . We simply transpose the 17 × 13 pattern to get a 13 × 17 pattern. Finally, an 11 × 11 pattern that properly 6-colors T 2 11,11 is as follows: As we have seen before, the general upper bound of 7 for χ(T 2 m,n ) given in Theorem 3 can be decreased for particular values of m and n. We now provide other cases for which this bound can be decreased to 6.

Using combinations of the 11 × 11 pattern above, we get:

Corollary 14 If T m,n = C m 2C n with m, n ≥ 3 and m, n ≡ 0 (mod 11), then χ(T 2 m,n ) ≤ 6.
The same bound can be obtained for T Proof. Let L and M be the patterns given in Figure 5, which properly 6color T 2 6,4 and T 2 6,2 , respectively. By Lemma 5, we can get a proper 6-coloring of T 2 6,n by using combinations of patterns L and M.

Using combinations of the patterns from Theorem 15, we get the following:

Corollary 16 If T 6k,n = C 6k 2C n with k ≥ 1 and n ≥ 6, then χ(T 2 6k,n ) ≤ 6.
Finally, using Corollary 13 and the lower bound given by Theorem 1, we get the following 

Discussion

In this paper, we investigated the chromatic number of the squares of toroidal grids; that is, squares of Cartesian products of two cycles. We obtained general upper bounds for this parameter by providing explicit proper colorings based on the use of specific patterns. This leads in an obvious way to a linear time algorithm for constructing such colorings. Table 1 summarizes those of our results that give tight bounds. We also included two cases, marked by ( * ), for which the tight bound has been obtained by a computer program. In all the cases for which a tight bound has been obtained, this bound matches the lower bound given by Observation Moreover, it is likely that the chromatic number of the squares of sufficiently large toroidal grids is at most 6. We therefore propose the following:

Conjecture 19 The exists some constant c such that for every toroidal grid T m,n with m, n ≥ c, χ(T 2 m,n ) ≤ 6.

Corollary 7

 7 2 11,13 , obtained from A by using the combinations 11 = 7+4 and 13 = 7+2×3 and replacing the color 4 by 3 in the upper-right corner. If T m,n = C m 2C n with m ≥ 12 and n ≥ 18, then χ(T 2 m,n ) ≤ 7.
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 1 Figure 1: Patterns for Theorem 8
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 2 Figure 2: Patterns for Theorem 10
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 3 Figure 3: Patterns for Theorem 12

  independent set in T2 5,n has at most one vertex in any column; thus α(T 2 5,n ) ≤ n. Therefore, χ(T 2 5,n ) ≥ 5 by Observation 4. It is easy to check that α(T 2 5,n ) < n when n is not a multiple of 5 (and thus χ(T 2 5,n ) > 5) and that α(T 2 5,7 ) = 5 (and thus χ(T 2 5,7 ) ≥ 35 5 = 7).
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 4 Figure 4: Pattern for Theorem 3

Theorem 15 Figure 5 :

 155 Figure 5: Patterns for Theorem 15

Corollary 17

 17 If T m,n = C m 2C n with m, n ≥ 3, then χ(T 2 m,n ) ≥ 5. Moreover, χ(T 2 m,n ) = 5 if and only if m, n ≡ 0 (mod 5).

Table 1 :

 1 4. Therefore, we propose the following: values of m and n χ(T 2 m,n ) m, n ≡ 0 (mod 5) 5 m = 3, n ≡ 0 (mod 2) 6 m = 4, n ≡ 0 (mod 3) 6 m = 6, n ≥ 6 6 m = 8, n = 11, 13 ( * ) 6 m ≡ 0 (mod 3), m ≡ 0 (mod 5), n ≡ 0 (mod 2), n ≡ 0 (mod 5) 6 m ≡ 0 (mod 5), n ≡ 0 (mod 5), n ≥ 6, n = 7 6 m ≡ 0 (mod 6), n ≥ 6, n ≡ 0 (mod 5) 6 m, n ≡ 0 (mod 11), m ≡ 0 (mod 5), n ≡ 0 (mod 5) 6 m = 3, n ≡ 0 (mod 2), n = 3, 5 7 m = 4, n ≡ 0 (mod 3), n = Summary of results on χ(T 2 m,n ) Conjecture 18 For every toroidal grid T m,n with m, n ≥ 3, χ(T 2 m,n ) = |V (T 2 m,n )| α(T 2 m,n ) .

Acknowledgments. This work has been done while the second author was visiting the LaBRI thanks to a postdoctoral fellowship from Bordeaux 1 University. The first author has been partially supported by the ANR Project GraTel (Graphs for Telecommunications), ANR-blan-09-blan-0373-01, 2010-2012. We thank the editor for his helpful comments on our manuscript. Conjecture 19 was suggested to us by the editor and one of the anonymous referees.