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Abstract

The square G2 of a graph G is defined on the vertex set of G in
such a way that distinct vertices with distance at most two in G are
joined by an edge. We study the chromatic number of the square of
the Cartesian product Cm2Cn of two cycles and show that the value
of this parameter is at most 7 except when m = n = 3, in which case
the value is 9, and when m = n = 4 or m = 3 and n = 5, in which
case the value is 8.

Moreover, we conjecture that for every G = Cm2Cn, the chromatic
number of G2 equals ⌈mn/α(G2)⌉, where α(G2) denotes the size of a
maximal independent set in G2.
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1 Introduction

A k-coloring of a graph G with vertex set V (G) and edge set E(G) is a
mapping c from V (G) to the set {1, 2, . . . , k} such that c(u) 6= c(v) whenever
uv is an edge in E(G). The chromatic number χ(G) of G is the smallest k
for which G admits a k-coloring.

Let G and H be graphs. The Cartesian product G2H of G and H is the
graph with vertex set V (G) × V (H) where two vertices (u1, v1) and (u2, v2)
are adjacent if and only if either u1 = u2 and v1v2 ∈ E(H) or v1 = v2 and
u1u2 ∈ E(G). Let Pn and Cn denote respectively the path and the cycle on
n vertices. We will denote by Gm,n = Pm2Pn the grid with m rows and n
columns and by Tm,n = Cm2Cn the toroidal grid with m rows and n columns.

The square G2 of a graph G is given by V (G2) = V (G) and uv ∈ E(G2)
if and only if uv ∈ E(G) or there exists w ∈ V (G) such that uw, vw ∈
E(G). In other words, any two vertices within distance at most two in
G are linked by an edge in G2. The problem of determining the chromatic
number of the square of particular graphs has attracted very much attention,
with a particular focus on the square of planar graphs (see e.g. [2, 5, 6, 11,
12]), following Wegner [15] who conjectured that every planar graph with
maximum degree ∆ ≥ 8 satisfies χ(G2) ≤ ⌊3

2
∆⌋+1. Havet et al. proved in [5]

that the square of any such planar graph admits a coloring using (3
2
+o(1))∆

colors.
In [1], Chiang and Yan studied the chromatic number of the square of

Cartesian products of paths and cycles and proved the following:

Theorem 1 (Chiang and Yan [1]) Let G = Cm2Pn, m ≥ 3, n ≥ 2.
Then

χ(G2) =















4 if n = 2 and m ≡ 0 (mod 4),
6 if n = 2 and m = 3, 6,
6 if n ≥ 3 and m 6≡ 0 (mod 5),
5 otherwise.

Since Cm2Pn is a subgraph of Cm2Cn, the previous theorem provides
lower bounds for the chromatic number of the square of toroidal grids.

In [13], Pór and Wood studied the notion of F-free coloring which gen-
eralizes several types of colorings and, in particular, square coloring. They
obtained an upper bound on the F -free chromatic number of cartesian prod-
ucts of general graphs. Moreover, in case of square coloring, they proved

2



that the chromatic number of any graph given as the Cartesian product of d
cycles is at most 6d + O(log d).

An L(p, q)-labeling of a graph G is an assignment φ of nonnegative integers
to the vertices of G in such a way that |φ(u) − φ(v)| ≥ p whenever u and v
are adjacent and |φ(u) − φ(v)| ≥ q whenever u and v are at distance two in
G. The λp

q-number of G is defined as the smallest k such that G admits an
L(p, q)-labeling on the set {0, 1, . . . , k} (note that such a labeling uses k + 1
labels). It follows from the definition that any L(1, 0)-labeling of G is a usual
coloring of G and that any L(1, 1)-labeling of G is a coloring of the square of
G. Therefore, χ(G) = λ1

0(G) + 1 and χ(G2) = λ1
1(G) + 1 for every graph G.

This notion was introduced by Griggs and Yeh [4] to model the Channel

assignment problem. In the same paper, they conjectured that for every graph
G with maximum degree ∆, λ2

1(G) ≤ ∆2. This motivated many authors to
study L(2, 1)-labeling of some particular classes of graphs and the case of
Cartesian products of graphs was investigated in [1, 3, 7, 8, 9, 10, 14, 16].

In particular, Schwartz and Traxell [14] considered L(2, 1)-labelings of
products of cycles and proved the following:

Theorem 2 (Schwartz and Traxell [14]) Let Tm,n = Cm2Cn. Then

λ2
1(Tm,n) =







6 if m, n ≡ 0 (mod 7),
8 if (m, n) ∈ A,
7 otherwise.

where A = {{3, i} : i ≥ 3, i odd or i = 4, 10} ∪ {{5, i} : i = 5, 6, 9, 10, 13, 17}
∪ {{6, 7}, {6, 11}, {7, 9}, {9, 10}}.

Since every L(2, 1)-labeling is a L(1, 1)-labeling, we get λ2
1(G) + 1 ≥

λ1
1(G)+1 = χ(G2) for every graph G. Therefore, Theorems 2 provides upper

bounds on the chromatic number of the square of toroidal grids (note that
the upper bounds corresponding to the three cases of Theorem 2 are 7, 9 and
8, respectively).

Our main result will improve the bounds provided by Theorems 1 and 2
and by the general result of Pór and Wood [13]:

Theorem 3 Let Tm,n = Cm2Cn. Then χ(T 2
m,n) ≤ 7 except χ(T 2

3,3) = 9 and

χ(T 2
3,5) = χ(T 2

4,4) = 8.
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2 Coloring the square of toroidal grids

In this section, we shall prove Theorem 3 and give more precise bounds for
Cartesian products of some particular cycles.

We shall construct explicit colorings by means of combinations of patterns

given in matrix form. Each pattern can be thought of as a coloring of the
square of the toroidal grid of the same size. For instance, the pattern E
depicted in Figure 1 provides in an obvious way a 7-coloring of the square of
T3,7. Moreover, by repeating this pattern, we can easily obtain a 7-coloring
of the square of toroidal grids of the form T3m,7q.

Let G be a graph and c be any coloring of G. Since every color class in
G is an independent set, we have the following standard observation:

Observation 4 χ(G) ≥
⌈

|V (G)|
α(G)

⌉

where α(G) denotes the maximum size of

an independent set in G.

We shall extensively use the following result. Given two integers r and s,
let S(r, s) denote the set of all nonnegative integer combinations of r and s:

S(r, s) = {αr + βs : α, β nonnegative integers}.

A standard property of the set S(r, s) is the following:

Lemma 5 If r and s are relatively prime integers greater than one, then

t ∈ S(r, s) for all t ≥ (r − 1)(s − 1), and (r − 1)(s − 1) − 1 /∈ S(r, s).

We then have:

Theorem 6 Let Tm,n = Cm2Cn, m ∈ S(4, 7) and n ∈ S(3, 7). Then

χ(T 2
m,n) ≤ 7.

Proof. Let m ∈ S(4, 7) and n ∈ S(3, 7). We use the following 7× 7 pattern
A to prove the lemma.

A =

1 6 4 2 7 5 3
2 7 5 3 1 6 4
3 1 6 4 2 7 5
4 2 7 5 3 1 6
5 3 1 6 4 2 7
6 4 2 7 5 3 1
7 5 3 1 6 4 2
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It is easy to check that this pattern provides a coloring of T 2
7,7. For any

pattern X, let Xi, X ′
j be the subpatterns of X such that Xi is obtained by

taking the i first rows of X and X ′
j is obtained by taking the j first columns

of X. It is again easy to check that the patterns A4, A′
3 and (A4)

′
3 provide

colorings of T 2
4,7, T 2

7,3 and T 2
4,3, respectively. Therefore, using combinations of

A and A4, we can get a m × 7 pattern Y and, using combinations of Y and
Y ′

3 , we can get a m × n pattern which provides a 7-coloring of T 2
m,n.

For example, the following pattern B provides a 7-coloring of T 2
11,13, ob-

tained from A by using the combinations 11 = 7 + 4 and 13 = 7 + 2 × 3.

B =

1 6 4 2 7 5 3 1 6 4 1 6 4
2 7 5 3 1 6 4 2 7 5 2 7 5
3 1 6 4 2 7 5 3 1 6 3 1 6
4 2 7 5 3 1 6 4 2 7 4 2 7
5 3 1 6 4 2 7 5 3 1 5 3 1
6 4 2 7 5 3 1 6 4 2 6 4 2
7 5 3 1 6 4 2 7 5 3 7 5 3
1 6 4 2 7 5 3 1 6 4 1 6 4
2 7 5 3 1 6 4 2 7 5 2 7 5
3 1 6 4 2 7 5 3 1 6 3 1 6
4 2 7 5 3 1 6 4 2 7 4 2 7

By Lemma 5 we then get:

Corollary 7 Let Tm,n = Cm2Cn, m ≥ 12 and n ≥ 18. Then χ(T 2
m,n) ≤ 7.

We now consider toroidal grids with one component being a C3. Then we
have:

Theorem 8 Let T3,n = C32Cn. Then

χ(T 2
3,n) =















6 if n is even,

7 if n is odd and n 6= 3, 5,
8 if n = 5,
9 if n = 3.

Proof. Let C, D and E be the patterns given in Figure 1. These patterns
clearly provide colorings of T 2

3,4, T 2
3,6 and T 2

3,7, respectively. For the upper
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C =
1 4 2 5
2 5 3 6
3 6 1 4

D =
1 4 2 5 3 6
2 5 3 6 1 4
3 6 1 4 2 5

E =
1 4 2 3 1 2 5
2 5 1 4 7 3 6
3 6 7 5 6 4 7

Figure 1: Patterns for Theorem 8

bounds, we use the combinations of patterns C and D to obtain the even
cases and use the combinations of patterns C, D and E to obtain the odd
cases. The remainder cases are n = 3, 5, 9, and the following patterns provide
the required colorings of T3,3, T3,5 and T3,9, respectively.

1 4 7
2 5 8
3 6 9

1 4 2 3 6
2 5 1 4 7
3 6 7 5 8

1 4 2 3 1 4 5 3 6
2 5 1 4 2 3 6 4 7
3 6 7 5 6 7 1 2 5

For the lower bounds, notice that the intersection of any independent
set I in T3,n with any two consecutive columns contains at most one vertex.
Therefore, α(T 2

3,n) ≤ ⌊n/2⌋. By Observation 4, we get χ(T 2
3,n) > 6 when n is

odd; in particular, χ(T 2
3,n) > 7 when n = 5 and χ(T 2

3,n) ≥ 9 when n = 3.
As in the proof of Theorem 6, we can get colorings of T 2

3k,n, k ≥ 1, by
using combinations of the patterns given in Theorem 8. We thus get the
following:

Corollary 9 Let T3k,n = C3k2Cn. Then

χ(T 2
3k,n) ≤















6 if n is even,

7 if n is odd and n 6= 3, 5,
8 if n = 5,
9 if n = 3.

We now consider toroidal grids with one component being a C4. Then we
have:

Theorem 10 Let T4,n = C42Cn. Then

χ(T 2
4,n) =







6 if n ≡ 0 (mod 3),
8 if n = 4,
7 otherwise.
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F =

1 3 5
2 4 6
3 5 1
4 6 2

G =

1 3 2 4 6
2 4 6 3 5
3 5 7 2 1
4 6 1 5 7

H =

1 3 2 6 4 7 5
2 4 5 7 1 3 6
3 1 6 2 5 4 7
4 5 7 1 3 6 2

Figure 2: Patterns for Theorem 10

Proof. For m = 3k, this follows from Corollary 9. Let F , G and H be the
patterns given in Figure 2. These patterns clearly provide colorings of T 2

4,3,
T 2

4,5 and T 2
4,7, respectively. Thanks to Lemma 5, by using combinations of F ,

G and H , we can get a 7-coloring of T 2
4,n except when n = 4. In this latter

case, we can use the following pattern:

1 2 3 4
3 4 5 6
5 6 7 8
7 8 1 2

Observe now that the intersection of any independent set I in T4,n with any
three consecutive columns contains at most two vertices. Thus, α(T 2

4,n) ≤
⌊2n

3
⌋. By Observation 4, χ(T 2

4,n) > 6 when n is not a multiple of 3 and
χ(T 2

4,n) ≥ 8 when n = 4.
Using combinations of the patterns from Theorem 10, we get the follow-

ing:

Corollary 11 Let T4k,n = C4k2Cn, k ≥ 1. Then

χ(T 2
4k,n) ≤







6 if n ≡ 0 (mod 3),
8 if n = 4,
7 otherwise.

We now consider toroidal grids with one component being a C5. Then we
have:

Theorem 12 Let T5,n = C52Cn, n ≥ 5. Then

χ(T 2
5,n) =







5 if n ≡ 0 (mod 5),
7 if n = 7,
6 otherwise.
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I =

1 2 3 4 5
3 4 5 1 2
5 1 2 3 4
2 3 4 5 1
4 5 1 2 3

J =

6 1 2 3 4 5
3 4 5 6 1 2
5 6 1 2 3 4
2 3 4 5 6 1
4 5 6 1 2 3

Figure 3: Patterns for Theorem 12

Proof. Let I and J be the patterns given in Figure 3 which provide colorings
of T 2

5,5 and T 2
5,6, respectively. We use combinations of I and J to get a

5-coloring (resp. a 6-coloring) of T 2
5,n when n ≡ 0 (mod 5) (resp. when

n ∈ S(5, 6) and n 6≡ 0 (mod 5)).
The remainder cases are n = 7, 8, 9, 13, 14, 16, 19. The corresponding

patterns are given below, except for n = 16, in which case the corresponding
pattern is obtained by combining two 5 × 8 patterns.

1 3 2 1 7 5 4
2 4 5 3 6 1 7
3 1 6 7 5 4 6
4 2 3 4 2 7 1
5 6 7 5 3 6 2

1 3 2 6 3 1 5 4
2 4 5 1 4 2 3 6
3 1 6 2 5 6 4 5
4 2 3 4 1 3 2 1
5 6 1 5 2 4 6 3

n = 7 n = 8

1 3 5 1 4 6 5 2 4
2 4 6 3 2 1 4 3 5
3 1 2 4 6 5 2 1 6
4 6 3 5 1 4 3 5 2
5 2 4 6 3 2 1 6 3

1 3 2 6 3 1 5 2 4 3 6 5 4
2 4 5 1 4 2 6 3 1 5 2 1 6
3 1 6 2 5 3 1 4 2 6 3 4 5
4 2 3 4 1 6 2 5 3 1 5 6 1
5 6 1 5 2 4 3 1 6 2 4 3 2

n = 9 n = 13

1 3 2 6 3 1 5 2 4 3 2 5 6 4
2 4 5 1 4 2 6 3 5 6 4 1 3 5
3 1 6 2 5 3 1 4 2 1 5 2 4 6
4 2 3 4 1 6 2 5 3 4 6 3 5 1
5 6 1 5 2 4 3 1 6 5 1 4 2 3

n = 14

8



K =

1 2 3 4 5 6 1 2 3 4 5 6 7
3 4 5 6 1 2 3 4 5 6 7 1 2
5 6 1 2 3 4 5 6 7 1 2 3 4
1 2 3 4 5 6 7 1 2 3 4 5 6
3 4 5 6 1 2 3 4 5 6 7 1 2
6 1 2 3 4 5 6 7 1 2 3 4 5
4 5 6 1 2 3 4 5 6 7 1 2 3

Figure 4: Pattern for Theorem 3

1 3 2 6 3 1 5 2 4 3 1 4 2 1 6 2 5 3 4
2 4 5 1 4 2 6 3 1 5 2 6 3 5 4 3 6 1 5
3 1 6 2 5 3 1 4 2 6 3 1 4 6 1 5 2 4 6
4 2 3 4 1 6 2 5 3 1 4 2 5 3 2 6 3 5 1
5 6 1 5 2 4 3 1 6 2 5 3 6 4 5 1 4 6 2

n = 19

Observe now that the intersection of any independent set I in T5,n with
any column contains at most one vertex. That means α(T 2

5,n) ≤ n. Therefore,
χ(T 2

5,n) ≥ 5 by Observation 4. It is finally straightforward to verify that
α(T 2

5,n) < n when n is not a multiple of 5 (and thus χ(T 2
5,n) > 5) and that

α(T 2
5,7) = 5 (and thus χ(T 2

5,7) ≥
35
5

= 7).
Using combinations of the patterns from Theorem 12, we get the follow-

ing:

Corollary 13 Let T5k,n = C5k2Cn, n ≥ 5. Then

χ(T 2
5k,n) ≤







5 if n ≡ 0 (mod 5),
7 if n = 7,
6 otherwise.

At this point, we are able to prove our main result.
Proof of Theorem 3. By Corollaries 9, 11 and 13, we already proved
that if one of m, n is a multiple of 3, 4, or 5, then Theorem 3 holds. By
Lemma 5 and Corollary 7, the remainder cases are 11× 11, 13× 13, 13× 17
and 17× 17. Let K be the 7× 13 pattern given in Figure 4. As in the proof
of Theorem 6, we use combinations of K and K3 to obtain an m×13 pattern
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X for m ∈ S(7, 3). Then we use combinations of X and X ′
4 to obtain an

m × n pattern for n ∈ S(13, 4). In this way, we can obtain a 7-coloring of
T 2

13,13, T 2
17,13 and T 2

17,17. We simply transpose the 17 × 13 pattern to get a
13 × 17 pattern. Finally, the 11 × 11 pattern which provides a 6-coloring of
T11,11 is as follows:

1 2 3 1 2 3 1 2 3 4 5
3 4 5 6 4 5 6 4 1 6 2
5 1 2 3 1 2 3 5 2 3 4
2 3 4 5 6 4 1 6 4 5 1
4 5 6 1 3 5 2 3 1 2 3
1 2 3 4 2 6 4 5 6 4 5
6 4 1 6 5 3 1 2 3 1 2
3 5 2 3 1 2 6 4 5 6 4
1 6 4 5 6 4 5 1 2 3 5
2 3 1 2 3 1 2 3 4 1 6
4 5 6 4 5 6 4 5 6 2 3

As we have seen before, the general upper bound of 7 for χ(T 2
m,n) given

in Theorem 3 can be decreased for particular values of m and n. We now
provide other cases for which this bound can be decreased to 6.

Using combinations of the 11 × 11 pattern above, we get:

Corollary 14 Let Tm,n = Cm2Cn, m, n ≡ 0 (mod 11). Then χ(T 2
m,n) ≤ 6.

The same bound can be obtained for toroidal grids with one component
being a C6:

Theorem 15 Let T6,n = C62Cn, n ≥ 6. Then χ(T 2
6,n) = 6.

Proof. Let L and M be the patterns given in Figure 5 which provide 6-
colorings of T 2

6,4 and T 2
6,2, respectively. By Lemma 5, we can get a 6-coloring

of T6,n by using combinations of patterns L and M .
Using combinations of the patterns from Theorem 15, we get the follow-

ing:

Corollary 16 Let T6k,n = C6k2Cn, n ≥ 6. Then χ(T 2
6k,n) ≤ 6.
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1 3 6 4
2 4 1 5
3 5 2 6
4 6 3 1
5 1 4 2
6 2 5 3

1 3 5
2 4 6
3 5 1
4 6 2
5 1 3
6 2 4

Pattern L Pattern M

Figure 5: Patterns for Theorem 15

Finally, using Corollary 13 and the lower bound given by Theorem 1, we
get the following

Corollary 17 Let Tm,n = Cm2Cn for m, n ≥ 3. Then χ(T 2
m,n) ≥ 5. More-

over, χ(G2) = 5 if and only if m, n ≡ 0 (mod 5).

3 Discussion

In this paper, we have investigated the chromatic number of the square of
toroidal grids, that is Cartesian products of two cycles. We obtained general
upper bounds for this parameter by providing explicit colorings based on
the use of specific patterns. This leads in an obvious way to a linear time
algorithm for constructing such colorings.

Table 1 summarizes those of our results which give tight bounds. We
also included two cases, marked by (∗), for which the tight bound has been
obtained by a computer program. It can be observed that in all the cases for
which a tight bound has been obtained, this bound matches the lower bound
given by Observation 4. Therefore, we propose the following:

Conjecture 18 For every toroidal grid Tm,n, χ(T 2
m,n) =

⌈

|V (T 2
m,n

)|

α(T 2
m,n

)

⌉

.
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