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Abstract

The square G? of a graph G is defined on the vertex set of G in
such a way that distinct vertices with distance at most 2 in G are
joined by an edge. We study the chromatic number of the square of
the Cartesian product C,,,0C), of two cycles and show that the value
of this parameter is at most 7 except when (m,n) is (3,3), in which
case the value is 9, and when (m,n) is (4,4) or (3,5), in which case
the value is 8. Moreover, we conjecture that whenever G = C,,,0C,,
the chromatic number of G? equals [mn/a(G?)], where a(G?) denotes
the maximum size of an independent set in G?2.

Key words: Chromatic number, square, distance-2 coloring, Cartesian
product of cycles.

1 Introduction

A proper k-coloring of a graph G with vertex set V' (G) and edge set E(G) is a
mapping ¢ from V(G) to the set {1,2,..., k} such that ¢(u) # c¢(v) whenever
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uv is an edge in E(G). The chromatic number x(G) of G is the smallest k
for which G admits a proper k-coloring.

Let G and H be graphs. The Cartesian product GOH of G and H is the
graph with vertex set V(G) x V(H) where two vertices (uy,v;) and (ug, vs)
are adjacent if and only if either u; = uy and vyv, € E(H) or v; = vy and
uiug € E(G). Let P, and C, denote respectively the path and the cycle
on n vertices. We will denote by G, , the grid P, 0F, with m rows and n
columns and by 75, , the toroidal grid C,,0C,, with m rows and n columns.

The square G? of a graph G is given by V(G?) = V(G) and uv € E(G?) if
and only if uv € E(G) or u and v have a common neighbor. In other words,
any two vertices within distance at most 2 in G are linked by an edge in G2
Let A(G) denote the maximum degree of G. The problem of determining
the chromatic number of the square of particular graphs has attracted very
much attention, with a particular focus on the square of planar graphs (see
e.g. B,B, 0, LT, [2), following Wegner [[J], who conjectured that every planar
graph G with maximum degree at least 8 satisfies x(G?) < [3A(G)] + 1.
Havet et al. proved in [[] that the square of any such planar graph admits a
proper coloring using (2 + o(1))A(G) colors.

In [, Chiang and Yan studied the chromatic number of the square of
Cartesian products of paths and cycles and proved the following:

Theorem 1 (Chiang and Yan [fl]) If G = C,,,0P, with m > 3 and n >
2, then

ifn=2andm=0 (mod 4),

ifn =2 and m € {3,6},

ifn>3and m#0 (mod 5),

otherwise.

X(G?) =

Tt O O

Since C,,0P, is a subgraph of C,,,0C,,, Theorem [[] provides lower bounds
for the chromatic number of the square of toroidal grids.

A proper coloring of the square G2 of a graph G is often called a distance-
2 coloring of G. In [L3], Pér and Wood studied the notion of F-free coloring.
Let F be a family of connected bipartite graphs, each with at least three
vertices. An F-free coloring of a graph G is then a proper vertex coloring
of G with no bichromatic subgraph in /. This notion generalizes several
types of colorings and, in particular, distance-2 coloring when F = {Ps}.
They obtained an upper bound on the F-free chromatic number of cartesian



products of general graphs. Moreover, in case of distance-2 coloring, they
proved that the chromatic number of the square of any graph given as the
Cartesian product of d cycles is at most 6d + O(logd).

An L(p, q)-labeling of a graph G is an assignment ¢ of nonnegative integers
to the vertices of G so that |¢(u) — ¢(v)| > p whenever u and v are adjacent
and [¢(u)—¢(v)| > g whenever u and v are at distance 2 in G. The AL-number
of G is defined as the smallest k such that G admits an L(p, ¢)-labeling on the
set {0,1,...,k} (note that such a labeling uses k + 1 labels). It follows from
the definition that any L(1,0)-labeling of G is an ordinary proper coloring of
G and that any L(1,1)-labeling of G is a proper coloring of the square of G.
Therefore, x(G) = M\J(G) + 1 and x(G?) = M (G) + 1 for every graph G.

The notion of L(p, ¢)-labeling was introduced by Griggs and Yeh [[] to
model the Channel Assignment Problem. They conjectured that \3(G) <
A(G)? for every graph G. This motivated many authors to study L(2,1)-
labeling of some particular classes of graphs, and the case of Cartesian prod-
ucts of graphs was investigated in [, B, @, B, B, [0, 4], [Ld].

In particular, Schwartz and Troxell [[4] considered L(2,1)-labelings of
products of cycles and proved the following:

Theorem 2 (Schwartz and Troxell [14)]) If T,., = C,0C, with 3 <
m < n, then

6 if mn=0 (mod7),
N(Tnn) = 8 if (m,n) €A,

7 otherwise.

where A = {(3,4) : 1 € {4,10} ori =2j+ 1 with j € N} U{(5,7) : i €
{5,6,9,10,13,17}} U {(6,7), (6,11),(7,9), (9, 10) }.

Since every L(2, 1)-labeling is an L(1, 1)-labeling, A?(G)+1 > M\ (G)+1 =
x(G?) for every graph G. Therefore, Theorem P provides upper bounds on
the chromatic number of the square of toroidal grids (the upper bounds
corresponding to the three cases of Theorem [] are 7, 9, and 8, respectively).

Our main result will improve the bounds provided by Theorems [I] and [
and by the general result of Pér and Wood [[I3J]:

Theorem 3 If T,,, = C,0C, with 3 < m < n, then x(T7,) < 7 except
X(T32,3) =9 and X(T32,5) = X(T42,4) = 8.



2 Coloring the squares of toroidal grids

In this section, we shall prove Theorem | and give more precise bounds for
Cartesian products of some particular cycles.

We shall construct explicit colorings using combinations of patterns given
in matrix form. Each pattern can be thought of as a proper coloring of the
square of the toroidal grid of the same size. For instance, the pattern F
depicted in Figure [l| provides in an obvious way a proper 7-coloring of the
square of T3 7. Moreover, by repeating this pattern, we can easily obtain a
proper 7-coloring of the square of toroidal grids of the form 75, 7,.

Let GG be a graph and ¢ be a proper coloring of GG. Since every color class
under c¢ is an independent set, we have the following standard observation:

Observation 4 x(G) > {%-‘ where a(G) denotes the mazimum size of

an independent set in G.

We shall extensively use a result of Sylvester. Given two integers r and
s, let S(r, s) denote the set of all nonnegative integer combinations of r and
s:
S(r,s) ={ar+ Bs: a,  nonnegative integers}.

Lemma 5 (Sylvester) If r and s are relatively prime integers greater
than 1, thent € S(r,s) forall t > (r—1)(s—1), and (r—1)(s—1)—1 ¢ S(r, s).

We then have:

Theorem 6 If T,,, = C,0C, with m € S(4,7) and n € S(3,7), then
X(Thn) 7.

Proof. Let m € S(4,7) and n € S(3,7). We use the following 7 x 7 pattern
A to prove the claim.

16 42 75 3
275 316 4
316 4275
A=|4 2 75 3 16
5316 427
6 4 2 75 31
75 316 4 2




It is easy to check that this pattern properly colors T%7. For any pattern
X, let X;, X} be the subpatterns of X such that X is obtained by taking the
i first rows of X and X} is obtained by taking the j first columns of X. It
is again easy to check that the patterns A, and A% provide proper colorings
of Ti7 and T%3, respectively. Therefore, using combinations of A and A4, we
can get a m x 7 pattern Y. Moreover, using combinations of Y and Y3, we
can get a m X n pattern that provides a proper 7-coloring of Tﬁm, except
when (m,n) = (7a + 4b, 7c + 3d) with a,c > 0 and b,d > 0. In that case,
it is enough to replace the color 4 in the upper-right corner of the rightmost
copy of Yy by 3 (see example below). i

For example, the following pattern B provides a proper 7-coloring of
T121713, obtained from A by using the combinations 11 = 7+4 and 13 = 74+2x3
and replacing the color 4 by 3 in the upper-right corner.

16 4275 3|16 4|16 3
275316 4(2 7 5275
316 427513 16|33 16
4 275 316142 7|4 27
5316 42 753 1|5 31
B=|{6 4 2 75 3 1|6 4 26 4 2
75316 4 275 3|75 3
16 4275 3|16 4|1 6 4
275316 4(2 75275
316 427513 16|33 16
4 275 316142 7|4 27

By Lemma [] we then get:
Corollary 7 If Ty, = Cpn0C,, with m > 12 and n > 18, then x(T,,,) < 7.

We now consider T7%,,.

Theorem 8 IfT;, = C50C, withn > 3, then

6 if n s even,

7 if nis odd andn > 7,
M) =Y 8 in—>s

9 ifn=3.

bt



1 4 25 1425 36 1423125
C=|253 6| D=|2 5 3614 E=|25 14736
36 1 4 36 14 2 5 36 756 47

Figure 1: Patterns for Theorem

Proof. Let C, D, and E be the patterns given in Figure [. These patterns
clearly provide proper colorings of T3,, T3, and Ty, respectively. For the
upper bounds, we use the combinations of patterns C' and D to obtain the
even cases and use the combinations of patterns C; D, and E to obtain the
odd cases. The remaining cases are n € {3,5,9}, and the following patterns
provide the required proper colorings of T3 3, T35, and T3 g, respectively.

1 47 1 42 36 1423145 36
2 5 8 25147 251423647
3 69 36 7 5 8 36 756 7125

For the lower bounds, notice that the intersection of any independent
set [ in T 32n with any two consecutive columns contains at most one vertex.
Therefore, a(T3,) < [n/2]. By Observation , x(75,) > 6 when n is odd;
also, x(73,) > 7 when n =5 and x(73,) > 9 when n = 3. |

As in the proof of Theorem [, we can obtain proper colorings of T32k7n, for
k > 1, by using combinations of the patterns given in Theorem §. We thus
get the following:

Corollary 9 If Ty, = C5,0C,, with k > 1 and n > 3, then

if n is even,

if n is odd andn > 7,
ifn=2>5,

if n=3.

NeRRo ol I e

We now consider T7,,.



1 35 1 32 4 6
2 4 6 2 4 6 35

F=l3 51 G‘35721
4 6 2 4 6 15 7
1 2 3 4 1 326 475
3456 2 457136

H1_5678 H2_3162547
78 1 2 457136 2

Figure 2: Patterns for Theorem

Theorem 10 If7T,, = C,0C, with n > 3, then

6 ifn=0 (mod3),
7 otherwise.

Proof. For m = 3k, this follows from Corollary Jl Let F and G be the
patterns given in Figure fJ. These patterns clearly provide proper colorings
of T, 53 and T, 4275, respectively. Thanks to Lemma [f], by using combinations of
F and G, we can get a proper 7-coloring of Tfm except when n € {4,7}. By
using patterns H; and Hj given in Figure [, we obtain proper colorings of
T3, and T7,, respectively.

An independent set in Tfm has at most two vertices in any three consec-
utive columns. Thus, a(T7,) < [2]. By Observation i, x(77,) > 6 when n
is not a multiple of 3 and x(77,) > 8 when n = 4. |

Using combinations of the patterns from Theorem [(, we get the follow-
ing:

Corollary 11 If Ty, = Cy,0C,, with k > 1 and n > 3, then
6 ifn=0 (mod3),

7 otherwise.



1 2 3 45 6 1 2 3 4 5
345 1 2 3456 1 2
I=|5123 4| J=|5 61 2 3 4
23 451 23 45 61
4 51 2 3 456 1 2 3

Figure 3: Patterns for Theorem

We now consider T7,,.
Theorem 12 IfT;, = C;0C,, withn > 5, then

5 ifn=0 (mod}5),
X(TZ2,) =% 7 ifn=T7,
6 otherwise.

Proof. Let I and J be the patterns given in Figure fJ; they provide proper
colorings of T, ;5 and T, 5276, respectively. We use combinations of I and J to
get a proper 5-coloring (resp. 6-coloring) of 7%, when n =0 (mod 5) (resp.
when n € S(5,6)).

The remaining cases are n € {7,8,9,13,14,16,19}. The corresponding
patterns are given below, except for n = 16, in which case the corresponding
pattern is obtained by combining two 5 X 8 patterns.

1 32175 4 1 326 315 4
245 3617 2 45142 36
316 75 46 316 256 45
4 2 3 4 2 71 4 2 3413 21
5 6 75 3 6 2 5 6 1 52 4 6 3
n=7 n=3~§
1 351465 2 4 1326 315 24365 4
246 3 214 35 2451426 315216
312465 216 316 2531426 345
4 6 3514 35 2 4 2 3416 2531561
52 46 3216 3 56 1524316 2 43 2
n=29 n=13



1326 315243256 4
2451426 35641325
316 25 3142152 4°€6
4 2 3416 25346 3 51
56 15 2431651423
n=14
1326315 24314216 2534
2451426 3152635436135
316 2531426314615 24°¢6
4 23416 2531425326351
56 1524316253645 14©6 2
n =19

An independent set in T, 52n has at most one vertex in any column; thus
a(TZ,) < n. Therefore, x(T3,) > 5 by Observation [l It is easy to check
that a(7%,) < n when n is not a multiple of 5 (and thus x(7%,) > 5) and
that a(72;) =5 (and thus x(77,;) > £ = 7).

Using combinations of the patterns from Theorem [, we get the follow-
ing:

Corollary 13 If Ty, = C5,0C, with k > 1 and n > 5, then

5 ifn=0 (mod}5),
X(T5.,) < 7 ifn=T,
6 otherwise.

At this point, we are able to prove our main result.

Proof of Theorem PB. By Corollaries [, [[1], and [J, we already proved
that if one of m,n is a multiple of 3, 4, or 5, then Theorem J holds. By
Lemma [] and Corollary [i, the remaining cases are 11 x 11, 13 x 13, 13 x 17
and 17 x 17. Let K be the 7 x 13 pattern given in Figure fl. As in the proof
of Theorem [, we use combinations of K and K3 (the corresponding pattern,
not the complete graph) to obtain an m x 13 pattern X for m € S(7,3).
We then use combinations of X and X to obtain an m x n pattern for



=

I
=~ O W Ot W
QU = = DN O = DN
AN OtW— OtWw
= W O =N O
N =~ = Ot W = Ut
WUt =N
O W Ootw
G I i — O o
Sy = Ot OtWw
NN WH O
e BN SR s
N = = Ot Ww —= O
W UT N D= DN

Figure 4: Pattern for Theorem

n € S(13,4). In this way, we can obtain proper 7-colorings of T123713, T127713,
and T127717. We simply transpose the 17 x 13 pattern to get a 13 x 17 pattern.
Finally, an 11 x 11 pattern that properly 6-colors Tfl,n is as follows:

123123123425
3456456416 2
51 2312 35 2 34
23456416451
45613523123
12342645645
6 416 5312312
3502312645 6 4
16 456451235
23123123416
4 56 456456 23

As we have seen before, the general upper bound of 7 for x(7};,,,) given
in Theorem J can be decreased for particular values of m and n. We now
provide other cases for which this bound can be decreased to 6.

Using combinations of the 11 x 11 pattern above, we get:

Corollary 14 If T,,, = C,,0C, with m,n > 3 and m,n = 0 (mod 11),
then x(T7,,,) < 6.

The same bound can be obtained for T¢,:

Theorem 15 If Ty, = Cs0C,, with n > 6, then X(T()‘Z,n) = 6.

10



1 3 6 4 1 3 5
2 41 5 2 46
35 26 3 5 1
L_4 6 3 1 M_4 6 2
5 1 4 2 5 1 3
6 2 5 3 6 2 4

Figure 5: Patterns for Theorem [[§

Proof. Let L and M be the patterns given in Figure [, which properly 6-
color T, 627 4 and TéZ, respectively. By Lemma [J, we can get a proper 6-coloring
of Tﬁ%n by using combinations of patterns L and M. i

Using combinations of the patterns from Theorem [§, we get the follow-
ing:

Corollary 16 If Tgy,, = CexOC,, with k > 1 and n > 6, then x (T, ,,) < 6.

Finally, using Corollary [ and the lower bound given by Theorem [l], we
get the following

Corollary 17 If T,,,, = C,0C, with m,n > 3, then x(T7,,) > 5. More-
over, X(Ty,,,) = 5 if and only if m,n =0 (mod 5).

3 Discussion

In this paper, we investigated the chromatic number of the squares of toroidal
grids; that is, squares of Cartesian products of two cycles. We obtained gen-
eral upper bounds for this parameter by providing explicit proper colorings
based on the use of specific patterns. This leads in an obvious way to a linear
time algorithm for constructing such colorings.

Table [ summarizes those of our results that give tight bounds. We
also included two cases, marked by (x), for which the tight bound has been
obtained by a computer program. In all the cases for which a tight bound has
been obtained, this bound matches the lower bound given by Observation f.
Therefore, we propose the following:

11



values of m and n

DD S| | D

m=0 (mod5),n#0 (mod5),n>6,n#T7

m =0 (mod 6),n >6,n%0 (mod 5)

mod 11), m # 0 (mod 5), n Z 0 (mod 5)

S
Il
o

m,

m=3,n%#0 (mod 2),n# 3,5

m=4,n%#0 (mod 3), n # 4

,n="7T

=7,8 (%)

Nl ciie ol o N FEN F N | Rep) Hep) Hep) Hep!

Table 1: Summary of results on x(777,,)
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Conjecture 18 For every toroidal grid Tp, with m,n > 3, x(Ty,,) =
[IV(Tfn,n)l-‘
oTz,,) |

Moreover, it is likely that the chromatic number of the squares of suffi-

ciently large toroidal grids is at most 6. We therefore propose the following:

Conjecture 19 The exists some constant ¢ such that for every toroidal grid
Ton with m,n > ¢, x(Tr,,,) < 6.
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