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Abstract

We present an a-regularization of the Birkhoff-Rott equation, induced by the two-dimensional Euler-a
equations, for the vortex sheet dynamics. We show the convergence of the solutions of Euler-a equations
to a weak solution of the Euler equations for initial vorticity being a finite Radon measure of fixed sign,
which includes the vortex sheets case. We also show that, provided the initial density of vorticity is
an integrable function over the curve with respect to the arc-length measure, (i) an initially Lipschitz
chord arc vortex sheet (curve), evolving under the BR-a equation, remains Lipschitz for all times, (ii)
an initially Holder C*#, 0 < 8 < 1, chord arc curve remains in C*? for all times, and finally, (iii) an
initially Holder C™?, n > 1,0 < 8 < 1, closed chord arc curve remains so for all times. In all these cases
the weak Euler-a and the BR-a descriptions of the vortex sheet motion are equivalent.

Keywords: inviscid regularization of Euler equations; Euler-«; Birkhoff-Rott; Birkhoff-Rott-«; vortex sheet.
Mathematics Subject Classification: 76B03, 35Q35, 76B47.

1 Introduction

The a-regularization of the Navier-Stokes equations (NSE) is one of the novel approaches for subgrid scale
modeling of turbulence. The inviscid Euler-a model was originally introduced in the Euler-Poincaré vari-
ational framework in [38,39]. In [13-15,31,32] the corresponding Navier-Stokes-a (NS-a) [also known as
the viscous Camassa-Holm equations or the Lagrangian-averaged Navier-Stokes-a: (LANS-«r)] model, was
obtained by introducing the appropriate viscous term into the Euler-a equations. The extensive research
of the a-models (see, e.g., [2,7,10,11,13-18,20, 31, 32, 34, 34-36, 40, 42, 43, 48,49, 51,52, 63, 77]) stems, on
the one hand, from the successful comparison of their steady state solutions to empirical data, for a large
range of huge Reynolds numbers, for turbulent flows in infinite channels and pipes [13-15]. On the other
hand, the a-models can also be viewed as numerical regularizations of the original, Euler or Navier-Stokes,
systems [7,11,44,52]. The main practical question arising is that of the applicability of these regularizations
to the correct predictions of the underlying flow phenomena.
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In this paper we present some analytical results concerning the a-regularization of the two-dimensional
(2D) Euler equations in the context of vortex sheet dynamics. The incompressible Euler equations are

v
E-ﬁ-(v-V)v—i—Vp—O,

v L= 0, (1.1)
v(z,0) = v™ (@),

where v the fluid velocity field and p, the pressure are the unknowns, and v is the given initial velocity.
A vortex sheet is a surface of codimension one (a curve in the plane) in inviscid incompressible flow, across
which the tangential component of the velocity has a jump discontinuity, while the normal component is
continuous. The flow outside the sheet is irrotational. The evolution of the vortex sheet can be described by
the Birkhoff-Rott (BR) equation [8,67,68]. This is a nonlinear singular integro-differential equation, which
can be obtained formally from the Euler equations assuming that the evolution of a vortex sheet retains a

curve-like structure:
% = b [T
at Y T om PV T — 2 (T h)

here z = x + iy is the complex position of the sheet and I' € (—o00,00) represents the circulation, that is
~v = 1/|zr| is the vorticity density along the sheet. However, the initial data problem for the BR equation is
ill-posed due to the Kelvin-Helmholtz instability [8,69]. Numerous results show that an initially real analytic
vortex sheet (curve) can develop a finite time singularity in its curvature. This singularity formation was
studied with asymptotic techniques in [23,64] and numerically in [23,46,62]. Specific examples of solutions
were constructed in [9,29], where the development, in a finite time, of curvature singularity from initially
analytic data was rigorously proved. After the appearance of the first singularity the solution becomes
very irregular. This is a consequence of the elliptic nature of the Birkhoff-Rott equations: if solutions
have a certain minimal regularity, then they are actually analytic ( [50,79,80]). An open problem is the
determination of this threshold of regularity that will imply analyticity. It was shown in [50] that any solution
consisting of a closed chord arc vortex sheet that near a point belongs to C*#, 3 > 0 must be analytic. The
conclusion is maintained if the vortex sheet is required to be a Lipschitz chord arc curve [79,80].

The problem of the evolution of a vortex sheet can also be approached, in the general framework of
weak solutions (in the distributional sense) of the Euler equations, as a problem of evolution of the vorticity,
which is concentrated as a measure along a surface of codimension one. This approach was pioneered by
DiPerna and Majda in [26-28]. The general problem of existence for mixed-sign vortex sheet initial data
remains an open question. However, in 1991, Delort [25] proved a global in time existence of weak solutions
of the 2D incompressible Euler equation for the vortex sheet initial data with initial vorticity being a Radon
measure of a distinguished sign, see also [30,53,58,59,71,72]. This result was later obtained as an inviscid
limit of the Navier-Stokes regularizations of the Euler equations [58,71], and as a limit of numerical vortex
methods [53,54,72]. The Delort’s result [25] was also extended to the case of mirror-symmetric flows with
distinguished sign vorticity on each side of the mirror [57]. It is worth mentioning that uniqueness of solutions
of the 2D Euler equation was obtained by Yudovich [81] for initially bounded vorticity, see, also, [76] for an
improvement with vorticity in a class slightly larger than L>°, and [75] for review of relevant two-dimensional
results. This does not include vortex sheets, which admit measure-valued vorticity. There is also a non-
uniqueness result for velocity in C ( (0,7), L‘QNcak) [24,70,73]. However, the problem of uniqueness of a weak
solution with a fixed sign vortex sheet initial data is still unanswered, numerical evidences of non-uniqueness
can be found, e.g., in [55,66]. Furthermore, the structure of weak solutions given by Delort’s theorem is not
known, while the Birkhoff-Rott equations assume a priori that a vortex sheet remains a curve at a later time.
A proposed criterion for the equivalence of a weak solution of the 2D Euler equations with vorticity being
a Radon measure supported on a curve, and a weak solution of the Birkhoff-Rott equation can be found
in [56]. Also, another definition of weak solutions of Birkhoff-Rott equation has been proposed in [79,80].
For a recent survey of the subject, see [4].



The Euler-a model [15,21,37-39,61] is an inviscid regularization of the Euler equations (II]) given by

v
E‘F(U-V)’U-FZUJ‘VUJ‘-FVT&':O,

J
v=(1-0a?A)u, (1.2)
V-u=V.v=0,
u(z,0) = u™(x).

Here u represents the “filtered” fluid velocity vector, 7 is the “filtered” pressure, and « > 0 is a regularization
lengthscale parameter representing the width of the filter.

The question of global existence of weak solutions for the three-dimensional Euler-a equations is still
an open problem. On the other hand, the 2D Euler-o equations were studied in [65], where it has been
shown that there exists a unique global weak solution to the Euler-a equations with initial vorticity in the
space of Radon measures on R?, with a unique Lagrangian flow map describing the evolution of particles.
In particular, it follows that the vorticity, initially supported on a curve, remains supported on a curve for
all times.

In this paper we relate the weak solutions of Euler-a equations with a distinguished sign vortex sheet
initial data to those of the 2D Euler equations, by proving their convergence, as the length scale a — 0.
This produces a variant of the result of Delort [25], by obtaining a weak solution of Euler equations as a
limit of an inviscid regularization of Euler equations, in addition to approximations obtained by smoothing
the initial data, viscous regularization or numerical vortex methods [25,53,54,58,59,71,72]. Since a weak
solution of Euler equations with vortex sheet is unlikely to be unique, a different regularization could produce
a different weak solution.

We also present an analytical study of the a-analogue of the Birkhoff-Rott equation, the Birkhoff-Rott-a
(BR-a) model, which is induced by the 2D Euler-a equations. The BR-« results that were reported in a short
communication [3] are presented here with full details. The BR-av model was implemented computationally
in [41], where a numerical comparison between the BR-« regularization and the existing regularizing methods,
such as a vortex blob model [1,19,22,45, 53] has been performed. In the BR-a case the singular kernel of

the Biot-Savart law determining the velocity in terms of the vorticity is smoothed by a convolution with

a smoothing function G¢ = %%KO (IZ—I), which is the Green function associated with the Helmholtz

operator (I — azA). The function Ky is a modified Bessel function of the second kind of order zero. This is
similar to vortex blob methods, however, unlike the standard vortex blob methods [1,6,19,22,45,47] (and, in
particular, the proof of convergence of vortex blobs methods to a weak solution of 2D Euler equations [53]),
the BR-alpha smoothing function G is unbounded at the origin. Also, unlike the vortex blob methods that
regularize the singular Biot-Savart kernel, the Euler-a model regularizes the Euler equations themselves to
obtain a smoother kernel.

Section [2] contains the preliminaries about the 2D Euler-a equations. In Section [3] we investigate the
convergence of solutions of the Euler-a equations for vortex sheet initial data to those of the 2D Euler
equations, as the regularization length scale « tends to zero. Specifically, we prove that for the vortex sheet
initial data with initial vorticity of a distinguished sign Radon measure one can extract subsequences of
weak solutions of the Euler-a equations which converge weak-* in L ([O, T] ;M(R2)), as a — 0, to a weak
solution of the 2D Euler equation. M (R?) denotes the space of finite Radon measures on R?.

In Section Ml we describe the BR-a equation. Section [l studies the linear stability of a flat vortex
sheet with uniform vorticity density for the 2D BR-a model. The linear stability analysis shows that the
BR-a regularization controls the growth of high wave number perturbations, which is the reason for the
well-posedness. This is unlike the case for the original BR problem for Euler equations that exhibits the
Kelvin-Helmholtz instability, the main mechanism for its ill-posedness. In Section [0l we show global well-
posedness of the 2D BR-a model in the space of Lipschitz functions and in the Holder space C™#, n > 1,
which is the space of n-times differentiable functions with Hélder continuous n'® derivative. Specifically,
we show that (i) an initially Lipschitz chord arc vortex sheet (curve), evolving under the BR-a equation,



remains Lipschitz for all times, (ii) an initially Holder C*#, 0 < 3 < 1, chord arc curve remains in C1# for
all times, and finally, (iii) an initially Hélder C™#, n > 1,0 < 3 < 1, closed chord arc curve remains in C™*
for all times. Notice that for n > 1 we request 3 to be strictly larger than zero and the curve to be closed. In
all these cases the weak Euler-a and the BR-a descriptions of the vortex sheet motion are equivalent. The
convergence of BR-a solutions to the solutions of the original BR system on the short interval of existence
of solutions will be reported in a forthcoming paper.

2 Euler-a equations

In two dimensions, the incompressible Euler equations in the vorticity form are obtained by taking the curl
of (L) and are given by

dq B

v =K xq,
q(x,0) = ¢"(x),

(2.1)

where K (z) = %VL log |z|, v is the fluid velocity field, ¢ = curlwv is the vorticity, and ¢ is the given initial
vorticity. Delort [25] proved a global in time existence of weak solutions of the 2D Euler equations for the
vortex sheet initial data with fixed sign initial vorticity in M(R?) N H,,! (R?). The space M(R?) is the

space of finite Radon measures on R? with the norm

il =sun{| [ o] - € o @) ol <1}

Co(IR?) is the space of continuous functions vanishing at infinity. The space H~* denotes the dual of the
Sobolev space H*. The localized Sobolev space H;, (R?), s € R is the set of all distributions f such that
pf € H¥(RY) for any p € O (RY), see, e.g., [33].

A vorticity ¢ € L* ([0, 7], M(R?) n H;,} (R%)) N Lip ([0, 7], H,, b (R?)), L > 1, is called a weak solution

of (2., if for every test function ¢ € C° (R? x (0,T))

T T
W (g: ) = / O () dg (a, 1) dt + / / Hy (@,y,0)dq (g, 0) dg (2, 0)dt =0, (2.2)
0 R2 0 R2 JR2

where

L=y (Vo) =V (5.1)

Hw ({E,y,t) = 47T |I—y|2

The initial value is g(z,0) = ¢""(z) and it makes sense since ¢ € Lip ([0,T], H,,* (R?)). The kernel Hy is
bounded, continuous outside the diagonal = y and vanishes at infinity. This weak vorticity formulation is
well-defined, since the H ! vorticity has no discrete part (i.e., ¢ ({xo},t) = 0 for all zg € R?), which implies
that the diagonal x = y has ¢ (x,t) ¢ (y,t)-measure zero, see [25,71]. Thorough discussions of Delort’s
theorem, its extension and different proofs of the result can be found in [12,25, 30,53, 58,59, 71,72].

Taking the curl of (I2) yields the vorticity formulation of the 2D Euler-o model
dq
k3 : -0
¢ T (W V)a=0,
w=K%x%q, (2.3)
q(z,0) = ¢ (2).
Here u represents the “filtered” fluid velocity, and « > 0 is a regularization length scale parameter, which
represents the width of the filter. At the limit o« = 0, we formally obtain the Euler equations (21I). The



smoothed kernel is K% = G x K, where G¢ is the Green function associated with the Helmholtz operator

(I — 042A), given by
N | zy 11 ||
G () = 56 (3) = 23350 <a) (24)

here r = (71,22) € R? and K is a modified Bessel function of the second kind of order zero [78]. To see
this relationship in R? one can take a Fourier transform of v = (1 - 042A) u, and obtain G as the inverse

Fourier transform of m Notice that

{EL
K (z) = V0 (|z]) = HD‘I’“ (Iz]), (2.5)

where

U (r) = 217r [Ko ( ) —|—logr} ,

DU (r) = d;a (r) = = [—lKl (£)+ H ,

2T o o

and K denotes a modified Bessel functions of the second kind of order one. For details on Bessel functions,
see, e.g., [78].
A weak solution of @3] is ¢ € C ([0,7T]; M(R?)) satisfying

T T
W () = / O () dg (a, 1) di + / / HS (a,y,8) dg (,0) dq (4,1 dt =0, (2.6)
0 JR2 0 rR2 JR2

for all test functions ¢ € C2° (R? x (0,7)). The initial value is g(z,0) = ¢ (z) and it makes sense since
g€ C([0,T]; M(R?)). The kernel Hj is a continuous vanishing at infinity function given by

z—y)" (Vo (2,t) = VY (y,1))
lz —yl '

HE (2,9,1) = 509 (|2 = )

Oliver and Shkoller [65] showed global well-posedness of the Euler-a equations with initial vorticity in
M(R?).

Theorem 2.1. (Oliver and Shkoller [65]) For initial data ¢ € M(R?), there exists a unique global weak
solution of Euler-a equations [23)) in the sense of (2.6]).

Let G denote the group of all homeomorphism of R?, which preserve the Lebesgue measure and let 1 = 1a(+, 1)
denote the Lagrangian ﬂow map mduced by @3), i.e., which obeys the equation

Ona(x,t) = u(na(z,t),t) = [oo K* (Nalz,t),na(y,1)) dg™ (y,t), N (x,0) = x. Then the unique La-
grangian flow map g 6 C' ([0,T];G) exists globally and the vorticity q, is transported by the flow, i.e.,
G (z,1) = ¢ ot (2,1).

Notice that the original BR equations assume a priori that a vortex sheet remains a curve at a later
time, however, in the 2D Euler-a case, it follows as a consequence of the existence of the unique Lagrangian
flow map, that the vorticity that is initially supported on a curve remains supported on a curve for all times.

3 Convergence of a fixed sign Euler-a vortex sheet to an Euler
vortex sheet

Let the initial vorticity ¢ € M(R?) N Hloc (RQ) be of a fixed sign, ¢’ > 0, and compactly supported. In
this section we show that there is a subsequence of the solutions of 2D Euler-a: model with initial data ¢*”,



guaranteed by Theorem [21] that converge to a weak solution of 2D Euler equations in the sense of (2.2)).
This produces a variant of the result of Delort [25], by obtaining a weak solution of Euler equations as a
limit of an solutions of inviscid regularization of Euler equations, namely, the Euler-a equations. This is in
addition to different kind of regularizations obtained, for instance, by smoothing the initial data, viscous
regularization or numerical vortex methods [25,53,54,58,59,71,72]. Since a weak solution of Euler equations
with vortex sheet is unlikely to be unique, a different regularization could produce a different weak solution
of Euler equations.

Our analysis is closely related to that of [25,58,59,71], the facts that the solutions g, of the Euler-«
equations have uniform decay of the associated “filtered” vorticity w, which defined by BI) below, in small
circles and the contribution of fR2 d |042Awa| — 0, as a — 0, allow us to show the weak-* convergence of g,
to a weak solution of Euler equations.

Theorem 3.1. Let q, be the solutions of the weak vorticity formulation of Fuler-o equations ([2.8), guar-
anteed by Theorem [21, with initial data ¢ € M(R?) N H! (RQ), ¢ > 0 and compactly supported and

loc
let T > 0. Then there exists a subsequence qo,; thal weak-x converges to q in L™ ([O,T] ;M(RQ)) and in
M (RQ) for each fized t, as a; — 0, and q is a weak solution of the Euler equations (Z1)) in the sense of

Z2) with initial data q".
The weak-* convergence in L* ([0,7]; M(RR?)) means that

T T
i [ [ e tdu, @od= [ [ ot
@j—=oeJo  JR?2 0 JRr2

for all ¢ € L* ([0, T];Co(R?)).
We denote, respectively, the velocity and the “filtered” velocity by v, and u, and their corresponding
vorticities by ¢, = curlv,, and w, = curlug.

Given q, € M(R?), we define a linear continuous functional w, = (1 — O[QA)il qo acting on every
¢ € Co (R?) by

(Wa, ) = /}R2 ((1 — azA)_l <p) dqa, (3.1)

where ¢ = (1 — 042A)_1 ©, the unique vanishing at infinity solution of ¢ = (1 — 042A) 1, is given by

N 11
(1-aA) To= Ky <%>sﬁ(x—y)dy,

R2 02 21
the function Ky is a modified Bessel function of the second kind of order zero, Ky > 0, fOOO Ko(r)rdr =1

see, e.g., [78]. From the above its follows that H (1- 042A)_1 cpHL <l o0

We observe that if g, > 0 then w, is a nonnegative linear functional. Indeed, let ¢ € Cj (RQ), p >0,

then

_ 11
(1-a?A) Yo = Ko<%>w(x—y)dy20,

R2 02 27
and hence by B1]) (wq, ) > 0. Also,

2

—1
| (war )] < lgallag [| (1 =022) ]| < lldall g Il

Therefore, by the Riesz representation theorem (see, e.g., [33, Chapter 7] ) the functional w, can be repre-
sented by a unique nonnegative Radon measure, which we also denote by w,, and

lwall pg < llgall pg - (3-2)



Again, by the Riesz representation theorem, a linear functional (042Awa) defined by

(0*awarp) = [

. (onA (1- a2A)_1 <p) dqa, (3.3)

for every ¢ € Cy (]R2), can be identified with a Radon measure, which we also denote by a?Aw,. Observe
that, since for every ¢ € Cy (R?)

a’A (1 — 042A)71 p=(1- a2A)71 ©— ¢,

we have .
| (0®Awa, 9)] < ldall s 024 (1= a28) || < 2lgalla Il

that is, HO‘QA“’O‘HM(W) <2 ”anM(R2) }
We note that by Theorem [271] the solution g, of Euler-a equations (2.8)) is transported by the flow, that
is o (7,t) = ¢™ omyt (z,t), no € C([0,T];G), hence for all ¢

g ()l ag = [la™ || e - (3.4)

In addition, if ¢'* > 0, then g, > 0 for all times, and therefore also w, > 0 for all times.

The kernel Hy appearing in the non-linear term of (2.2) is discontinuous on the diagonal z = y, so,
following [26, 59], to prove the convergence of the non-linear term we need the following estimate, which
shows uniform decay of the “filtered” vorticity w, in small circles.

Lemma 3.2. Let g, be the solutions of ([20) with initial data ¢™ € M(R?) n H,} (R?), ¢™ > 0 and

loc
compactly supported. Then for w, = (1 — 042A)_1 da defined by BI), there exists a constant C = C (T,
such that for alla>0,0<t<T,0<R<1 and xo € R2 we have

/ | Rdwa (z,t) < C(T) [log R|"/2. (3.5)
T—x0|<

Proof. Recall that w, > 0 for all times. The idea of the proof, which is shown in details below, is to convolve
the initial data with a standard C2° (RQ) mollifier to obtain a sequence of solutions of the Euler-a equations
that has a uniform decay of the circulation on small disks

/ Wa.e (z,t)dz < C (T)|logR| /2,
lz—20|<R

0<e<eg0<t<T, R <1, and then the weak-* limit in L*> ([O,T] , M (Rz)) of a subsequence w ¢,
when e; — 0, which is the solution Euler-a equations with initial data ¢'", satisfies a similar bound.
We observe that, similarly to the Euler equations, any smooth radially symmetric vanishing at infinity
vorticity g (Jz|) defines a stationary solution of Euler-a equation (2:3)) with the corresponding velocity o (x) =
zt |z|

ViA~1g(|z]) = wz o sa (s)ds. This could be seen using the vorticity stream function formulation for

Euler-a equations, which is

qt +J(@7A¢) = Oa
q = Ay,

where 1) is the velocity stream function, v = V+%, and ¢ = (1 — a2A)_1z/J is the “filtered” stream
function, u = V+¢p. Since A and (1 — azA) are rotationally invariant, we have that the corresponding
w=(1- a2A)71 g,v=A"'gand g = (1- a2A)71 ¢ are also radially symmetric, therefore .J (¢, A¢)) =0
and hence ¢ defines a stationary solution of Euler-a equation.



Let p € C° (R2) be a standard mollifier, for example,

| cexp (1) (2)? 1)) if |z <1,
p(x)_{ p( g >) if|x|;1,

Jezp =1, p=(x) = Zp(%). Smoothing the initial data by a mollification with p., ¢i" = p. * ¢, we
i

have that for all 0 < € < g the smoothed initial vorticities satisfy ¢ > 0, suppq¢™ C {z||z| < Ro}
(since ¢ is compactly supported), [p. ¢ (z) dz = [z, dg™™ (x). Following [26,59] for the 2D Euler case we
decompose the velocity into a combination of a stationary bounded velocity plus a time dependent velocity
with finite total energy. Let g (|z|) be any smooth radially symmetric function with compact support, such
that [, ¢ (|2|) dz = [p. dg™ (x). Define 0 = K ¢, ¢i" = ¢ — ¢ and 0" = K * ¢\". Notice, that by direct
calculation divo = 0 and v, Vv,0%0 € L™ (RQ). Since fR2 g™ = 0, and ¢ has compact support we have
that 92" € L? (R?). Also, due to the fact that ¢ € M(R?) N H,,! (R?) with compact support, and hence,
for £ < g, the smooth ¢ are uniformly bounded in L' with a common compact support and v:"* = K * ¢\
are uniformly bounded in L?, , and since ¢ is the same function for all , we have that " are uniformly
bounded in L? (RQ), for € < gg.
Observe, that the stationary part

i(z) = (1-a2) " o () :/ 2 Lk (%) v(z—y)dy
satisfied]

IVl e < VOl Lo,

1
6% = V3 e -

1
||L°° < 29 o

1We show that for smooth vanishing at infinity ¢ = (1 — azA)71 ¢ one has that ||Vt|| oo < ﬁé l¢ll 100 - We have

1
@) = [ | 5-Kollu) (e~ ya)dy.
R2 27
Since V|00 < 00 and Ko € Lt (RZ), the differentiation under the [ sign can be justified by Lebesgue dominated convergence
theorem, and we obtain
1
Vo @) = [ 5o Ko(sl) Ve (@~ y) dy
RrR2 2T

11
= [, 5 Ko Iy Ve o~ ya) dy,
R2 2T @

)1/2 1

now, by integration by parts and using that for large r : Ko (r) ~ (% v

while V¢ is bounded we have

1 1
Vi (z) = — = VyKo (ly]) ¢ (z — ya) dy
a Jr2 21
11 Y
= [, o= (o) Lo - va)ay,
w2 27 a ]
that is,
1 1
[V (2)] < = [lell Lo — K1 (Jyl) dy
« R2 27
=Tl
T 2a Plipee -



Consider the partial differential equation

0 . -
Eva,a'i‘(uaa' UQE+Z 'Uow: uaa)

J
—i—um._-- v—i—g v] uaa

+ (@ V) Ve + Z (Bae); Vitj + Vitge =0,
J
Ta,e = (1= @A) Qg

This evolution equation is similar to the Euler-a equations. Moreover, if 04 (z,t) is the solution of the
equation(3.7) with initial data 9", then v, . (%,t) = Vo (z,t) + ¥ (2) is the solution of the 2D Euler-a
equations ([2]) with initial data vi® = K * ¢'".

Similarly to the Euler case (see, e.g., [59]) this equation has a unique global infinitely smooth solution,
since, as in 2D Euler case, we have an a priori uniform control over the L* norm of the gn,., which
implies the global existence, as in the proof of the Beale-Kato-Majda criterion [5]. The solution 7, ¢ is in
ct ([ ) H? (Rz)) for all s > 2, and hence, by Sobolev embedding theorem, 9*%,, . and, consequently,

liae (2) = [po =K (|y|) Do, (x — y) dy are also in Cy (R?) for all k.
Moreover, the solution 4, is in L™ ([O7 o0); H1 (R2)) due to the following a priori estimate. Taking
the inner product of (B1) with 4, . we have (omitting the subindices o and ¢)

1d _ L o~
% (|u|L2 +a2|Vu|L2) =ao? ((a- V) A, ) —Z(vjVuj,u)
J
=5 — L.

Since diva = 0, for I; we have

0%u; 0
Il = —QQZ/UzaT%]a—IlU]

.5,k

ou; Ou; Ou,; 0
— A2 (et B a? v ~
-« Z/axk oxy, 8961 Z/ul (8:618:1% ) 6:1%

5,k .5,k

Since the second term on the right is zero, we obtain that
|1 < Ca® ||Vl o |Vl
Now we estimate I

I, = Z/u]Vu] U— o /Au]Vu]-

5,k

=1y, + I,.
We have )
2, | < Cllal72 [Vl oo
and ou; Ou; ou ou; 0%u
I — a2 ou; Ouj Ou; 2 / ou;y J =~
2= ;/axk 0x; Oxy, to ”Zk Oz, 896;@6:61
hence

~112 _ ~ ~ 77
o, < Ca? || Vi), |Val| oo + Ca? | Vill| o il 2 |07, .



To conclude, we obtain
1d
2 dt
Hence, thanks to (3.4)),

~112 ~112 — ~112 ~112 — ~ ~ _
(Nl +a1al3. ) < € (a2 IVal o [Vall}s + @l 1Vl + o [Vl o all,. ol|6%l] .. )

1d

il =112 - _2 2
57 (lalZ: +? |VlZ:) < O Vo) (o [Vale + [alZ:)

and by Gronwall inequality

i (5012 + V@ ()52 < eI e (Ja (-, 0)[F2 + 2 Vi (-, 0))7.)
< IVt 5 (-, 0)] 3.

Hence we have that for all 0 < € < &g, 0 <t < T, the solution of Euler-a equations with the smoothed initial
data satisfies (we now put back the subindices o and ¢)

||“a,6 ('at)”Lz(B(mU,l)) < Haa,a ('7t)||L2(B(10,1)) + ||a||L2(B(mg,1))
< e (- t)HLz(Rz) +m ||ﬁ||Loo(]R2)
<C(T),

where C(T) = C (||g™ || v, - 14l .~ » €0, Ro) e“IVP et 7 [[@l[ 1,00 (g2)- This is enough to show uniform decay
of the vorticity wq, in small circles (see [71], we remark that here the fixed sign of the vorticity comes in
placd? ): for R< 1

/ Wa.e (z,t)dz < C(T) log R| /2.
lz—20|<R
By B2) [[wa.e ()l pg < Ngane COpg = (|62 || o = ||| 14> hence there exists a subsequence wq,; which

converges weak-+ in M (R?) for each fixed t and also in L* ([0, 7], M (R?)) to the limit w,. This limit has
a similar decay

/ dwy, (z,t) < liminf Wae; (2,t) de < C(T)[log R|71/2 .
lz—xo|<R

e;—0 lz—z0|<R

Furthermore, ¢, = (1 — azA) wq is the solution of the Euler-a equation (23)), the passing to the limit
in limg; o W¢ (Qa,sjﬂ/’) = W% (ga; %) is straightforward since Hy eC ([O,T] , (C’O (RQ))Q) and ¢q., are

2In [71] to prove the uniform decay of the vorticity in small circles one defines for R < 1

1 lz| <R,
_ log(\/ﬁ/\z\)
SR (73) = log(l/\/ﬁ) R < ‘w‘ < \/f_f,
0 lz| > VR.

Then |Vig|2 < C’\logR\*l/2 . We have
/ Wa,e (z,t) de < / Or (z — z0) wa,e (z,t) do
|lz—mo|<R R2

<

/2 Viér (z — x0) Ua,e (x,t) da
R

S IVérlp2 [uae (D p2(B(ag,1))
< C(T)[log R ~/2.

Here in the second transaction we used the fact that wq,c > 0.
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equicontinuous in time with values in a negative Sobolev space W~2! (which, together with Qove; 2

in L ([0,T], M (R?)), implies gac, (z,1) gae; (¥:1) = ¢a (,1) qa (y,) in L= ([0,T], M (R?)), see [71,
Lemma 3.2]). The equicontinuity follows from the fact that |z| DU* (|z|) is bounded (in fact, it is bounded
independent of ) and hence we have for all ¢ € C° (R? x (0, 7))

T
/ Ot (2,1) G, (1) dudt
0 2

R
L o (=) (V¢ (2,1) = Vo (y,1)
s ), fo f v tea =] Govey (@.8) e, (0, 1) drdyds

= (3.8)

N

1 N r
= 5 H|$ - yl Dv (‘T - y)HLOO/ HDQQ/J ('7t)HLoo(R2)/ qa7€j (J:,t) dl‘/ qa75j (yvt) dydt
0 R2 R2

<C ||qu'2M 191 21 (0,77, w2 (m2))
<C quvat 191 2 (0,77, 114 (R2)) -

where in the last inequality we used the Sobolev embedding theorem. Hence 0;q,,., uniformly bounded in
L*> ([0,T],H~* (R?)), and hence gq,c, are uniformly bounded in Lip ([0, T]; H~* (R?)). O

We also need the following result

Lemma 3.3. Let q be a finite Radon measure, g = (1 — onA) w, as defined in (BI)-B.3), then

/ d|o®Aw| < Carllg]| oy -

R2

Proof. For the theory of Radon measures, see, e.g., [33]. First, we show that for all compact K C R?
‘042Aw‘ (K) < Callq|| v -

By Riesz representation theorem (see, e.g., [33, Chapter 7] )
‘aQAw‘ (K) = inf{/ fd‘a2Aw‘ tfeC(R?),f> XK}-
R2

Let R be such that K C B (0, R), take § € C>°(R?) with 0 < 6(z) < 1 for all z, with §(z) = 1 if |z| < R,
0(z) = 0 if |z| > R+ 1. For example, § = xp(0,r+1/2) * p°/*. Then using that HozA (1- azA)il 9” <
C ||V« (see, e.g., (B0)), we have

I,oo

|a2Aw‘(K)§/ 9d|a2Aw‘
R2

<),
R2

< Callgll g VOl oo
< Callgllp -

oA (1- 042A)71 6“ d|q|

Now, since a Radon measure is inner regular we have

|a2Aw‘ (RQ) = sup {‘QQAw| (K): K CR* K compact}
< Callqll p -
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Now we are ready to prove Theorem Bl Due to (B4 there exists a subsequence, that we relabel as gq,
such that ¢, — ¢ weak-x in L*>° ([O7 T), M (R2)) and in M (RQ) for each fixed ¢, as a — 0. We notice that
(B3) implies that g, € Lip ([0,7]; H~* (R?)), and hence we also have that g, (z,t) go (y,t) — ¢ (2,t) ¢ (y, 1)
weak-* both in L ([0,7], M (R?)) and in M (R?) for each fixed t € [0,T], as & — 0 (see [71, Lemma 3.2]).

comp

Since qq is uniformly bounded in M(R?) and Lip ([0, T]; H~* (R?)) (by B3)), M(R?) — H,;? (R?) —

H l;f (RQ) for 1 < s < 4, then by Arzela-Ascoli theorem there is a subsequence of g, that converges to some

gin C ([0,T] ;H_4), and hence ¢ is also in Lip ([0, T] ;Hl_of). Applying both types of convergence of the g,

loc

to the integral fOT Jgz ¥ (t) ¢ (x) dgo (2, 1) for every ¢ € C. ([0,T]),¢ € C. (R?) shows that ¢ = ¢, and hence
the limit ¢ belongs to Lip ([0, 7] JH 2 (R?)) as well.

We observe that wq (t,-) also weak-+ converges to ¢ in M (R?) for every ¢ € [0,T], as a — 0. Indeed, let
¢ € C. (R?) then

/sto@c)dq(x,t)_/ﬂpw(:ﬁ)dwa(m)}S

[ e anen - [ @ dno0)

_|_

/}R2 ¢ (x) dgo (x,t) —/Rzga(a:)dwa (a:,t)‘

the first term on the right-hand side converges to 0, since go — ¢ in M (RQ), as a — 0, and the second term
is equal to | [5. ¢d (0 Awa)| < 1@l 1o Jre d|0?Aw| — 0, as @ — 0, due to Lemma B3l Hence also ¢ decays
in small disks, that is,for al0 < ¢ <T,0< R < 1 and z¢ € R?

/ dq (z,t) < liminf dwy, (z,t) < C(T) |log R|71/2 . (3.9)
lz—xo|<R

a—0 lx—xzo|<R

Next we show that ¢ is a weak solution of the Euler equations (22]), namely, for every test function
Y e Cx (R? % (0,T))
W) = lim W (ga; ) = 0.

The convergence of the linear term is obvious from the weak-* convergence g, — ¢ in L™ ([O7 T) ;M(RQ)),
as @ — 0. Hence we need to show the convergence for the non-linear term

lim Wyp (gas ) = Wi (¢:9).

We rewrite Wiz, (¢;¢) — W§ 1 (¢a; ) as
T
Wi (6:9) — WL (ga; ) :/0 /Rz . Hy (z,y,t) [dq (z,t) dq (y,t) — dgo (z,t) dga (y,t)] dt

T

+ / / / (Hy (22, ) — HS (2,9,0)) dao (2, 1) dgo (. 1) dt
0 R2 JR2

=1 + Is.

We recall that the kernel H, is bounded by a constant times HD2¢H > tends to zero at infinity, and it is
discontinuous on the diagonal x =y (see [71]).

Let 6 (|z]) € C°(R?) be a fixed cutoff function 0 < 6 < 1 with § = 1 for |z| < 1 and 6 = 0 for |z| > 2.
Let 0 < § < 1. Write I; as

I = /OT/]Rz /R2 [1—9 (@)] Hy (z,y,t) (dg (z,t) dg (y, 1) — dga (2,t) dga (y,t)) dt

’ 2~y
[0 o o) da 000) g (o0 0.0
= Iy + 1.
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Since [1 -0 (Iw yl)} HyeC ([ 7], (Co (R2))2> and qq (2,1) ga (y,t) = q (@) q (y, t) weak-+in L> ([0,T], M (R?))

as a — 0, then lim,_,g I11 = 0. Now we estimate I1o

T
I| < / / / \Hy (2., 1)| dq (2, £) dq (y. 1) dt
0 |lz—y|<25

T
+/ // |Hy (z,y,t)] dga (2,t) dgo (y,t) dt
0 lz—y|<26

= I121 + I122.

For I121, due to uniform decay of the vorticity ¢ in small circles [39), we have for 26 < 1

T
Iy < |H¢,|Lm/0 /]R? /B( ) dq (z,t) dq (y,t) dt
Y

< O (T) [log26] % ||¢™| .,

To estimate I122 we use ([B.3) (for 26 < 1) and Lemma B3l

T
Lo < |H¢,|Lw/0 //m_yldéd((l—a A)wo) (e )d (1 — a?A) wa) (v, )dt

—Hyl, /OT//I_yK%dwa (2,1) dwe (3, 1)) dt
+ |Hypl o /OT <2/RQ dwe (2,1) /}de|azAwa (z,t)] + </RQd}oz2Awa (x,t)}>2> dt

< C(T) |log 26| * ||¢’

mHM +a(l+a) CTHq'

lae-

Thus, 12 — 0, as § and « converge to zero.
It remains to estimate I

/ /R2 /R2 . (|x - y|> (- )" V@ (:c|,xf)_—y7b (y,t))dqa (5,1) dge (g 1) .

Now, for = — oo =K, (2) <C (%)1/2 @ — 0 [78]. Hence, for each ¢ > 0, there is an L large enough,
depending on ¢, such that 3K1 (1) < €, whenever g > L. Write I as

/ /]R2 /Rz [1 - (uﬂ (|x . y|) (x—y)" v (x|’;)__yr (y’t))dqa (z,t) dga (y,t)dt

i L Lo () s () ot S g 0.0
= I>1 + I2o.

We have

Iy < _/ //m e [ (Ixa—Ly|ﬂ |96;y|K1 (Iw;yl) |V (¢ (:v|,xt)_—y7p (y’t)>|dqa (o,1) dge (g 1)
<clple gz [ f [, w00 G

<< |D%) i/OT ([, . W))z

<e || D%~ g TH

1n||M .
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Since ~K; (2) < C for all r (independent of «), then similarly to the bound on I;22, we have that for
o< %
Iz < C(T) log 2aL|~*|D*6] . [lg™ |y + (14 @) OT [ D] ™[ -

Hence for each € > 0, there is an L large enough, depending on e, such that (for oo < %)
L <C (T, quHM) (e + log2aL| ™2 + o (1 + a)).
For each € > 0, there is §* such that |logr|71/2 < €, whenever r < *. Hence, for & < min {%, o 6}

I <eC (T, ¢, quHM) ‘

Therefore, lim,—,o Iz = 0. This concludes the proof that ¢ is a weak solution of the Euler equations (2.2))
with initial data ¢*".

4 Birkhoff-Rott-a equation

The Birkhoff-Rott-a equation, based on the Euler-a equations (Z3]) is derived similarly to the original
Birkhoff-Rott equation. Detailed descriptions of the Birkhoff-Rott equation as a model for the evolution
of the vortex sheet can be found, e.g., in [59,60,68]. We remark, however, that while the BR equations
assume a priori that a vortex sheet remains a curve at a later time, in the 2D Euler-a case, if the vorticity
is initially supported on a curve, then due to the existence of the unique Lagrangian flow map 0in(z,t) =
Sz K (2,y)dq (y,t), n(2,0) =z, q(x,t) = ¢" on~ " (x,1), given by Theorem 2T of Oliver and Shkoller [65],
it remains supported on a curve for all times. Existence of the unique Lagrangian flow map implies that
the BR-a equation gives an equivalent description of the vortex sheet evolution, as the weak solution of 2D
Euler-a equations. It is described in the following proposition.

Proposition 4.1. Let ¢ € M(R?) supported on the sheet (curve)
vin ={z =z(0) € R?|o" < o < o™}, with a density v (o), that is, the vorticity ¢ satisfies

in
91

[ ewiam@) = [ " o)y @)e, @)l

mn
90

Jor every ¢ € C° (R?), " € L1(|xg|daﬁ. Let g be the solution of (Z3) in the sense of the Theorem
21 Then, for as long as the curve %(t) = {x =x(0,t) € R?| 0o (t) <o < 01 (t)} remains nice enough

3Let ¥ be a curve parametrized by z(c) : [00,01] — R2, such that x5 € L'([o0,01]), and let ¢ € M(R2) be supported on
the curve 3, with a density v. Then v € L(|zo|do) (and vice versa).

Proof. First, assume ¢ > 0, and let 6, be a truncating sequence, 6, € C°(R2), 6, (z) = 61 (%), 01 € CX(R?),0<60, <1
with 61 =1 for |z| <1 and 61 = 0 for |z| > 2. Then, on the one hand,

"0, (@(0) (@)l ()]do > [ ~(0) |0 (0) |do,

o0 {o:|z(0)|<n}N[og,01]

on the other hand o1
[ 6 @)@z (@) ldo = /R 0 (2)da™ () < 00 o g < Nl

)
hence

i 10k (0)1do < llall oy
{o:]z(0)|<n}N[og,01]

Since n can be taken arbitrary large this implies that f;ol v(0)|zs (0) |do < co. Now, for signed measure we apply the previous

result to each of the nonnegative measures g1, ¢, given by the Jordan Decomposition of ¢, ¢ = g7 — ¢, which is defined by

/ ()dg* (z) = /01 ¢ (2(0)) 7 (0)|zo (o) |do.
R2 oo
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so that x, makes sense a.e., q has a density y(o,t) supported on the sheet X(t), v (-,t) € L'(Jz,|do),
v (0,t) |2 (0,t)|do = v (0,0) |z, (0,0)| do and the sheet evolves according to the equation

8 Ul(t)
Ga0= [ K @) -2 (0 0)7 (0" 0) 0 (o' 0] do'
where K is given by Z8). Additionally, if T (0,t) = [7. v (0',t) |z (0/,t)| do’, where x (c*,t) is some fived
reference point on X(t), defines a strictly increasing function of o (e.g., as in the case of positive vorticity),
then the evolution equation is given by the Birkhoff-Rott-a (BR-a) equation

I
gx (T')t) = K*(z(T,t) —z (T, t)) dl’ (4.1)
ot To
with v = 1/|xp| being the vorticity density along the curve and —oo < Ty <T'1 < oo.

In Section [l we show the global well-posedness of the Birkhoff-Rott-a (£]) in the space of Lipschitz
functions and in the Holder space C™?, n > 1, which is the space of n-times differentiable functions with
Hoélder continuous n'! derivative. Thus the solutions the Birkhoff-Rott-a and of the Euler-ar are equivalent
for the initial data being a finite positive Radon measure supported on Lipschitz or Holder C1# ((Tg,T1)),
0 < B < 1, chord arc curve, or supported on C™8 ((I'g,T';)), n > 1, 0 < 3 < 1, closed chord arc curve.

Here 0g, 01 can represent either a finite length curve, or an infinite one. We remark that the smoothed
kernel K (x) is a bounded continuous function, that for IZ—I — 0 behaves asymptotically as K (z) =

—+Lallog IZ—I +0 (m), i.e., it is non-singular kernel at the origin. For the case where ~y (-, t) € L'(|x,| do)

4 o2 a?

we can show the integrability of the relevant terms, even though |K® (z)| is decaying like |z| " at infinity.

5 Linear stability of a flat vortex sheet with uniform vorticity
density for 2D BR-a model

The initial data problem for the BR equation is highly unstable due to an ill-posed response to small
perturbations called Kelvin-Helmholtz instability [8,69]. The linear stability analysis of the BR~a equation
shows that the ill-posedness of the original problem is mollified, and the Kelvin-Helmholtz instability of
the original system now disappears. We assume that the vortex sheet can be parameterized as a graph
X9 = xg (71,t), the proof can be easily adapted to establish the result in general. The flat sheet 23 = 0, with
uniformly concentrated intensity ~o (notice that this density is not integrable on the curve), is a stationary
solution of the following general BR-a system

8:172 - 8ZE2

ot~ om T (5.1)
oy _ 9 ()

at oz )

with velocity u = (u1, uz)" given by
u(z1,t) =p.v. / K (z(z1,t) — z (2,t)) v (2], t) dz,
R

where z (z1,t) = (21,22 (21,t))" and p.v. is taken at infinity. By linearization about the flat sheet with
uniformly concentrated intensity o we obtain the following linear system

0%y  _

9t _ &

(915 25

0y Oty
ot %8:17 ’



where
5 o 0o
g (w1,t) = =0 (sgn (v1) DY (|21])) * pyae
T
g (w1,t) = (sgn (z1) DY (|z1])) * 7,

and (Z2,7%) is a small perturbation about the flat sheet 5= 0 with the constant density v = 7o.
Consequently, the equation for the Fourier modes (transform) of the above system is given by

d (32 _ 0 Lsan(h)d(h) (5
dt <§> N (—Z’%‘%]ﬂ sgn(k)d(k) 0 > (%) ) (5.2)

1 —-1/2

Observe that in order to calculate the Fourier transform

where

F (s (1) D (o)) () = 5 sn(k)d(b),

we used here the integral representation of the modified Bessel function of the second kind
Ki(z1) = [ e ™t (12 — 1)1/2 dt, (see, e.g., [78]). The eigenvalues of the coefficient matrix, given in (5.2]),

are
1 1 —-1/2

We observe that while the linear system for the original Birkhoff-Rott equation is elliptic (in space and time)
iy 1
ot? 4

for a Birkhoff-Rott-a equation it is no longer an elliptic system

V2k%Es = 0,

0T 1 —
o PR RIRE =0,
since |d?(k)k?| is bounded and behaves like —, as k — oo (for o fixed).
To conclude, the a-regularization mollifies the Kelvin-Helmholtz instability as follows: we have an alge-
braic decay of the eigenvalues to zero of order az;\kp as k — oo (for « fixed). While, for a — 0, for fixed &,

we recover the eigenvalues of the original BR equations £3 |yl [k| (see, e.g., [74]).
For the sake of comparison, we note that for the vortex blob regularization of Krasny [46], where the
singular BR kernel, K (x), was replaced with the smoothed kernel

|z|? 1 ot

Ks(x) =K (x = — ,
5( ) ( )|$|2+52 27T|$|2+52

the eigenvalues are
1 _
AK) = %3¢~ ol [

with an exponential decay to zero, as k — oo (§ > 0 is fixed). As § — 0, for fixed k, one recovers again the
eigenvalues of the original BR equations.

The behavior of the eigenvalues of the linearized system (5.2)) indicates that high wave number pertur-
bations grow exponentially in time with a rate that decays to zero, as k — oo, which is the reason for
well-posedness of the a-regularized model. This is unlike the original BR problem that exhibits the Kelvin-
Helmholtz instability. It is worth mentioning that the a-regularization is “closer” to the original system
than the vortex-blob method at the high wave numbers, due to the algebraic decay instead of exponential
one in the vortex blob method. This result was also evaluated computationally in [41].
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6 Global regularity for BR-a equation

In this section we present the global existence and uniqueness of solutions of the BR-« equation (41 in the
space of Lipschitz functions and in the Hélder space C™#, n > 1, which is the space of n-times differentiable
functions with Holder continuous n'" derivative.

Let us first describe the Holder space C™° (J CR; RQ), 0 < B < 1, which is the space of functions
z:J CR — R2, with a finite norm

n dk n
Izl sy = ||7pe * ’—M ;
par KL PeCT N A FTE
where
co() =
] sup |z (T)|
reJ
and |-| ; is the Holder semi-norm
|z (T) — = (I)]
|| = sup —F——+.
A e |F—F’|B
DAL

The Lipschitz space Lip (J) is the C%'space, that is, with the finite norm [[z(|y;, 5y = [#llco(s) + 2]y
We also use the notation
[z (1) — = (I)]
r-rp
where the infimum is taken over all T',T” € J such that I" # I, or, in the case of a closed curve (without
loss of generality, over S'), the infimum is taken over all I',T" € S! such that I' # I mod 2.
We consider the BR-a equation as an evolution functional equation in the Banach spaces Lip, C' or
C"P n>1,0<pB<1,

||, = inf

856 T « / /
5 (T,t) = s K (z(T,t) —x (I, t)) dI, 6.1)

x(T,0) = a0 (T)

with v = 1/|zr| being the vorticity density along the sheet and —oo < I’y < T'; < co. Notice that the density
v () is in C"~ 18 ((Tg,T'1)) for the subset {|x|, >0} of C™P ((I'y,T1)), and (') € L> ((Ty,I'1)) for the
subset {|z|, > 0} of Lip ((T'o,I'1)).

Theorem 6.1. Let —co < I'y < I'y < oo, let V be either the space C1P ((I'g,T1)), 0 < B < 1 or
the space Lip (T'o,T'1)) and let z9 € V N {|z|, > 0}, then for any T > 0 there is a unique solution
z e CH ([-T,T);Vn{lz], > 0}) of (@I with initial value x (T, 0) = x¢ (T).

Furthermore, let xq be a closed curve and without restriction of generality, we assume xo (I') € C™8 (Sl) N
{|z|, > 0}, then for alln > 1,0 < 3 < 1, T > 0 there is a unique solutionx € C* ([-T,T]; C™P (S*) N {|z|, > 0})
of @I) with initial value x (T',0) = ¢ (T'). In particular, if o € C> (S*) N {|z|, > 0} then
z € CH([-T,T);C> (S') n{|z|, > 0}).

Notice that for n > 1 we request 8 to be strictly larger than zero and the curve to be closed.

We remark that, although the kernel K is a continuous bounded function, its derivatives are unbounded
near the origin, and the chord arc condition |z|. > 0, which implies simple curves, allows us to show the
integrability of the relevant terms.

The following are the main steps involved in the proof of Theorem In the first step, we apply the
Contraction Mapping Principle to the BR-a equation (@1l to prove the short time existence and uniqueness
of solutions in the appropriate space of functions. Specifically, we show that an initially Lipschitz or C#,0 <
B < 1 smooth solutions of {.Il) remain, respectively, Lipschitz or C1'# smooth for a finite short time. Next,
we derive an a priori bound for the controlling quantity for continuing the solution for all time. At step
three we extend the C*# 0 < § < 1 result for higher derivatives for the case of a closed curve.
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6.1 Step 1. Local well-posedness.

First we show the local existence and uniqueness of solutions. To apply the Contraction Mapping Principle
to the BR~a equation (6.1I) we first prove the following result

Proposition 6.2. Let —oco <T'g <T; <00, 1 < M < oo, V be either the space C*P ((I'g,T1)), 0 < B < 1
or the space Lip ((I'o,T'1)), and let KM be the set

1
KM= v M — 5.
{x € |z, < M, |z|, > M}

Then the mapping
I

z(T)—u(x()) = K*(z(T) —xz (")) dr’ (6.2)
o

defines a locally Lipschitz continuous map from KM, equipped with the topology induced by the |-l norm,
into V.
Proof. Notice that KM is an open set in V. We recall that K* (z) = VU (|z]) = %Dkllo‘ (l=]) , where
U (r) = 5= [Ko (%) +logr] and DU*(r) = dg’: (r) = 5= [-2K1 (%) +1]. The functions Ko and K
denote the modified Bessel functions of the second kind of orders zero and one, respectively. For details on
Bessel functions, see, e.g., [78]. We observe that D¥* is bounded

DU (r) < g, (6.3)

derivatives of U decay to zero as = — 0o, and as = — 0 satisfy

o 1 r r r

DU (1) =~ o5l £+ 0 (3) (64)
. 11, r 1

D () = g lon +0( 5.

30 a 1 1 T T

DU (1) = — s+ 0 (1 loe )

The constant C will denote a generic constant independent of the parameters, while, C(¢) denotes a constant
which depends on .

First we show the local existence and uniqueness of solutions in C*%, 0 < 3 < 1.

We start by showing that u (z (I')) maps K™ into C*#. Let x € K™. Using the boundness of DY (£.3)
we have

I
u@@)] < [ D¥ (la(0) —a (M)l < T (T ~To). (65)
Using that
Wy = [V @) - () 2 )y ar
dr - dr !

(which can be justified by applying Lebesgue dominated convergence theorem) and the fact that ‘g—lf (F)‘ <
M, we obtain
du I

o) < u [ vk ) -

a a

=M ~/(F0,F1)ﬂ{lrF/|<€}+~/(F0,F1)\{IFFII<€} 7

:M(Il-i-fg),
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where ¢ is to be defined later. Due to (2.3]), (€4) and

1|7 -1 T — T |x(I‘)—x(I")| dx |1"—l"’|
Sl < -——————‘< )
M « < lal, « o ar o < Me, (6.6)
we have that for a fixed small

1
I, < 1
! /IFQF,I <e (27@‘2 °

= -

. (cum@)} +C(M)%> dr’

For I due to the boundness of [VK®| in (T, T'1)\ { < a} we obtain
M

Summing up,

/FF [VE® (2 (1) =@ (I'))|dI" < C (M,rl,po, 1)

(6.7)
and hence p )
u
— < — . .
ar (JJ(F))’_C(M,Fl,FQ,a) (68)
To show the Holder continuity of 4% (z (T')) we write
du du - I dx dx
- 7 < @ _ / g /
i @0 = G @) < [ 19K o) )| ) - G ()] ar
Ty _ dr -
+/ [VK* (2 (1) = 2 () = VK® (2 () — 2 ()| |55 ()| ar
To
dol - r’|"/ IVE® ((T) — z (I"))| dI’+
dl" T'o
Fl B
+M |[VK® (z(T) — 2 (I'")) = VK (2 (T') — 2 (")) | dI".
To
The first term on the right-hand side is bounded by C (M I'y, I, E) || o HB |I‘ — f“ﬁdue to ([G1), as for the
second one, let r = | I , and write

I= /F 1 VK (z(T) — 2 (I'")) = VK* (2 (T) — 2 (I")) | I’

- ~/(F0,F1)ﬂ{r P }—i—/(ro,rl)m{F i

‘>2r}
=1 + Is.

_ ’
For I; we have [r-r]

< 2r, and hence |F i

< 3r. Due to ([21), the fact that

| D> (s C

‘_4 042’1g
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and ([6.6) we obtain

L < IVK® (2 (T) — 2 (1) + |[VK® (2 (T) — 2 (I)) | dI’

w/(F(),Fl) {u<2r}
@ (flee
o [r— F’\<2
@ fee
a? \ JIE oy,

C (M, é) r([logr|+1).

IN

o 120 — () 2 (D) — = ()|

dr’ + ra)

[ V)

|

r r_

IN

log C (M) dr’ + ra)

ar’ + / ,
@<37"

IN

For I, we have @ > 27, and hence jr—r] > r. By the mean value theorem (MVT), (25) and the fact
that 11 o
D3y — 6.10
(s) < 4o s  ad ( )
we have that for I’ € [I', T
- dx C
VK% (z(I') — VK*“ r) - < —
| (I( ) x( )) ( ( ) ‘T )‘ r dF co <a2|x(1'\//)_x(1"/)|+a3>
1 1
<C — +1
(4r2) (e )
we also have that % >rand I'g < T <T;. Hence
C (M) a
L] < r / Y (7 + 1) dr’
ad (Fo,Fl)ﬁ{wZT} T — 17|
1
< C (M, —,1"1,1"0> r(1+ |logr]).
e
Summing up we obtain
1 _ _
1] gC(M,—,Fl,PO) [T —T| (Jlog|T —T|| +1), (6.11)
e

which implies the Hélder continuity of 2% (z (I')) for 0 < 8 < 1.
It remains to show that u (z) is locally Lipschitz continuous on K™. We will show that for z € K,

y € 7 ((To,T1))
1
D2yl < € (50l T2, 8) ol

Hence for any x € K™ let § be such that B (z,0) C K™, then for every #,# € B (z,d) by the fundamental
theorem of calculus

u (7) |“’_H/ L (@ +e(@—a))de

1,8

/0 Dot (7 42 (i — 7)) (& — 7) de

1.8

1
- 1 _ .
S Hx_IHl,ﬁA O<E7M7|I+E(I—$)||17B,F1,F0,6> de

1 .
<c <E,M, ||x||175,5,r1,r0,5) 1% -z, 4,
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that is, the map is locally Lipschitz. Here we used the fact that the Banach space C1? is an algebra.
Let v € KM, y € C1# ((Ty,T'1)), we now compute

Dy ( (1) y (T) = “Lou (2 (T) + 2y (T)

de e=0
d ™
=2 | K@@ +ey ) —a ) - ey (I)d
To e=0
I
= [ VK @) =2 () (o (0) — y () ar
Now, we show that
1
D2 ()l < € (5.0 el 1T 8) Lol -
To estimate ||D,u (%) y||oo we use (6.7)
1
Do)y < € (M1T0, ) oo (6.12)

Next we estimate ||-&D,u (z) yHCo. ForI" # T, VK (z (T') — 2 (I")) (y (') — y (I")) is differentiable in T,
hence (which can be justified by using Lebesgue dominated convergence theorem)

d SR, iy dy ,
EDale () = [ IR () =2 () ()
I

o)

Notice, that although, for I close to I, |[D*K® (z (I') — z (I"))| = O (m) (see (23) and (6.4),

the term (y (') — y (T)) cancels the singularity in m, so this is not a singular integral.

d:vi

Z 02,00, K* (x (1) — x (I")) T

0 ij=1

(T) (y; (T) — ; (T)) dr".

IS}
%DwU(:v(F))y(F)‘SHZ—? . /F IVK® (z (T) — z (I"))| dT”
IS}
* ‘ j_; |D*K® (2 (T) = (I"))| |y (T') — y (T)| dT".
Cco JT'g

Write the second integral on the right-hand side as

Iy
[0 @) - )|y @) -y ) ar = [
r

(Fg,Fl)ﬂ{ r—r7] <5} * /(Fo,rl)\{ [r—1| <5}

o

=1 + Is.

Then due to (Z3), (64) and (6.6]), we obtain

1

dy
= | =

dr
dy
dr

L <C

M
/ , _— |F—F’|dF’
co L;F ‘<€ |F - PI'

1

(0%

<CM

Co
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For I we have

bgc( )H D — | dr
ro,rl)m{\r I'|>ea}
dy
<C|(MUTI Ty — .
> ( »1 1,10, a) dar o
Hence J )
—Dyu(z () y ()| < [yl € M,T1,To, — ) . (6.13)
dl’ «
It remains to estimate |- Dyu (z) y}ﬁ.
4 D (0)y (1) — LDy (2 (1)) y (T) = / vk @) -2 () X () - K (o (F) - 2 () L () ) ar
dl’ dl’ To dl’ dr’

T dl‘l
b 3D 0000, (1) = () B2 () ()~ 1) -
30,0, K (o (7) () S (1) (4 (F) <r'>>] i

=1 + Is.

We write I; as

I
i< [ @ e (5w - @) a

0

r
+ /F |[VK® (z(T) — 2 (I')) = VK* (z (T') — 2 (I'))] ’% (f)‘ dr’

< Iy + Iho.
Using ([617) to bound I1; and (611)) to bound ;2 we obtain that

1 = s
|Il| S C <M7 Evrlvro) |F - F} Hy”l,ﬁ .

[c-1|
o

Now, we estimate I5. Let r = , write I as

Loy oo
(Fo,Fl)ﬁ{ p—r’ ‘<2r} (Fo,Fl)ﬂ{ Ir—r |22r}
= Iz1 + Iao.

Using (2.0) and (610) for I2; we have

dx
i< [ DR @@ e @) T
(T, Fl)m‘ | dI’

ﬁwav—ywwwr

o a ’ de = = / /
i ‘/(F07F1)ﬂ|rarl|<3r ‘DQK (x (F) o (F ))‘ E (1—‘)‘ |y (F) Y (F )| o

dx dy cC M C
< Cll— = | R N
=z larll ﬁfwuy<aﬂr o7+ ) T

1 d:Z? =18
<C(l-,MT,T — I'-T
<c(ganrn) |5 it
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We write Iso as

fee = /m,m A, }Za (s, K (2 (D) = (1)) Z (1) (35 (F) =y (T)) ll”

« ’ dIi darl- - _ , ,
+ /(ro,rl)m{wﬁr} Zazﬁij (z (T) —z () <dF (T) — T (F)> (y; (T) —y; (")) d

+ /Z (80,00, K (2 (T) — & (I')) — 80,0, K (2 (T) — 2 (I"))) 2. (F) (3 () — g (T')) I

= Ia91 + I222 + I223.

For 1221 :
d:v dy = 2 / /
I — —= r-r D*K® (z (") — a2 (I'))|dl’
| =< ‘dF co |1dl CO‘ | (FO,F1>”{F;/Z2T}| R
dx dy - 1 M c ,
— — r-r dar
- ‘dr oo || dT Co‘ | (po,mm{@m} (a2 eSS )
1 dx — _
< o(zanrrn |5 )it —1p).
which implies Holder continuity for 0 < 8 < 1.
For 1222 :
dx T = -
I g/ D*K® (x(T) — 2 ()| | == ——r’ [) —y(I)|dr’
[ 1222 (FoFl)ﬁ{FF,>2T}‘ ( () —( ))‘ dI‘( ) dF( ) ‘y( ) —y( )‘

dﬂf 1 M C
| ‘ H (ro,rl)ﬂ{wz%} a2 |F I‘/| | ‘
1 d(E -3
< C<E,M, Eﬁul—‘lal—b) IT=T" Nyl 5

here we also used that
T -I'|<|D-T|+ [ -I".

For 12232
dx dy / 2 o / 2 o T / T / /
I < ||—= = DK I'—a2(I) — D°K I')—z ([ I'-1"dI"
ol < |G| (1] (rO,mm{F;'zzr}‘ (2 () = = (I')) (2 (T) =2 @) |F - 1|
Since [r-r] > 2r and [r-r| >, ie, D2K*(z(T),z (I'")) — D2K®* (z (T') ,z (")) is differentiable in [T, T],
(z (D), (1))

we can apply the MVT to obtain that for I € [I,T]

DK (2 (T) 2 (I')) - D*K* (2 (T) 2 ()| = ra" (M) <|r~ fF’IZ + 1) .

o3
We also have that u > r. Hence
1 dx dy / e - N s
I < — M) ||-= ra —— +1 )| -T"|dI
Hozs] - < (04 )‘dF co lldl o Jro,rpnZ=21 5, <|F”—F'|2 >‘ |
1 dzr _ _
< C(=M, ||l Tu,To)llyllys|C—=T](1+[log|T—T[]),
o dalr’ co
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where we have also used that
T-T'|<|D-T"|+ " -T'|<|T =T+ " =T

This implies Holder continuity for 0 < 5 < 1.
Summing up we have

d
ar

1
D] <0 (200l 0T 5) Il
B

Now, the local existence and uniqueness of solutions in C! is a particular case of the above proof (see

bounds (6.5),(6.8),([6.12),(6.13)).
The proof of the Lipschitz case is similar to the proof of the C1P case, for example, to show Lipschitz
continuity of u (z (I")) for « € Lip ((I'0,T'1)), denote r = |F;F| and write

u@ @) —ue ()] < [ K @@) o ) ar = K o (F) = ()| ar

= / +/ =11 + I,
(To,T'1)NE, (To,T1)\Er

|z (F) — = (1))

where

ET:{F/E(Po,Fl): <2TM}.

[o-r'|
«

—T’|

<

For I, due to M| < |z|, L Fl |20 w( )l, we have that |F;F| < 2rM? and hence

(14 2M?). Thus by 23) and (IBEI) we obtain_

[K® (1) — 2 (T')| + |K* (2 (T) — = (T")) | I

s /(PO,Fl) {'F Ul <o }

C C(M
< — / dr’+/, dr' | < ( >r.
o\ JI= oy, P~ (1 2m2) a

For I due to M|F;F,| > |z(F);m(F’)| 2r M, we have that | | > 2r, and hence o] > r, which in turn
implies that |z(F);m(F’)| > ﬁ|r;r’| > 57+ Also, due to ‘ ( ‘ < M’F I“ Mra we have for
every z(I') € B (z(I), |z (') — z ([)|) that Jz(r) ()] (F”) =(r)] > Mr. Hence by the mean value theorem and
|K* (x(T) =z (I'")) = K* (z (T) — 2 (I"))| < sup ~VE (2 () =z ()| |2 (T) — = (T)]
a(I")eB(z(I), |-z (T)|)
11 |z (T") — z (T)] C -
< <E§ log —————=+ — | [« (1) — (T}

1 _ F// _F/
§O<M,—) T —T| <1og <7| |)+1)
« (e
1 I\I/ _I\I
|| < rC (M, —> / o <log <g> + 1) dr’
a (ro,rm{%zr} a

1
<C (M, —,Fl,FO) r(1+r|logr|).
o

Hence
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Hence u (x (T')) is Lipschitz continuous. We remark, that in the proof of the C*# part we used partitions
using the fact that « (T') is a differentiable, however, given the fact that differentiable functions are Lipschitz,
one could have used the partitioning introduced in the proof of Lipschitz case on subsets of x (I") also for
CP results. O

Proposition [6.2] implies the local existence and uniqueness of solutions:

Proposition 6.3. Let —0o < 'y < I'; < oo, let V be either the space C*P ((I'g,T1)), 0 < B < 1 or the
space Lip ((To,T1)), let KM = {z € V : ||z||, < M,|z|, > & }and let zo € V N {|z|, > 0} ,then for any M,
1 < M < oo, such that zg € KM, there exists a time T(M), such that the system (6.1 has a unique local
solution x € C1((=T(M), T(M)); KM).

6.2 Step 2. Global existence.

To show the global existence, we assume by contradiction, that Tiax < 00, where [0, Tinax) is the maximal
interval of existence, and hence the solution leaves in a finite time the open set KM, for all M > 1, that is,

. o . 1 o . 1
limsup, ;- |lz|l,, = oo or limsup, ,— EeOrT = 00 Therefore, if we show global bounds on EICaIN and

|z (-,t)]ly, in [0, Thmax), we obtain a contradiction to the blow-up and thus the obtained local solutions can
be continued for all time. The result extends to negative times as well.
To control the quantities m and |z (-,t)|l,, we need to bound [;™ ||V u @( 1), )| oo ((ro,1y)) -

The next proposition provides the bound on the gradient of the velocity .

Proposition 6.4. Let zg € Lip ((To,T'1)) and |xol|, > 0. Suppose the solution exists on [0, Tymax), then for
t € [0, Trnax) we have

1 tcq
[Vau (@ (T,0),0)] < ~C(laol.) e +Cn, (6.14)
where C = C% (I'y = Ty).
Proof. We write Vyu (2(T,1),t) as
Iy

Veu (x(T,t),t) = A VK (z(T,t) —z (I, ¢t))dl’

= / +/ =1 + I,
(To,T'1)NE. (To, 1)\ E:

E. = {r’ € (To,Ty) : B — 2T O] a},

«

where

for a fixed small 0 < € < 1, to be further refined later.

Let the vorticity ¢(x,t) be supported on the curve {x (I',t) : Tg <T < T}, with a density v (T',t) =
1/]zr (T, t) | (due to the Lipschitz continuity of « (T, t) its derivative exists almost everywhere and is essen-
tially bounded, and also due to {|z|, > 0}, the vorticity density v (I',t) € L> ((I'o,I'1))), that is for every
¢ € C (R?)

I
[ eaate.y = [ g @
R2 T'o
Observe that the vorticity g(x,t) is a finite Radon measure which is the unique weak solution of the Euler
equations given by Theorem 2.1] of Oliver and Shkoller [65]. Also, ||q|| , = I'1 — To.

Let 1) denote the unique Lagrangian flow map 9;n(y,t) = [ K (y,2)dq(z,t), n(y,0) =y, ¢ = ¢""on~*,
y € R? given by Theorem 2.1l We remark that in the formulation of BR-« model, we assumed the positivity
of the vorticity ¢, see Proposition LI Denote the distance between two points 7(y,t) and n(y’,t) by

r(t) = [n(y,t) —n(y,t)], where r (0) = [y — ¢/'|.

25



Then, using the estimate (2.14) of [65], we have
)< [ ) - Ko da
r(t)
<o (Y
< aw( 9 bl

— 1 r t) in
=C¢ (T) g™ | s

where
0, r=0,
e(r)=q r(1—logr), 0<r<l,
1 r > 1.

)

By comparison with the solution of the differential equatiorH

Lty = —c2o (1) g7
g W=-05e o

r(0) = [z (T',0) — 0)I ,

T ) _tCoy
we can choose € small enough, € < !¢ ', where ) = C% ||quM =TI —Tp, eg,e=e"° ", such that,

frw<s wehavethatw:@<lﬁHence

[e3%
tCy
200 00, 1O (1O) e 615
a o a
tCq
(e oy e
o
Now, using also that |zg|. is bounded away from zero, we can bound w from below, using (615,
tCy tCy
L el <|x<r,o> - x(r',o>|>€ — <|r - r’|)e
o a o
4
(@)etel lme€ O g
r () ) ’
W ) oo W 31, p<i,
e1-e 1T rO >, > e
k) o P k) P k)
where
1 n
Cr= C; lla™ Il »
e (),
Ch o
50therwise, w = % > 1, hence
T t)—x (It t @—Ct, < t**,
e > —Ix( .Y) ax( 2l > 7) 2 { fietclflT(O)+1
e o« >

Let t > t**, then we have € > el—etC1 , a contradiction. Otherwise ¢ < t** = Cil (T(O) ) hence C1t < (T(O) 1)

[e3
o T® T
[e% (6% [e% [e%

+1=1,

a contradiction.
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which in turn implies the bound (using also (2.H) and (6.9))

11 T t)—a(,8) C
n < / , (——210g|$( ) — ’)|+—2>dr'
(Fo,r1)ﬁ ‘I(F’t)’a’”(r ’t)| <e 27T « [0 o

1 tCy
—C e
—C(wol.) e

IN

While to bound I, we use the boundness of |V, K% (z (I',t) — 2 (IV,t))] in {TV € (To,T1) : la@O—o ()]

e}.

« -

I

I, < sup VoK (z(T,t),z (I',t)) ar’

‘z(l",t);a:(l’",t)‘ >e To

1
< CE (loge| + 1) (T'1 — o)
= Cl (etcl + 1) .

Now, the bound on ||z (+,%)[|co on [0, Tiax) follows from 92 (T',t) = u (z (', t),t) and the fact that

I

|u<x<r,t>,t>|s/ K (2 (0,0) (I, )| < & (0~ T),

o

due to the boundness of K (see (Z.]),(63). Also, by Grénwall inequality the bound (614 provides bounds
on ey and o (- 0]y on [0, Tnax).

Finally, for the initial data in C*# (9, I'1)), the bound (6.I4) provides bound on || 4 (-, t)HC0 on [0, Trnax)
by Gronwall inequality. While the bound on |g—lﬂf (-, 1)) 5 on [0, Tmax) is a consequence of

%:EF (F,t) =V,u (I (th) 7t> “Ir (F’t> ’

the bound (which is shown in a local existence part, see (G.11))

1
|ku (.’L‘ ('7t) 7t)|ﬁ <C (57 er ('7t)||L°° ) |$L' ('7t)|* 7P17P0) )

(614) and the Gronwall inequality.
This yields global in time existence and uniqueness of Lip and C*%,0 < 3 < 1, solutions of (G.1]).

6.3 Step 3. Higher regularity for closed curves.

Now we show the higher regularity for an initially closed curve xo (I') € C™P (S*) N {|z|, >0}, n > 1,
0 < 8 < 1. We remark that the high derivatives of the kernel K% (z) are singular at the origin, thus the
condition on closedness of the curve.

To provide an a priori bound for higher derivatives in terms of lower ones, we show that for x €
KM Cm™F (SY), the map u defined by (6.2) satisfies

1 1
@l < C (5 Mooy 5 ) ol

hence by Gronwall inequality and the induction argument, it is enough to control [z, and [|z||, 4, to guarantee
that () € C™P (S1), for all n > 1, (and consequently in C> (S'), whenever zg € C* (S*) N {|z], > 0}).
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Lemma 6.5. Let u and K™ be as defined in Proposition [6.2 and x € KM nC™8 (Sl), n>1,0<0<1
then

1 1
@l < € (5 Mol 3 ) ol

Proof. We show the proof for n = 2, the proof for general n is similar. The derivative of u with respect to
' (in the sense of distributions) satisfies (see Appendix, Lemma [A.T])

d? R, oy AP )
mu(m(l“)): ; VK (I(F)—x(F))W(F)dF
o 2
dx; dz;
V. 0y, 0. K (z (L) — 2 (T () =2 (T) dr’
o | 32 0004 K o () = (1) (1) 2 D)
=1 + I,
I can be bounded using similar arguments as for (G.7),
1 1
1)< 250 () il
We write I as
2 dx; dx;
Iy =p.v. 0y, 0z, K (2 (T) — 2 (T () =2 (T) a1’
2Py /_FF’<5+/(0,2W)\{|FF’|<E} ijzzl 02, K (2 () =2 (1)) dI‘( >dI‘( )

= I + Isa,

where, due to the closedness of the curve, we can fix a small ¢ < 7/2 independent of T', by taking Iao

= fD\{‘PFI‘ }, where D = (0,27) ifea < T < 27 —ea, D = (—m,7) if 0 < T < ea, or D = (m,3n) if
E<e

2 —ea < T < 27. Treating I as in the local existence proof, we have

1 3 - !
Ip| < C (M, = Ty 1)dr
| 22| = < 7(1) |x||17B/DmFaF/ZE (|F—F/| + )
1
< (2 1el ) hogel.

For I5; we have that

1 oij (x (1) — 2 (I")) % (T) dx; ,
Ioy = ——p.v. — (I dl’
7 qra2? /l_l<z; EX o

T)—z (1) dr
1 [z (0) =2z (@)], |z@) -2 @) dr; ., dz; /
t a2 /FF/|<5iZjO( 3 log - T (') T (T')dr
= Io11 + 212,
where
1 [z (af - x%)) _ 1 (wl (23— x%§> 1 (:102 (321 + x%))
o (z) = B <_$1($§ +322)) 712 (#) = o= (2) = 2 \&2 (2] — 23 022 (@) = o \—21 (a7 —23) )
(6.16)

1512 is not a singular integral and due to

|z (T) — 2 ()] < [lor |l co T =T,
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we obtain that
[I212] < C S 2l -

We use the observation
1f (@) = f@) = (@=y) f @< o=y |f, (6.17)

to desingularize the Is11. We rewrite

o (2 () = & (1) & (1) i, iy (2 (1) = o (1) % () (0 = 1)
D R D P T ) L G
B oij (z (1) —z (1)) (% (D) (0 —TV) — 2; (T) + 25 (F’))%(F)
R o)~ (O - T) ar
o ( 17( ) (i (T) — x; (1)) d;
"2 vy a

= J; —|— Js.
Observe that Jo = (F_—lr,)(_ll) and J; < C (M) ||:CH§5 T —T'|"* due to loij| <1 (see (GI6)) and (CIT).

Hence
1 1 1 1
—_— Jidr’ V. —dr’
Ira? /lil I /IF;'I - <—1> T-1)

1 1
5 el 5

[ T211]

< C(M)—— eP.

Summing up, we have that

d? 1 1
Lu@m)] <0 (M el ol 5 ) el s
Using the same ideas we also bound ‘%u (x (F))‘B O
Appendix
Lemma A.1. Let z € C*# ((To,I'1)) N {|z|, > 0} then
d? A, o P ,
oz (@) = . VE® (2(I) =z (I")) =5 (I) dT
Py / Z 01,00, K° (& (1) — & (1)) 22 (1) 22 1)
" = ar *’dr

(in the sense of distributions).

Proof. By the definition of the distribution derivative, for all ¢ € Cg° ((FO, ry) ;Rz)
d? du dy
(42 @mem) == (Fem) Eo)
T dx dy
= - K« ) —z ) = I)dl’,-= (T
</Fov () — 2 () S (1) ar’, 92 ()

I
= — lim / YRS (2 (1) — 2 () % (0 drar
To,I')NE—">¢

e—0 Jp
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[r-r'|

where for a fixed I' we take ¢ < min{%, %} Denote D = (I'g,I'1) N +—;

parts we get

> ¢, by integration by

__;géF?<_[¢a3VKa@aw_xaﬂ)%3rﬂm;+ﬁﬁmrh%[VKa@au_xaqg%(m}a)dw
= lim F:1@4+—B)dr’
For A we have
A=l — c0) VK" (& (I ~ 0) — o (') = (I~ ca)
(I +20) V™ (2 (I + 0) — o (') 5 (I + ca)
=1+ I+ I3,
where
=l +c0) ~ (I — 0)] VK (& (I + <) — 2 (I")) 5% (I + <a),
I = (I <) [VE® (z (I + £0) — & (') = VK* (& (I' ~ <) — & (I"))] S (I + c0),
Iy = o (I" — 20) VK (2 (I' — <) — 2 (I")) | 55 (I + £0) — % (17 — )|

Now, since for y € RQ,% —0:|VK*(y)] < —iLlog% +0 (%) and |4 > Mw > ||, e

21 «?
we have
11 |z (T + ea) — x ()] C

|VKO‘(I(F/+EOZ)—I(F/))|S—%glog - —|—¥

1
<C (|$|* , —) (loge +1),
a

Hence ) J J
|Il|§0<|a:|*,a) H% o % Cos(loga+1)—>0,asa—>0.
Similarly,
Il < 0 (el 2 ) lolloo | Z2] < (oge +1) — 0, as e — 0
— —_— — — 0.
8l = *704 v c° dF2 Cco & ’

For I we have

dx

i [VK® (x (T" +ea) — 2z (") = VK (x (I —ea) — z (I))],

Co

1| < [lelleo

using that for y € R?

VE® (y) = |?1|Dw () (0 (4) + J) — o () D>T (Jy])

L (e y3 ) (0 —1)
o(y) =—5 ,J = ,
) ly)? (—yf —y1y2 10
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for =, = — 0, we obtain

11 Wl |, |, AP

« « / !
IVK® (y) = VK (y')| < E§|0(y)—0(y)|+0¥ 10g; +C ot logF
11 )
4 g llogly/| ~ los .
Now, since
dx
a’el ‘ﬁ’ﬁ

[log|z (I" — ea) — z (T")| — log |z (" + ea) —z (IM)|]| < C

jzl,

and since o (x) and z are continuous functions, we obtain
VoK (x (I" +ea) —z () — VoK (2 (I" —ea) —z (I"))] — 0, as e — 0.

We also have that |V, K (z (I'" +ea) — 2 (I")) — VoK (z (T' — ea)) — 2 (I'))] is bounded by

BB | dz
a ’ . Ny a r . ’ ii Q d_x2 2 d_CC as‘dp|5
VoK (2 (I +ea) =z (I) = Vo K¢ (2 (T —ea) —2 ()] < el | (B log T cog +C .
dx
< -
< C (av ar 1737|I|*>7
hence by the Lebesgue’s dominated convergence theorem
I
lim Adl’ = 0.
e—0 To
For B we have
d o "y dz _ o o d2T
I [VE @@ =) G 0] = v () -2 0) G )
dz; dx;
a _ / i by
+;3zﬁij (@ () =2 (") = (1) = (D).
Hence
42 Iy
T @00 (0) = [ e
dar To
U ok (:c(r)—:c(r'))d2—””(r)dr’4r /Flza D0 K ( (T) — 2 (")) %% 1) 24 1y arv
n T2 S R ar !
which concludes the proof. O
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