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Abstract.

In quantum information context, the groups generated by Pauli spin matrices, and

Dirac gamma matrices, are known as the single qubit Pauli group P , and two-qubit

Pauli group P2, respectively. It has been found [M. Socolovsky, Int. J. Theor. Phys.

43, 1941 (2004)] that the CPT group of the Dirac equation is isomorphic to P . One

introduces a two-qubit entangling orthogonal matrix S basically related to the CPT

symmetry. With the aid of the two-qubit swap gate, the S matrix allows the generation

of the three-qubit real Clifford group and, with the aid of the Toffoli gate, the Weyl

group W (E8) is generated (M. Planat, Preprint 0904.3691). In this paper, one derives

three-qubit entangling groups P̃ and P̃2, isomorphic to the CPT group P and to the

Dirac group P2, that are embedded into W (E8). One discovers a new class of pure thee-

qubit quantum states with no-vanishing concurrence and three-tangle that we name

CPT states. States of the GHZ and CPT families encode the new representation of

the Dirac group and its CPT subgroup.

PACS numbers: 03.67.Pp, 03.67.Pp, 02.20.-a, 03.65.Ud

1. Introduction

In quantum field theory, a set of discrete transformations T (a time reversal), P (a

space reversal, or parity) and C (the charge conjugation) preserve the CPT symmetry.

A CPT violation would imply violation of Lorentz invariance. The mirror-image of the

universe with objects reversed in time and space, and matter replaced by antimatter,

would evolve like our universe. It is expected that CPT invariance is a first principle

that any physical theory should rely on.

Any discrete symmetry may be realized as a relation between two elements of a

finite group. For the Dirac equation, the CPT group G is a subgroup of the group

determined by 4×4 Dirac matrices. The relevant CPT generators are (see [1], eq. 37b).

P = iγ0, C = iγ2γ0 and T = γ3γ1, (1)

where the gamma matrices involved are γ0 =

(

1 0

0 −1

)

, γk =

(

0 σk

−σk 0

)

(k = x,

y and z), with σx =

(

0 1

1 0

)

, σy =

(

0 −i

i 0

)

and σz =

(

1 0

0 −1

)

the Pauli spin

matrices.
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The 4× 4 matrices in (1) generate a sixteen element group isomorphic to the small

permutation group ⌊16, 13⌋, a split group extension by Z2 of either of the three eight-

element groups Z2 × Z4, the dihedral group D4 or the quaternion group Q. In other

words, the CPT group G can be described by either of the semi-direct products

G ∼= (Z2 × Z4) ⋊ Z2
∼= D4 ⋊ Z2

∼= Q ⋊ Z2. (2)

The CPT group may also be seen as the central product G ∼= E+
8 ∗Z4, where E+

8 ≡ D4

is an extraspecial group of order 8. The group G is isomorphic to the single qubit Pauli

group P, generated by Pauli spin matrices, i.e.

G ∼= P = 〈σx, σy, σz〉 ≡ G(4, 2, 2), (3)

where G(4, 2, 2) is a imprimitive reflection group

(see http://en.wikipedia.org/wiki/Complex reflection group for the definition).

In this paper, one discovers another isomorphism to the CPT group, that is

constructed from a three-qubit entangled system. It was shown earlier [3] that the largest

reflection group W (E8), of order 696 729 600, can be enacted (i.e., represented) from

a specific set of entangling matrices of the orthogonal group SO(8). The construction

follows from a building block 2×2 orthogonal matrix S, arising in Mermin’s proof of the

Kochen-Specker theorem. Basically, there are several entangled real three-qubit groups,

that inflate to W (E8) under the action of the Toffoli gate TOF . Here one discovers that

the smallest reflection subgroup that inflates to W (E8) under the action of TOF is P̃,

the three-qubit representation of the Pauli group P.

Thus, the CPT group is relevant in the context of P, the Dirac equation,

and the exceptional Lie group E8. In Sec. 2, the CPT matrix S is introduced

in relation to Mermin’s study of quantum paradoxes. In Sec. 3, the three-qubit

orthogonal representation of P̃ , that is isomorphic to the CPT group is derived, and

the corresponding entangled states, named CPT states, are studied. In Sec. 4, the

three-qubit representation of the Dirac group P2 is investigated.

2. Mermin’s approach of quantum paradoxes and the CPT matrix S

The basic pieces of the proof of Kochen-Specker theorem in a four-dimensional space

are two triples of (mutually commuting and real) two-qubit observables [3, 4]

{σx ⊗ σx, σy ⊗ σy, σz ⊗ σz} and {σx ⊗ σz, σz ⊗ σx, σy ⊗ σy} . (4)

The joined eigenstates of the first triple of mutually commuting observables may be

casted as the rows of the orthogonal matrix R as below [3]

R =
1√
2











1 0 0 1

0 1 −1 0

0 1 1 0

−1 0 0 1











,











+ + −
− − −
− + +

+ − +











. (5)
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Rows of the second matrix contain the sign of eigenvalues ±1, and each row corresponds

to an entangled state, e.g. the state associated to the first row is 1√
2
(|00〉 + |11〉). The

matrix R occurs in the braiding approach of quantum computing [5, 6].

The joined eigenstates of the second triple of mutually commuting observables in

(4) may be similarly casted as the rows of the entangling orthogonal matrix

S =
1

2











1 −1 1 1

1 1 −1 1

1 −1 −1 −1

1 1 1 −1











,











+ − −
− + −
− − +

+ + +











. (6)

The two matrices R and S capture, in a very compact form, the ingredients contained

in the Mermin’s proof of Kochen-Specker theorem. The braid matrix R satisfies the

Yang-Baxter equation [5], but the S matrix does not. Since S is a building block of

the new three-qubit realization of the CPT group, one name it the CPT matrix. Both

matrices are related by a relation involving the Hadamard matrix H as RS = H ⊗ I,

with H the Hadamard matrix.

Matrices R and S are used in the decomposition of the n-qubit Clifford group

into Clifford group dipoles (see [3] for details about this terminology). The pair

(R, S) generates a group isomorphic to the reflection group U13, of order 96, related

to octahedral invariance [3]. Only the CPT matrix S will play a role for the new

representation of the CPT group.

3. Entanglement in the CPT group

As recalled at the previous section, the Pauli spin matrices generate the Pauli group P,

that is isomorphic to the CPT group G. The two-qubit Pauli group P2 is generated by

the two-fold tensor power of Pauli spin matrices. One gets P2
∼= ⌊64, 66] ∼= E+

32 ∗ Z4,

where E+
32 is an extraspecial group of order 32. Another relevant isomorphism relating

P to P2 is P2
∼= ⌊16, 13⌋ ⋊ Z

2
2, that singles out the normal subgroup isomorphic to P.

Finally, P2 may also be seen as the group generated by the five γ matrices occuring

in the Dirac equation, that are γ0, γk (k = x, y and z) and the chirality matrix

γ5 = σx ⊗ 1, with 1 the 2 × 2 unity matrix. The first four γ matrices generate a

group isomorphic to the extraspecial group E−
32 ‡.

The first and second triple of observables in (4) generate groups isomorphic to

Z
3
2 and Z

2
2, respectively. The six observables in (4) generate a group isomorphic to

⌊16, 11⌋ ∼= D4 × Z2 (with D4 the eight element dihedral group). Such a group was

initially proposed as a tentative CPT group of the Dirac equation in refs [1] and [7].

‡ The two extraspecial subgroups E+

32 and E−

32 of P2 are both normal in P2, and individually in the

two-qubit Clifford group dipoles C+

2 and C−

2 . See eq. (14) in [3].
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Derivation of the three-qubit representation of the CPT group P̃

One way to arrive at the desired 3-qubit representation P̃ of the Pauli group P ( keeping

in mind that the CPT group G is a 2-qubit representation of P) is to introduce the

3-qubit real Clifford group C+
3 [8]. In [3], it is the real dipole of the 3-qubit complex

Clifford group C3 and is represented as

C+
3 = 〈1 ⊗ S, S ⊗ 1, 1 ⊗ T, T ⊗ 1〉 , (7)

with four generators, comprising the CPT matrix S and the swap matrix T in their

factors. Group C+
3 , of order 2 580 480, may be inflated to a representation of the largest

reflection group W (E8), by adjoining to it the Toffoli gate generator TOF = C2NOT

[Recall that CNOT gate flips the second qubit (the target qubit) if and only if the first

qubit (the control qubit) is 1.) The largest maximal subgroup of W ′(E8) is C+
3 . As

observed for the first time in [3], many reflection subgroups such as the Weyl group of

E6 and E7, as well as groups PSL(2, 7) and SL(2, 5), inflate to W (E8) by adding the

Toffoli gate generator.

Then, comes the question to determine the kernel of these inflations, i.e. the

smallest subgroup inflating to W (E8) under the action of the Toffoli gate §.
The three-qubit CPT group so defined reads P̃ = 〈K, i, j〉, where 〈i, j〉 ∼= Q and

〈K, i〉 ∼= D4, with generators

i =
1

2



























0 −1 1 0 0 0 −1 −1

1 0 0 −1 1 1 0 0

−1 0 0 −1 −1 1 0 0

0 1 1 0 0 0 1 −1

0 −1 1 0 0 0 1 1

0 −1 −1 0 0 0 1 −1

1 0 0 −1 −1 −1 0 0

1 0 0 1 −1 1 0 0



























,

j =
1

2



























0 1 1 1 1 0 0 0

−1 0 0 0 0 1 1 −1

−1 0 0 0 0 −1 −1 −1

−1 0 0 0 0 −1 1 1

−1 0 0 0 0 1 −1 1

0 −1 1 1 −1 0 0 0

0 −1 1 −1 1 0 0 0

0 1 1 −1 −1 0 0 0



























,

K =
1

2



























1 0 0 0 0 1 1 1

0 −1 1 1 −1 0 0 0

0 1 1 1 1 0 0 0

0 1 1 −1 −1 0 0 0

0 −1 1 −1 1 0 0 0

1 0 0 0 0 −1 −1 1

1 0 0 0 0 −1 1 −1

1 0 0 0 0 1 −1 −1



























. (8)

§ Fredkin gate also does the job when substituted to the Toffoli gate.
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Measures of entanglement

The resources needed to create a given entangled state may be quantified, and one can

define invariants for discriminating the type of entanglement.

For a pair of quantum systems A and B in a pure state of density matrix |ψ〉 〈ψ|,
the entanglement of formation is defined as the entropy of either of the two subsystems

A and B

E(ψ) = −tr(ρA log2 ρA) = −tr(ρB log2 ρB), (9)

where ρA and ρB are partial traces of ρ over subsystems B and A, respectively. The

measure is made explicit by defining the spin-flipped density matrix [9]

ρ̃ = (σy ⊗ σy)ρ
∗(σy ⊗ σy), (10)

and the concurrence C(ψ) = |〈ψ|ψ̃〉| between the original and flipped state ψ̃ = σy |ψ∗〉.
As both ρ and ρ̃ are positive operators, the product ρρ̃ also has only real and non-

negative eigenvalues λi (ordered in decreasing order) and the concurrence reads

C(ρ) = max
{

0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4

}

. (11)

For a two-qubit state |ψ 〉 = α |00 〉 + β |01 〉 + γ |10 〉 + δ |11 〉, the concurrence is

C = 2 |αδ − βγ|, and thus satisfies the relation 0 ≤ C ≤ 1, with C = 0 for a separable

state and C = 1 for a maximally entangled state.

The entanglement of a triple of quantum systems A, B and C in a pure state may

be conveniently described by tracing out over partial subsystems AB, BC, and AC.

In this generalized context, one introduces the tangle τ = C2. Tangles attached to the

bipartite subsystems above satisfy the inequality

τAB + τAC ≤ 4detρA ≡ τA(BC). (12)

The right hand side is interpreted as the amount of entanglement shared by the single

qubit A with the pair BC, in comparison with the amounts of entanglement shared with

qubits B and C taken individually. It is remarkable that, for any value of the tangles

satisfying this inequality, one can find a quantum state consistent with those values [9].

It has been shown that an arbitrary three-qubit state |ψ〉 can be entangled in

essentially two inequivalent ways, belonging to the GHZ-class: |GHZ〉 = 1√
2
(|000〉 +

|111〉) or to the W-class: |W〉 = 1√
3
(|001〉) + |010〉 + |100〉), according whether ψ can

be converted to the state |GHZ〉 or to the state |W〉, by stochastic local operations and

classical communication (SLOCC) [10]. The relevant class is determined by computing

the bipartite tangles of the reduced subsystems. If they vanish, then the subsystems

are separable and |ψ〉 belongs to the GHZ-class, meaning that all the entanglement is

destroyed by tracing over one subsystem. If none of the bipartite tangles vanish, then

|ψ〉 belongs to the W-class, meaning that it maximally retains bipartite entanglement

after tracing over one subsystem.

Further discrimination of the entanglement type of a general 3-qubit state

|ψ〉 =
∑

a,b,c=0,1

ψabc |abc〉 , (13)



6

can be obtained by calculating the SLOCC invariant three-tangle [9]

τ (3) = 4 |d1 − 2d2 + 4d3| ,
d1 = ψ2

000ψ
2
111 + ψ2

001ψ
2
110 + ψ2

010ψ
2
101 + ψ2

100ψ
2
011,

d2 = ψ000ψ111(ψ011ψ100 + ψ101ψ010 + ψ110ψ001)

+ ψ011ψ100(ψ101ψ010 + ψ110ψ001) + ψ101ψ010ψ110ψ001,

d3 = ψ000ψ110ψ101ψ011 + ψ111ψ001ψ010ψ100. (14)

For the GHZ state the 3-tangle becomes maximal: τ (3) = 1 and it vanishes for any

factorized state. It also vanishes for states of the W -class. The 3-tangle may be

interpreted as the residual tangle

τ (3) = τA(BC) − (τAB + τAC), (15)

i.e., the amount of entanglement between subsystems A and BC that cannot be

accounted for by the entanglements of A with B and C separately. It is of course

independent on which qubit one takes as the reference of the construction. The GHZ

state is a true tripartite entangled state so that no amount of entanglement is in the

bipartite subsystems, as a result the residual entanglement is maximal. In contrast, for

the states of the W-class the entanglement is of a pure bipartite type and τ (3) = 0.

Mixtures of GHZ and W states are studied in [11], where it is shown that while

the amounts of inequivalent entanglement types strictly add up for pure states, the

monogamy is in general lifted for mixed states because the entanglement can arise from

different types of locally inequivalent quantum correlations.

Knowing the three-tangle τ (3) and the two tangles τAB and τAC of subsystems AB

and AC, the linear entropy (one-tangle) τA(BC) may also be calculated [9, 11]. It is a

measure of the full amount of entanglement in the system and for a mixed three-qubit

state it may take a non-zero value even if no two- and three-partite entanglement is

present.

Let us investigate the type and amount of entanglement in the three-qubit pure

states |CPT 〉 arising from the CPT group P̃. One singles out the state arising from the

first row of the generator K. The same measures are obtained for states arising from

the quaternion generators i or j. For the state

|CPT 〉 =
1

2
(|000〉 + |101〉 + |110〉 + |111〉), (16)

the three-tangle is τ (3) = 1
4
.

The density matrices of the bipartite subsystems are

ρBC =
1

4

0

B

B

@

1 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1

1

C

C

A

, ρAB =
1

4

0

B

B

@

1 0 0 1
0 0 0 0
0 0 1 1
1 0 1 2

1

C

C

A

, ρAC =
1

4

0

B

B

@

1 0 0 1
0 0 0 0
0 0 1 1
1 0 1 2

1

C

C

A

.

The set of square eigenvalues
{

1
16

(3 + 2
√

2), 1
16

(3 − 2
√

2), 0, 0
}

is uniform over

the subsystems. All CPT states exhibit the same entanglement measures τ (3) = 1
4
,

τAB = τAC = τBC = 1
4
. For all of them, the linear entropy is

τA(BC) =
1

4
+ 2

1

4
=

3

4
. (17)
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It is tempting to compare a CPT state as in (16) state to the unique mixed state

|Z〉 =
√
p |GHZ〉 − e−iφ

√

1 − p |W 〉 (18)

with the same three-tangle τ (3) = 1
4
. According to Fig. 3 in [11], one gets for such a

mixed state p ≈ 0.70, the sum of two concurrences τAB + τAC ≈ 0 and τA(BC) ≈ 0.85.

Clearly the CPT state and the |Z〉 state with the same three-tangle are completely

different objects.

4. Entanglement in the Dirac group

The three-qubit representation of the group design SL(2, 5)

Among the various groups, that can be inflated to W (E8) under the action of the

Toffoli gate, the selection of H = S̃L(2, 5) is justified in many respects. First, a matrix

representation of SL(2, 5) is a unitary design, i.e. a set of unitary matrices that simulates

the entire unitary group [12]. A two-dimensional complex representation of SL(2, 5) is

given in [3], eq. (15). The three-dimensional orthogonal representation is as below. The

group design SL(2, 5) is the smallest known 2-dimensional 5-design.

Second, recall that the Poincaré dodecahedral space D is a tentative model of the far

universe, that describes well the fluctuations of the cosmic microwave background [13].

The fundamental group of D is the binary icosahedral group, isomorphic to SL(2, 5).

One gets

〈x, y, TOF 〉 ∼= W (E8) with C+
3 = 〈x, y, 1⊗CZ〉 and 〈x, y〉 ∼= SL(2, 5), (19)

where CZ = diag(1, 1, 1,−1) and the generators are

x =
1

2



























1 −1 0 0 0 0 1 1

1 1 0 0 0 0 −1 1

0 0 1 1 −1 1 0 0

0 0 −1 1 −1 −1 0 0

0 0 1 1 1 −1 0 0

0 0 −1 1 1 1 0 0

−1 1 0 0 0 0 1 1

−1 −1 0 0 0 0 −1 1



























,

y =
1

2



























1 0 −1 0 0 −1 0 −1

0 1 0 1 1 0 −1 0

1 0 1 0 0 −1 0 1

0 −1 0 1 −1 0 −1 0

0 −1 0 1 1 0 0 1

1 0 1 0 0 1 0 −1

0 1 0 1 −1 0 0 1

1 0 −1 0 1 0 0 1



























.

(20)

It is straightforward to calculate the invariants attached to states of the type

|ψ〉 =
1

2
(|000〉 − |001〉 + |110〉 + |111〉), (21)
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or |ψ〉 =
1

2
(|000〉 − |010〉 + |101〉 − |111〉),

that correspond to the first rows of x and y, respectively. The three-tangle of the states

are τ (3) = 1 and the two-partite density matrices uniformly possess the set of square

eigenvalues
{

1
4
, 1

4
, 0, 0

}

corresponding to vanishing concurrence. Thus, the entanglement

arising from the generators of H is of the GHZ type.

The group H expands in size by adding to it one of the generators of P̃. Adding

the quaternionic generator i to H , one gets a group isomorphic to E−
32.S5 that is, up

to a factor of 2, the 3-qubit representation of the 2-qubit dipole C−
2 , of order 3840 (see

eq. (14) in [3]). Adding the quaternionic generator j to H , one recovers the 3-qubit

representation of the group Z2.W
′(E6), and adding the generator K to H one obtains

the representation of W (E7).

Entanglement in the extraspecial group E−
32

In (8), the quaternion group was generated with the two CPT generators i and j. It
can also be obtained using two non-CPT generators W and Z , i.e. 〈W,Z〉 ∼= Q with

W =
1

2



























0 0 0 −1 0 1 −1 1

0 0 0 −1 0 −1 1 1

0 0 0 −1 0 1 1 −1

1 1 1 0 1 0 0 0

0 0 0 −1 0 −1 −1 −1

−1 1 −1 0 1 0 0 0

1 −1 −1 0 1 0 0 0

−1 −1 1 0 1 0 0 0



























,

Z =
1

2



























0 −1 0 −1 1 −1 0 0

1 0 1 0 0 0 1 −1

0 −1 0 1 1 1 0 0

1 0 −1 0 0 0 −1 −1

−1 0 −1 0 0 0 1 −1

1 0 −1 0 0 0 1 1

0 −1 0 1 −1 −1 0 0

0 1 0 1 1 −1 0 0



























.

The states arising from the generator W are maximally entangled and of the type

W , i.e. τ (3) = 0, the concurrences of the subsystems equal 1
2

and the linear entropy

τA(BC) equals 1. The states arising from the generator Z are of the GHZ type.

Then, using the following CPT matrix
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c =
1

2





























1 0 −1 −1 0 1 0 0

0 −1 0 0 −1 0 −1 −1

−1 0 1 −1 0 1 0 0

−1 0 −1 1 0 1 0 0

0 −1 0 0 −1 0 1 1

1 0 1 1 0 1 0 0

0 −1 0 0 1 0 −1 1

0 −1 0 0 1 0 1 −1





























,

one gets a new realization of the CPT group

〈W,Z, c〉 ∼= ⌊16, 13⌋ (22)

One also introduces another type of matrix, that one names a chain-CPT matrix

as

ch =
1

2





























0 0 −1 0 −1 −1 −1 0

0 0 1 0 1 −1 −1 0

1 −1 0 −1 0 0 0 −1

0 0 1 0 −1 1 −1 0

1 −1 0 1 0 0 0 −1

1 1 0 −1 0 0 0 −1

1 1 0 1 0 0 0 1

0 0 −1 0 1 1 −1 0





























.

The states arising from the matrix ch are such that τ (3) = 1
4
, τAB = τBC = 1

4
, but

τAC = 0 so that the states are of the chain type A − B − C and the linear entropy is

τA(BC) = 1
2
. Using generators W , Z and ch, one obtains a modified CPT group as

〈W,Z, ch〉 ∼= ⌊16, 12⌋ = Q× Z2. (23)

In [1], it is shown that the CPT group of the Dirac field (not of the Dirac equation),

which acts on the Hilbert space of the field theory, is isomorphic to the group Q × Z2.

The 3-qubit representations (22) and (23) immediately leads to the group encompassing

the CPT -group ⌊16, 13⌋ of the Dirac equation and the CPT group ⌊16, 12⌋ of the Dirac

field as

〈W,Z, c, ch〉 ∼= ⌊32, 50⌋ ≡ E−
32. (24)

The extraspecial group E−
32 is isomorphic to the unique normal subgroup of order 32 of

the Clifford group dipole C−
2 , and also corresponds to the group generated by the first

four γ matrices.

Entanglement in the Dirac group

To arrive at the expected 3-qubit representation P̃2 of the Dirac group P2, one adds to

the representation S̃L(2, 5), given in (19), the generator K, given in (8). This generates
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the Weyl group W (E7). One the maximal subgroups of W (E7), of order 46080, is

isomorphic to the non-split product M = P2.S6, of order 46080 (with S6 the symmetric

group on six letters), and the corresponding normal subgroup is represented as

P̃2 = 〈g1, g2, c1, c2, u〉 , (25)

with two GHZ-type generators g1 ang g2

g1 =

(

R1 R2

R2 R1

)

, g2 =

(

R1 −R2

−R2 R1

)

, with

R1 =
1√
2









−1 0 0 1

0 1 −1 0

0 −1 1 0

1 0 0 −1









and R2 =
1√
2









1 0 0 1

0 −1 −1 0

0 −1 −1 0

1 0 0 1









, (26)

two CPT -type generators c1 and c2

c1 =
1

2



























0 1 0 −1 −1 −1 0 0

−1 0 1 0 0 0 1 1

0 −1 0 1 −1 −1 0 0

1 0 −1 0 0 0 1 1

1 0 1 0 0 0 −1 1

1 0 1 0 0 0 1 −1

0 −1 0 −1 1 −1 0 0

0 −1 0 −1 −1 1 0 0



























,

c2 =
1

2



























0 1 0 1 0 0 −1 1

−1 0 −1 0 1 −1 0 0

0 1 0 1 0 0 1 −1

−1 0 −1 0 −1 1 0 0

0 −1 0 1 0 0 1 1

0 1 0 −1 0 0 1 1

1 0 −1 0 −1 −1 0 0

−1 0 1 0 −1 −1 0 0



























, (27)

and the unentangled generator

u =

(

−U1 0

0 −U2

)

,

with U1 =











0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0











and U2 =











0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0











. (28)

Let us list a few subgroups of P̃2, that helps to clarify its physical structure. First,

the pair of GHZ-type generators generates the Klein four group: 〈g1, g2〉 ∼= Z
2
2 , and

the pair of CPT -type generators generates the quaternion group: 〈c1, c2〉 ∼= Q.

Second, by removing either of the GHZ-type generators g1 or g2, one recovers a

representation, different from the one in (24), of the normal (extraspecial) group E−
32.

By removing either of the CPT -type generators c1, c2 or the unentangled generator u,

one arrives at a representation of the normal (extraspecial) subgroup E+
32.
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As a result, the CPT group of the Dirac equation is obtained by removing u from

E−
32

〈g1, c1, c2〉 ∼= 〈g2, c1, c2〉 ∼= P̃ ∼= ⌊16, 13⌋ , (29)

and by removing u from E+
32 one gets a group isomorphic to the CPT group of the Dirac

field

〈g1, g2, c1〉 ∼= ⌊16, 12⌋ , (30)

or the false CPT group.

〈g1, g2, c1〉 ∼= 〈g1, g2, c2〉 ∼= ⌊16, 11⌋ . (31)

In [1], the group ⌊16, 11⌋ ≡ D4 × Z2 is denoted G1
θ and the CPT group of the Dirac

equation ⌊16, 13⌋ ∼= D4 ⋊ Z2 is denoted G2
θ. Both groups satisfy the requirement of

CPT invariance within Dirac equation. But, the consistency between the one particle

Dirac theory and the quantum field theory selects the second solution. The group

associated to the Dirac field is denoted Gθ
∼= ⌊16, 12⌋ in [1]. Thus, the normal series

Q̃ ⊳ P̃ ⊳ Ẽ−
32 ⊳ P̃2 ⊳ M̃ ⊂ W̃ (E7) helps to clarify the relevance of various groups (the tilde

symbol means that we are dealing with the 3-qubit representation).

5. Discussion

Three-qubit entanglement, and its relationship to the largest crystallographic group

W (E8), uncovered in this paper, is expected to play a role in two separate contexts:

quantum computing and unifying approaches of physics. The single qubit Pauli group

P, the CPT subgroup G of the Dirac group and the kernel of entanglement P̃ in the

new three-qubit representation of W (E8) were found to be isomorphic. That may be a

coincidence or the symptom of a more intricate physical theory, such as string theory [14].

Such a theory would encompass Dirac equation and be an alternative to quantum field

theory. To conclude, quantum entanglement in e+e− collisions was recently observed in

relation to a possible CPT violation [15].
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