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We estimate the rate of decay of the difference between a solution and its limiting equilibrium for the nonautonomous first order problem u + Mu = g(t), t ∈ R + , and for the second order problem

where g is a function which tends to 0 when t tends to ∞.

Introduction

In this paper we estimate the rate of convergence to equilibrium of bounded solutions of asymptotically autonomous semilinear evolution equations such as for example the heat equation u t -∆u + f (u) = g(t, x),

or the wave equation u tt + u t -∆u + f (u) = g(t, x).

(2)

In the autonomous case, i.e. g = 0, many authors have studied the asymptotic behavior of solutions for both equations. They used different assumptions on the nonlinearity f and the domain Ω, [START_REF] Zelenyak | Stabilization of solutions of boundary value problems for a second-order parabolic equation with one space variable[END_REF], [START_REF] Matano | Convergence of solutions of one-dimensional semilinear heat equations[END_REF], [START_REF] Simon | Asymptotics for a class of non-linear evolution equations, with applications to geometric problems[END_REF], [START_REF] Lions | Structure of the set of steady-state solutions and asymptotic behaviour of semilinear heat equations[END_REF], [START_REF] Hale | Convergence in gradient-like systems with applications to PDE[END_REF], [START_REF] Haraux | Convergence to a positive equilibrium for some nonlinear evolution equations[END_REF], [START_REF] Brunovský | On the local structure of ω-limit sets of maps[END_REF], [START_REF] Jendoubi | Convergence of global and bounded solutions of the wave equation with linear dissipation and analytic nonlinearity[END_REF], [START_REF]A simple unified approach to some convergence theorems of L. Simon[END_REF], [START_REF] Haraux | Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity[END_REF], so as to prove convergence to equilibrium. The basic argument used by L. Simon [START_REF] Simon | Asymptotics for a class of non-linear evolution equations, with applications to geometric problems[END_REF] in order to get his convergence result for solutions of equation [START_REF] Brunovský | On the local structure of ω-limit sets of maps[END_REF], is the Lojasiewicz inequality [START_REF] Lojasiewicz | Ensembles semi-analytiques[END_REF] for real analytic functions defined on R d which he generalized to the infinite dimensional case. This inequality is called Lojasiewicz-Simon inequality. The same result has been proved for equation [START_REF] Chill | Convergence to steady states in asymptotically autonomous semilinear evolution equations[END_REF] under the same assumptions [START_REF] Jendoubi | Convergence of global and bounded solutions of the wave equation with linear dissipation and analytic nonlinearity[END_REF]. The decay estimates of solutions of both equations have been studied by A. Haraux and M.A. Jendoubi. They established in [START_REF] Haraux | Decay estimates to equilibrium for some evolution equations with an analytic nonlinearity[END_REF] the rate of convergence to equilibrium of such solutions under relevant growth conditions on f . In the nonautonomous case, i.e. g = 0, recently Huang and Takač [START_REF] Huang | Convergence in gradient-like systems which are asymptotically autonomous and analytic[END_REF] have proved convergence to equilibrium of bounded solutions of equation [START_REF] Brunovský | On the local structure of ω-limit sets of maps[END_REF] under the assumption that f is analytic and g is such that

sup t∈R + t 1+δ ∞ t g(s) 2 L 2 (Ω) ds < ∞
for some δ > 0. Under these assumptions, R. Chill and M.A. Jendoubi [START_REF] Chill | Convergence to steady states in asymptotically autonomous semilinear evolution equations[END_REF] have proved the same result for equation [START_REF] Chill | Convergence to steady states in asymptotically autonomous semilinear evolution equations[END_REF].

The main objective of this article is to study the rate of decay of solutions of equations ( 1) and (2).

Our article is organized as follows : In Section 2, we present the first order and second order abstract equations which we will study and we state the main results. Sections 3 and 4 are devoted to the proofs of the main results. In Section 5, we give some examples of applications of our abstract results. Among these are the finite dimensional gradient systems and equations (1) and (2).

Main results

Throughout this article we let H and V be two Hilbert spaces. We assume that V is densely and continuously embedded into H. Identifying H with its dual H , we obtain V → H = H → V . We denote by •, • scalar products and duality relations; the spaces in question will be specified by subscripts. Throughout, we let C 1 ≥ 0 be such that

v V ≤ C 1 v H ≤ C 2 1 v V , v ∈ V. (3) 
Other constants in the calculations will be denoted by

C i (i ≥ 2). Let E ∈ C 1 (V, R)
, and denote by M ∈ C(V, V ) the first derivative of E. Let furthermore g ∈ L 1 loc (R + ; H). We study the following two abstract Cauchy problems: the first order problem

u(t) + M(u(t)) = g(t), t ≥ 0, u(0) = u 0 , u 0 ∈ H, (4) 
and the second order problem

     ü(t) + u(t) + M(u(t)) = g(t), t ≥ 0, u(0) = u 0 , u 0 ∈ V, u(0) = u 1 , u 1 ∈ H. (5) 
A function u : R + → V will be called a solution of equation ( 4), if u ∈ W 1,1 loc (R + ; V ) ∩ L 1 loc (R + ; V ), u(0) = u 0 , and if u satisfies equation [START_REF] Haraux | Slow and fast decay of solutions to some second order evolution equations[END_REF]. Similarly, a function u : R + → V is called a solution of equation ( 5), if u ∈ W 2,1 loc (R + ; V ) ∩ L 1 loc (R + ; V ), u(0) = u 0 , u(0) = u 1 , and if u satisfies equation [START_REF] Haraux | Decay estimates to equilibrium for some evolution equations with an analytic nonlinearity[END_REF].

We define the ω-limit set of a solution u of (4) or [START_REF] Haraux | Decay estimates to equilibrium for some evolution equations with an analytic nonlinearity[END_REF] by

ω(u) = {ϕ ∈ V : ∃t n → +∞ such that lim n→∞ u(t n ) -ϕ V = 0}.
If u : R + → V is a solution of equation (4) (resp. equation ( 5)) such that the range {u(t) : t ≥ 1} is relatively compact in V , then the ω-limit set ω(u) is nonempty and it has been shown by R. Chill and M.A. Jendoubi [START_REF] Chill | Convergence to steady states in asymptotically autonomous semilinear evolution equations[END_REF] that with an additional geometric condition on the function E and its derivative M the ω-limit set is reduced to one point, and that the solution converges. Definition 2.1 We say that the function E satisfies the Lojasiewicz-Simon inequality near some point ϕ ∈ V , if there exist constants θ ∈ (0, 1 2 ], η > 0 and σ > 0 such that :

for all v ∈ V with v -ϕ V ≤ σ, |E(v) -E(ϕ)| 1-θ ≤ η M(v) V . (6) 
The constant θ is called the Lojasiewicz exponent.

Our main results read as follows.

Theorem 2.2 Let u : R + → V be a solution of equation (4), and assume that

1. u ∈ W 1,1 loc (R + ; V ) ∩ W 1,2 loc (R + ; H).
2. The set {u(t) : t ≥ 1} is relatively compact in V .

3. There exists ϕ ∈ ω(u) such that E satisfies the Lojasiewicz-Simon inequality with exponent θ near ϕ.

4. There exist constants c > 0 and δ > 0 such that

∞ t g(s) 2 H ds ≤ c (1 + t) 1+δ (7) 
Then there exists a constant C > 0 such that for all t ≥ 0 we have

u(t) -ϕ H ≤ C(1 + t) -β , where β = inf θ 1 -2θ , δ 2 . ( 8 
)
Theorem 2.3 Let u : R + → V be a solution of equation [START_REF] Haraux | Decay estimates to equilibrium for some evolution equations with an analytic nonlinearity[END_REF], and assume that

1. u ∈ W 1,2 loc (R + ; V ) ∩ W 2,2 loc (R + ; H). 2. The set {(u(t), u(t)) : t ≥ 1} is relatively compact in V × H. 3. E ∈ C 2 (V ; R).
4. If K : V → V denotes the duality map, then the operator K • M (v) ∈ L(V ) extends to a bounded linear operator on H for every v ∈ V , and K • M : V → L(H) maps bounded sets into bounded sets.

5. There exists ϕ ∈ ω(u) such that E satisfies the Lojasiewicz-Simon inequality with exponent θ near ϕ.

6. There exist constants c > 0 and δ > 0 such that (7) holds.

Then there exists a constant C such that for all t ≥ 0 we have

u(t) -ϕ H ≤ C (1 + t) -β
, where β is as in (8).

Remarks 2.4 (a) Note that if g = 0 and θ = 1 2 , A. Haraux and M.A. Jendoubi showed in [START_REF] Haraux | Decay estimates to equilibrium for some evolution equations with an analytic nonlinearity[END_REF] exponential decay of solutions for both equations ( 1) and ( 2).

(b) In theorems 2.2 and 2.3, if θ = 1 2 then β = δ 2 .

(c) Note that if θ = 1 2 and we have instead of the condition [START_REF] Haraux | On the convergence of global and bounded solutions of some evolution equations[END_REF],

∞ t g(s) 2 H ds ≤ C exp(-δt)
where C and δ are two positive constants, we can show an exponential decay of solutions for both equations ( 1) and ( 2).

(d) Note that if g(s) H ≤ c (1 + s) 1+ δ 2
, where c is a positive constant, then condition [START_REF] Haraux | On the convergence of global and bounded solutions of some evolution equations[END_REF] is verified.

(e) Condition ( 7) implies in turn that

∞ t g(s) H ds ≤ c (1 + t) δ 2
, where c is a positive constant. Moreover if we consider the case V = H = R, M = 0 and g(t) K t -λ , where K is a constant, the existence of a solution with

u(t) -u ∞ ≤ c t -δ 2
, where c is a positive constant, is equivalent to the assertion λ ≥ δ 2 + 1. This explains why the power δ 2 appears in the calculations. 8) is also optimal in this case.

(b) It is not difficult using [START_REF] Haraux | Slow and fast decay of solutions to some second order evolution equations[END_REF] to see that the estimate ( 8) is also optimal in theorem 2.3.

In the proof of our theorems we shall establish some differential inequalities. The following lemma will allow us to deduce from those inequalities the desired decay estimates.

Lemma 2.6 Let φ ∈ W 1,1 loc (R + , R + ).
We suppose that there exists constants K 1 > 0, K 2 ≥ 0, k > 1 and λ > 0 such that for almost t ≥ 0 we have

φ (t) + K 1 φ(t) k ≤ K 2 (1 + t) -λ .
Then there exists a positive constant M such that

φ(t) ≤ M (1 + t) -ν , ν = inf 1 k -1 , λ k .
Proof of lemma 2.6

Let λ 0 = inf{λ, k k-1 }, then we have for almost t ≥ 0

φ (t) + K 1 φ(t) k ≤ K 2 (1 + t) -λ 0 . Let ψ M = M (1 + t) -λ 0 k = M (1 + t) -γ . Then we get ψ M (t) + K 1 ψ M (t) k = K 1 M k (1 + t) -λ 0 -γM (1 + t) -(1+γ) .
But we have

λ 0 ≤ 1 + γ = 1 + λ 0 k , it follows that ψ M (t) + K 1 ψ M (t) k ≥ (K 1 M k -γM )(1 + t) -λ 0 .
We choose M such that

K 1 M k -γM ≥ K 2 and ψ M (0) = M ≥ φ(0).
Finally we have to use the maximum principle and then we obtain ψ M ≥ φ.

3 First order equations : Proof of Theorem 2.2

It has been proved in [START_REF] Chill | Convergence to steady states in asymptotically autonomous semilinear evolution equations[END_REF] that there exists ϕ ∈ ω(u) such that

lim t→∞ u(t) -ϕ V = 0. Let Φ(t) := E(u(t)) -E(ϕ) + 1 2 ∞ t g(s) 2 H ds, t ∈ R + .
We have

d dt Φ(t) = M(u(t)), u(t) V ×V - 1 2 g(t) 2 H = M(u(t)), u(t) H×H - 1 2 g(t) 2 H = - 1 2 ( u(t) 2 H + M(u(t)) 2 H ).
Hence, the function Φ is non increasing and lim t→∞ Φ(t) = 0 which implies that Φ(t) ≥ 0 for all t ∈ R + . We have

d dt Φ(t) ≤ - 1 2 M(u(t)) 2 H ≤ - 1 2C 2 1 M(u(t)) 2 V
, where C 1 is as in (3).

On the other hand since lim t→∞ u(t) -ϕ V = 0, then there exists T > 0 such that for all t ≥ T u(t) -ϕ V < σ, where σ is as in [START_REF] Haraux | Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity[END_REF]. Then by assumption 3 of theorem 2.2 together with Cauchy-Schwarz inequality we get for all

t ∈ [T, ∞[ d dt Φ(t) ≤ -C 2 |E(u) -E(ϕ)| 2(1-θ) = -C 2 |Φ(t) - 1 2 ∞ t g(s) 2 H ds| 2(1-θ) ≤ -C 3 Φ(t) 2(1-θ) + C 4 ∞ t g(s) 2 H ds 2(1-θ)
.

Thanks to assumption [START_REF] Haraux | On the convergence of global and bounded solutions of some evolution equations[END_REF] we obtain the next differential inequality for all t ≥ T d dt

Φ(t) + C 3 Φ(t) 2(1-θ) ≤ C 4 (1 + t) -2(1+δ)(1-θ) .
By applying lemma 2.6, we get for all t ≥ T

Φ(t) ≤ C 5 (1 + t) -γ (9) 
where γ = inf , we obtain for all t ≥ T

2t t u(s) H ds ≤ C 6 (1 + t) 1-δ 2 .
It follows for all

t ≥ T ∞ t u(s) H ds ≤ ∞ k=0 2 k+1 t 2 k t u(s) H ds ≤ C 7 ∞ k=0 (2 k t) 1-γ 2 ≤ C 8 (1 + t) 1-γ 2 .
Finally we get for all t ≥ T u

(t) -ϕ H ≤ C(1 + t) -β where β = inf θ 1-2θ , δ 2 
and C is a positive constant.

4 Second order equations : Proof of Theorem 2.3

It has been proved in [START_REF] Chill | Convergence to steady states in asymptotically autonomous semilinear evolution equations[END_REF] that there exists ϕ ∈ ω(u) such that

lim t→∞ { u(t) H + u(t) -ϕ V } = 0. Let Φ(t) = 1 2 u(t) 2 H + (E(u(t)) -E(ϕ)) + ε M(u(t)), u(t) V ×V + ∞ t g(s), u(s) H×H ds + εC 2 1 ∞ t g(s) 2 H ds,
where C 1 is as in (3) and ε is a real positive number which will be fixed in the sequel. We have

d dt Φ(t) = u(t), ü(t) H×H + M(u(t)), u(t) V ×V + ε M (u(t)) u(t), u(t) V ×V +ε M(u(t)), ü(t) V ×V -g(t), u(t) H×H -εC 2 1 g(t) 2 H . Then we get d dt Φ(t) = -u(t) 2 H -ε M(u(t)) 2 V + ε M (u(t)) u(t), u(t) V ×V -ε M(u(t)), u(t) V ×V + ε M(u(t)), g(t) V ×V -εC 2 1 g(t) 2
H . Thanks to Cauchy-Schwarz inequality we have

ε M(u(t)), g(t) V ×V ≤ ε 4 M(u(t)) 2 V + εC 2 1 g(t) 2 H ,
where C 1 is as in [START_REF] Hale | Convergence in gradient-like systems with applications to PDE[END_REF]. Once again by applying Cauchy-Schwarz inequality and by assumption 4 of theorem 2.3 we obtain

d dt Φ(t) ≤ -u(t) 2 H -ε M(u(t)) 2 V + ε 2 (C 2 1 u(t) 2 H + M(u(t)) 2 V ) +ε K • M (u(t)) L(H) u(t) 2 H + ε 4 M(u(t)) 2 V + εC 2 1 g(t) 2 H -εC 2 1 g(t) 2 H .
We get

d dt Φ(t) ≤ -1 - ε 2 C 2 1 -ε K • M (u(t)) L(H) u(t) 2 H - ε 4 M(u(t)) 2 V .
Choosing ε > 0 small enough, we get for all t ∈ R + ,

d dt Φ(t) ≤ - 1 2 u(t) 2 H - ε 4 M(u(t)) 2 V . (10) 
Then the function Φ is noncreasing and lim t→∞ Φ(t) = 0 which implies that Φ(t) ≥ 0 for all t ∈ R + . By Cauchy-Schwarz inequality we get

Φ(t) 2(1-θ) ≤ 2|E(u) -E(ϕ)| 2(1-θ) + 2 1 2 u(t) 2 H + ε| M(u(t)), u(t) V ×V |+ + ∞ t | g(s), u(s) H×H | ds + εC 2 1 ∞ t g(s) 2 H ds 2(1-θ)
On the other hand since lim t→∞ { u(t) H + u(t) -ϕ V } = 0, then there exists T > 0 such that for all t ≥ T u(t) H ≤ 1 and u(t) -ϕ V < σ, where σ is as in [START_REF] Haraux | Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity[END_REF]. Then thanks to assumption 5 of theorem 2.3 we obtain

Φ(t) 2(1-θ) ≤ 2η 2 M(u(t)) 2 V + 2 1 2 u(t) 2 H + ε| M(u(t)), u(t) V ×V |+ + ∞ t | g(s), u(s) H×H | ds + εC 2 1 ∞ t g(s) 2 H ds 2(1-θ)
, where η is as in [START_REF] Haraux | Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity[END_REF]. Now by using [START_REF] Jendoubi | Convergence of global and bounded solutions of the wave equation with linear dissipation and analytic nonlinearity[END_REF] together with Cauchy-Schwarz inequality, we get for all t ∈ [T, ∞[

Φ(t) 2(1-θ) ≤ -C 9 d dt Φ(t) + C 10 u(t) 4(1-θ) H + M(u(t)) 2(1-θ) V u(t) 2(1-θ) V + +( ∞ t | g(s), u(s) H×H | ds) 2(1-θ) + ( ∞ t g(s) 2 H ds) 2(1-θ) .
By using Young's inequality we obtain for all t ≥ T

C 9 d dt Φ(t) ≤ -Φ(t) 2(1-θ) + C 10 u(t) 4(1-θ) H + u(t) 2 (1-θ) θ V + M(u(t)) 2 V + +( ∞ t | g(s), u(s) H×H | ds) 2(1-θ) + ( ∞ t g(s) 2 H ds) 2(1-θ) .
On the other hand, thanks to Hölder's and Young's inequalities and by using [START_REF] Haraux | On the convergence of global and bounded solutions of some evolution equations[END_REF] we have

∞ t | g(s), u(s) H×H | ds 2(1-θ) ≤ 1 ν c 2(1-θ) (1 + t) 2(1+δ)(1-θ) + ν 4 ∞ t u(s) 2 H ds 2(1-θ)
, where ν is a small constant which will be fixed in the sequel. By using [START_REF] Jendoubi | Convergence of global and bounded solutions of the wave equation with linear dissipation and analytic nonlinearity[END_REF], we have for all t ≥ T d dt

Φ(t) ≤ - 1 2 u(t) 2 H .
Then we get

∞ t u(s) 2 H ds 2(1-θ) ≤ 2 2(1-θ) (Φ(t)) 2(1-θ) . ( 11 
)
Now since we have for all t ≥ T u(t) H ≤ 1, by using the fact that 4(1-θ) ≥ 2, 2 1 -θ θ ≥

2, together with [START_REF]A simple unified approach to some convergence theorems of L. Simon[END_REF] and by choosing ν such that ν ≤ 2 2θ-1 C 10 , we get for all t ≥ T

C 9 d dt Φ(t) ≤ - 1 2 Φ(t) 2(1-θ) + C 11 u(t) 2 H + M(u(t)) 2 V + (1 + t) -2(1-θ)(1+δ) . (12) 
Now thanks to [START_REF] Jendoubi | Convergence of global and bounded solutions of the wave equation with linear dissipation and analytic nonlinearity[END_REF] and ( 12) we get the following differential inequality for all t ≥ T

C 12 d dt Φ(t) + 1 2 Φ(t) 2(1-θ) ≤ C 11 (1 + t) -2(1-θ)(1+δ) .
Then we are able to apply lemma 2.6, and so we obtain

Φ(t) ≤ C 13 (1 + t) -γ , (13) 
where

γ = inf 1 1 -2θ , 1 + δ .
Thanks to [START_REF] Jendoubi | Convergence of global and bounded solutions of the wave equation with linear dissipation and analytic nonlinearity[END_REF] we have

u(t) 2 H ≤ -2 d dt Φ(t),
and then by integrating over [t, 2t] and by using [START_REF] Lojasiewicz | Ensembles semi-analytiques[END_REF] we get for all t ≥ T

2t t u(s) 2 H ds ≤ C 14 (1 + t) -γ .
Since we have

2t t u(s) H ds ≤ √ t 2t t u(s) 2 H ds 1 2 
.

It follows that 2t t u(s) H ds ≤ C 15 (1 + t) 1-γ 2 .
Therefore we get for all t ≥ T

∞ t u(s) H ds ≤ ∞ k=0 2 k+1 t 2 k t u(s) H ds ≤ C 16 ∞ k=0 (2 k t) 1-γ 2 ≤ C 17 (1 + t) 1-γ 2 .
Finally we obtain for all t ≥ T u

(t) -ϕ H ≤ C (1 + t) -β ,
where β is as in [START_REF] Haraux | Convergence to a positive equilibrium for some nonlinear evolution equations[END_REF] and C is a positive constant.

Applications

The object of this section is to specify the rate of decay to equilibrium for the list of examples which were considered in [START_REF] Chill | Convergence to steady states in asymptotically autonomous semilinear evolution equations[END_REF].

Systems of ordinary differential equations

Let F : R N → R be of class C 2 , and let g ∈ L 1 loc (R + ; R N ). Then the theorems 2.2 and 2.3 apply to the systems of ordinary differential equations

u(t) + ∇F (u(t)) = g(t), t ≥ 0, u(0) = u 0 , u 0 ∈ R N , (14) and ü(t) 
+ u(t) + ∇F (u(t)) = g(t), t ≥ 0, u(0) = u 0 , u(0) = u 1 , u 0 , u 1 ∈ R N . (15) 
It suffices to choose V = H = R N and M(u(t)) = ∇F (u(t)). In this case, obviously, every bounded solution u has precompact range. The regularity of u follows from the regularity of F . Thus, the main assumption which has to be checked is assumption 3 in theorem 2.2, resp. assumption 5 in theorem 2.3. For these, we have the following result. Remark 5.2 Assumption (i) of proposition 5.1 is just the Lojasiewicz inequality and assumption (ii) is proved in [START_REF]Theorems on Regularity and Singularity of Energy Minimizing Maps[END_REF](see also [START_REF] Haraux | On the convergence of global and bounded solutions of some evolution equations[END_REF]).

Our main results are the following and follow from theorems 2.2 and 2.3:

Corollary 5.3 Let u ∈ W 1,∞ (R + , R N
) be a solution of [START_REF] Matano | Convergence of solutions of one-dimensional semilinear heat equations[END_REF]. We assume that F verifies one of assumptions (i),(ii) of proposition 5.1. Then there exists a constant C > 0 such that for all t ≥ 0 we have

u(t) -ϕ ≤ C(1 + t) -β
where β is as in [START_REF] Haraux | Convergence to a positive equilibrium for some nonlinear evolution equations[END_REF].

Corollary 5.4 Let u ∈ W 1,∞ (R + , R N ) be a solution of [START_REF] Simon | Asymptotics for a class of non-linear evolution equations, with applications to geometric problems[END_REF]. We assume that F verifies one of assumptions (i),(ii) of proposition 5.1. Then there exists a constant C > 0 such that for all t ≥ 0 we have

u(t) -ϕ ≤ C (1 + t) -β
where β is as in (8).

Heat equation

As a next application we study the asymptotic behavior of the semilinear heat equation

     u t -∆u + f (x, u) = g(t, x), (t, x) ∈ R + × Ω, u(t, •)| ∂Ω = 0, t ∈ R + , u(0, x) = u 0 (x), x ∈ Ω. (16) 
In equation ( 16) we assume that Ω ⊂ R d (d ≥ 1) is a bounded domain. We assume that the function f : Ω × R → R is continuously differentiable and if d ≥ 2 then we assume in addition that there exists 0

≤ α ≤ 2 d-2 if d ≥ 2 0 ≤ α < ∞ if d = 2 such that sup x∈Ω,s∈R (1 + |s| α ) -1 | ∂ ∂s f (x, s)| < ∞. (17) 
We assume in addition g ∈ L 2 loc (R + ; L 2 (Ω)), and we will rewrite the equation ( 16) in an abstract setting, i.e. on the Hilbert space H := L 2 (Ω). We let (A, D(A)) be the Dirichlet-Laplace operator defined by

D(A) := u ∈ H 1 0 (Ω) : ∃v ∈ L 2 (Ω) ∀ϕ ∈ H 1 0 (Ω) Ω ∇u∇ϕ dx = Ω vϕ dx , Au := v.
We let, moreover, V := H 1 0 (Ω) and f :

V → H the Nemytskii operator associated with f , i.e. f (v)(x) := f (x, v(x)), v ∈ V, x ∈ Ω.
Note that, by the inequality [START_REF] Zelenyak | Stabilization of solutions of boundary value problems for a second-order parabolic equation with one space variable[END_REF] and by the Sobolev embeddings, the operator f is Lipschitz continuous from bounded subsets of V with values in H, and continuously differentiable from V with values in V .

Wave equations

As a next application we study the asymptotic behavior of the semilinear wave equation 

     u tt + u t -∆u + f (x, u) = g(t, x), (t, x) ∈ R + × Ω, u(t, •)| ∂Ω = 0, t ∈ R + , u(0, x) = u 0 (x), u t (0, x) = u 1 (x), x ∈ Ω. ( 20 
) We let Ω ⊂ R d , f ∈ C 1 ( Ω × R; R), g ∈ L 1 loc (R + ; L 2 (Ω)),
With this notation, equation ( 20) can be abstractly rewritten on the space V :

       ü + u + Au + f (u) = g(t), t ∈ R + , u(0) = u 0 , u 0 ∈ V, u(0) = u 1 , u 1 ∈ H. ( 22 
)
This equation is a special case of equation ( 5) if we define the energy functional E : V → R as in equation ( 19). Note that Mu = Au + f (u) for every u ∈ V .

Since the energy E is the energy defined in (19), proposition 5.5 applies also in the case of the wave equation.

As for the heat equation, R. Chill and M.A. Jendoubi established that conditions of theorem 2.3 are verified. They proved thanks to proposition 5.5 that for every solution u ∈ W 1,2 loc (R + ; V ) ∩ W 2,2 loc (R + ; H) of equation ( 22) such that {(u(t), u(t)) : t ≥ 0} is bounded in V × H, we have lim t→∞ u(t) = ϕ in V . The following result is an immediate application of theorem 2.3 using the convergence result established by R. Chill and M.A. Jendoubi.

Theorem 5.8 Let u ∈ W 1,2 loc (R + ; V ) ∩ W 2,2 loc (R + ; H) be a solution of equation (22) such that {(u(t), u(t)) : t ≥ 0} is bounded in V × H. Let ϕ ∈ ω(u), and assume that the case (i) or the case (ii) of proposition 5.5 holds. Suppose that g satisfies assumption 6 of theorem 2.3. Then there exists a constant C such that for all t ≥ 0 we have

u(t) -ϕ H ≤ C (1 + t) -β
where β is as in [START_REF] Haraux | Convergence to a positive equilibrium for some nonlinear evolution equations[END_REF].

Remarks 2 . 5

 25 The estimates obtained in this paper are optimal. Here are some examples which show the optimality of our results even when V = H = R : (a) let consider the case θ 1 -2θ ≥ δ 2 , then by choosing E = 0 and g(t) = t -(1+

Proposition 5 . 1

 51 The function F satisfies the Lojasiewicz-Simon inequality near some ϕ ∈ R N if one of the following two cases (i) or (ii) holds:(i) the function F is analytic in a neighbourhood of ϕ, or (ii) the connected component C of the set {z ∈ R N : ∇F (z) = 0} which contains ϕ has locally near ϕ the same dimension as the kernel of ∇ 2 F (ϕ), and ϕ lies in the interior of the component C.

  the spaces H := L 2 (Ω) and V := H 1 0 (Ω), the Dirichlet-Laplace operator A, and the Nemytskii operator f as in Subsection 5.2. If d ≥ 2, then we replace the growth condition (17) by the following condition:there exists 0 ≤ α < 2 d-2 such that sup s∈R,x∈Ω (1 + |s| α ) -1 | ∂ ∂s f (x, s)| < ∞.
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With this notation, equation [START_REF]Theorems on Regularity and Singularity of Energy Minimizing Maps[END_REF] becomes the abstract Cauchy problem

which is in fact a special case of equation ( 4) if we define the energy functional E : V → R by

Here, F (x, s) := s 0 f (x, r) dr, and a : V × V → R is the bilinear form associated with the Dirichlet-Laplace operator, i.e.

With this definition of E we have Mu = Au + f (u) for every u ∈ V . R. Chill and M.A. Jendoubi have showed in [START_REF] Chill | Convergence to steady states in asymptotically autonomous semilinear evolution equations[END_REF] that conditions of theorem 2.2 are verified in this case and that if E verifies one of the assumptions of the next proposition, for every bounded solution u : R + → H of equation ( 18) we have lim Remark 5.6 Assumption (i) of proposition 5.5 is just the Lojasiewicz-Simon inequality and assumption (ii) is proved in [START_REF]Theorems on Regularity and Singularity of Energy Minimizing Maps[END_REF](see also [START_REF] Haraux | On the convergence of global and bounded solutions of some evolution equations[END_REF]).

The following result is an immediate application of theorem 2.2 using the convergence result established by R. Chill and M.A. Jendoubi.

Theorem 5.7 Let u : R + → H be a bounded solution of equation (18). Let ϕ ∈ ω(u), and assume that one of the two cases (i) or (ii) of proposition 5.5 is satisfied. Assume that g satisfies the assumption 4 of theorem 2.2. Then there exists a constant C > 0 such that for all t ≥ 0 we have

where β is as in (8).