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Abstract

We investigate the behavior, as ε → 0, of the nonlocal Allen-Cahn

equation ut = ∆u +
1

ε2
f(u, ε

∫

Ω

u), where f(u, 0) is of the bistable

type. Given a rather general initial data u0 that is independent of ε,
we perform a rigorous analysis of both the generation and the motion
of interface, and obtain a new estimate for its thickness. More precisely
we show that the solution develops a steep transition layer within the
time scale of order ε2| ln ε|, and that the layer obeys the law of motion
that coincides with the limit problem within an error margin of order ε.

Key Words: reaction-diffusion equation, nonlocal PDE, singular per-

turbation, motion by mean curvature 1.

1 Introduction

This paper is concerned with the singular limit, as ε → 0, of the nonlocal
Allen-Cahn equation

(P ε)





ut = ∆u +
1

ε2
f

(
u, ε

∫

Ω
u

)
in Ω × (0,∞)

∂u

∂ν
= 0 on ∂Ω × (0,∞)

u(x, 0) = u0(x) in Ω,

where Ω is a smooth bounded domain in R
N (N ≥ 2) and ν the Euclidian

unit normal vector exterior to ∂Ω. We assume that the nonlinearity f(u, v)
is smooth and that f̃(u) := f(u, 0) is given by f̃(u) := −W ′(u), where W (u)

1AMS Subject Classifications: 35K57, 45K05, 35B25, 35R35, 53C44.
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is a double-well potential with equal well-depth, taking its global minimum
value at u = ±1. More precisely we assume that f̃ has exactly three zeros
−1 < a < 1 such that

f̃ ′(±1) < 0, f̃ ′(a) > 0 (bistable nonlinearity), (1.1)

and that ∫ +1

−1
f̃(u) du = 0. (1.2)

The condition (1.1) implies that the potential W (u) attains its local minima
at u = ±1, and (1.2) implies that W (−1) = W (+1). In other words, the
two stable zeros of f̃ have “balanced” stability.

Concerning the initial data u0, we assume its smoothness and choose
C0 ≥ 1 such that

‖u0‖C0(Ω) + ‖∇u0‖C0(Ω) + ‖D2u0‖C0(Ω) ≤ C0. (1.3)

Furthermore we define the “initial interface” Γ0 by

Γ0 := {x ∈ Ω| u0(x) = a},

and suppose that Γ0 is a smooth closed hypersurface without boundary, such
that, n being the Euclidian unit normal vector exterior to Γ0,

Γ0 ⊂⊂ Ω and ∇u0(x) 6= 0 if x ∈ Γ0, (1.4)

u0 > a in Ω+
0 , u0 < a in Ω−

0 , (1.5)

where Ω−
0 denotes the region enclosed by Γ0 and Ω+

0 the region enclosed
between ∂Ω and Γ0.

Before going into more details, let us recall known facts concerning the
“usual” Allen-Cahn equation, namely

ut = ∆u +
1

ε2
f̃(u).

The singular limit was first studied by Allen and Cahn [4] and by Kawasaki
and Ohta [14]. By using formal asymptotic arguments, they show that the
limit problem, as ε → 0, is a free boundary problem: the motion of the limit
interface is ruled by its mean curvature. More precisely, the solution uε of
the Allen-Cahn equation tends to a step function taking the value +1 on one
side of an moving interface, and −1 on the other side. This sharp interface,
which we will denote by Γt, obeys the law of motion Vn = −κ, where Vn is
the normal velocity of Γt in the exterior direction and κ the mean curvature
at each point of Γt.

Then, some rigorous justification of this procedure were obtained. In the
framework of classical solutions, let us mention the works of Bronsard and
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Kohn [7], X. Chen [8, 9], and de Mottoni and Schatzman [18, 19]. Later, in
[3], the authors prove an optimal estimate for this convergence for solutions
with general initial data. By performing an analysis of both the genera-
tion and the motion of interface, they show that the solution develops a
steep transition layer within a very short time, and that the layer obeys
the law of motion that coincides with the formal asymptotic limit Vn = −κ
within an error margin of order ε (previously, the best thickness estimate in
the literature was of order ε| ln ε|, [8]). For similar estimates of the thick-
ness of the interface in related problems we refer to [1] (reaction-diffusion-
convection system as a model for chemotaxis with growth), [15] (inhomo-
geneous Lotka-Volterra competition-diffusion system), [2] (fully anisotropic
Allen-Cahn equation).

Since the classical motion by mean curvature may develop singularities
in finite time (extinction, “pinch off” phenomena...), one has to define a
generalized motion by mean curvature in order to study the singular limit
of the Allen-Cahn equation for all time. One represents Γt as the level set of
an auxiliary function which solves (in the viscosity sense) a nonlinear partial
differential equation. This direct partial differential equation approach was
developed by Evans and Spruck [13], Chen, Giga and Goto [11]. In this
framework of viscosity solutions, we refer to Evans, Soner and Souganidis
[12], Barles, Soner and Souganidis [5], Barles ans Souganidis [6], Ilmanen
[16] for the singular limit of reaction-diffusion equations, for all time.

We now turn back to the nonlocal Allen-Cahn equation. Problem (P ε)
was considered by Chen, Hilhorst and Logak [10]. In order to underline its
relevance in population genetics and nervous transmission, they first show
that (P ε) can be seen as the limit, as σ → 0 and τ → 0, of the FitzHugh-
Nagumo system 




ut = ∆u +
1

ε2
f(u, ε

|Ω|
γ

v)

τvt =
1

σ
∆v + u − 1

γ
v.

Then, they study the motion of transition layers for the solutions uε of (P ε).
More precisely, for “well-prepared” initial data, they prove that, as ε → 0,
the sharp interface limit, which we will denote by Γt, obeys the law of motion

(P 0)

{
Vn = −κ + c0(|Ω+

t | − |Ω−
t |) on Γt

Γt

∣∣
t=0

= Γ0,

where Vn is the normal velocity of Γt in the exterior direction, κ the mean
curvature at each point of Γt, Ω−

t the region enclosed by Γt, Ω+
t the region

3



enclosed between ∂Ω and Γt, c0 the constant defined by

c0 = −

∫ +1

−1

∂f

∂v
(u, 0) du

∫ +1

−1
[2(W (u) − W (−1))]1/2 du

, (1.6)

and |A| the measure of the set A. As explained in [10], the Problem (P 0)
possesses a unique smooth solution locally in time, say on some [0, T ]. More-
over, in contrast with the “usual” motion by mean curvature which shrinks
in finite time, the nonlocal effect allows the possibility of nontrivial station-
ary state (see [17] for a discussion in the radially symmetric case).

The goal of the present paper is to make a detailed study of the limiting
behavior of the solution uε of Problem (P ε), without assuming that the ini-
tial datum already has a a specific profile with a well-developed transition
layer. In other words, we study the generation of interface from arbitrary
initial data. Moreover, we obtain an improved error estimate, of O(ε), be-
tween the solutions of (P ε) and those of (P 0).

Our main result, Theorem 1.1, describes the profile of the solution after
a very short initial period. It asserts that: given a virtually arbitrary initial
data u0, the solution uε quickly becomes close to ±1, except in a small
neighborhood of the initial interface Γ0, creating a steep transition layer
around Γ0 (generation of interface). The time needed to develop such a
transition layer, which we will denote by tε, is of order ε2| ln ε|. The theorem
then states that the solution uε remains close to the step function ũ on the
time interval [tε, T ] (motion of interface), where ũ is defined by

ũ(x, t) =

{
−1 in Ω−

t

+1 in Ω+
t

for t ∈ [0, T ]. (1.7)

In other words, the motion of the transition layer is well approximated by
the limit interface equation (P 0).

Theorem 1.1 (Generation, motion and thickness of transition layers). Let

η be an arbitrary constant satisfying 0 < η < min(a + 1, 1 − a) and set

µ = f̃ ′(a).

Then there exist positive constants ε0 and C such that, for all ε ∈ (0, ε0)
and for all tε ≤ t ≤ T , where tε := µ−1ε2| ln ε|, we have

uε(x, t) ∈





[−1 − η,+1 + η] if x ∈ NCε(Γt)

[−1 − η,−1 + η] if x ∈ Ω−
t \ NCε(Γt)

[+1 − η,+1 + η] if x ∈ Ω+
t \ NCε(Γt),

(1.8)

where Nr(Γt) := {x ∈ Ω, dist(x,Γt) < r} denotes the r-neighborhood of Γt.
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The estimate (1.8) implies that, once a transition layer is formed, its
thickness remains within order ε for the rest of time.

Corollary 1.2 (Convergence). As ε → 0, uε converges to ũ everywhere in

∪0<t≤T (Ω±
t × {t}).

This paper is organized as follows. In Section 2 we study the generation
of transition layers that takes place in a very short time range. Section 3
is devoted to the construction of a pair of sub- and super-solutions for the
study of the motion of interface. In Section 4 by fitting the pair of sub- and
super-solutions of Section 2 into the pair of Section 3, we prove our main
result, Theorem 1.1. Since our arguments rely on a nonlocal comparison
principle borrowed from [10], we recall it in a short appendix.

2 Generation of interface

In this section, we investigate the generation of interface, namely the rapid
formation of internal layers that takes place in a neighborhood of Γ0 =
{x ∈ Ω| u0(x) = a} within the time span of order ε2| ln ε|. In this earlier
stage, the diffusion term is negligible and the partial differential equation is

approximated by the nonlocal equation ut =
1

ε2
f(u, ε

∫

Ω
u) and so, by the

ordinary differential equation

ut =
1

ε2
(f̃(u) + O(ε)). (2.1)

In the sequel, η0 will stand for the quantity

η0 := min(a + 1, 1 − a).

The main result of the present section is the following.

Theorem 2.1 (Generation of interface). Let η ∈ (0, η0) be arbitrary and

define µ as the derivative of f̃(u) at the unstable zero u = a, that is

µ = f̃ ′(a). (2.2)

Then there exist positive constants ε0 and M0 such that, for all ε ∈ (0, ε0),

(i) for all x ∈ Ω,

− 1 − η ≤ uε(x, µ−1ε2| ln ε|) ≤ 1 + η, (2.3)

(ii) for all x ∈ Ω such that |u0(x) − a| ≥ M0ε, we have that

if u0(x) ≥ a + M0ε then uε(x, µ−1ε2| ln ε|) ≥ 1 − η, (2.4)

if u0(x) ≤ a − M0ε then uε(x, µ−1ε2| ln ε|) ≤ −1 + η. (2.5)
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The above theorem will be proved by constructing a suitable pair of
sub- and super-solutions based upon the ordinary differential equation (2.1).
Note that the assumption of balanced nonlinearity (1.2) is useless for the
proof of the generation of interface property.

2.1 The bistable ordinary differential equation

We first consider a slightly perturbed nonlinearity:

f̃δ(u) := f̃(u) + δ,

where δ is any constant. For |δ| small enough, this function is still of the
bistable type. More precisely, if δ0 is small enough, then for any δ ∈
(−δ0, δ0), f̃δ has exactly three zeros, namely α−(δ) < a(δ) < α+(δ), and
there exists a positive constant C such that

|α−(δ) + 1| + |a(δ) − a| + |α+(δ) − 1| ≤ C|δ|, (2.6)

|µ(δ) − µ| ≤ C|δ|, (2.7)

where
µ(δ) := f̃ ′

δ(a(δ)) = f̃ ′(a(δ)).

Now for each δ ∈ (−δ0, δ0), we define Y (τ, ξ; δ) as the solution of the
ordinary differential equation

{
Yτ (τ, ξ; δ) = f̃δ(Y (τ, ξ; δ)) for τ > 0

Y (0, ξ; δ) = ξ,
(2.8)

where ξ varies in (−2C0, 2C0), with C0 being the constant defined in (1.3).
We claim that Y (τ, ξ; δ) has the following properties.

Lemma 2.2. There exist positive constants δ0 and C such that, for all

(τ, ξ, δ) ∈ (0,∞) × [−2C0, 2C0] × [−δ0, δ0],

(i) |Y (τ, ξ; δ)| ≤ 2C0

(ii) 0 < Yξ(τ, ξ; δ)

(iii) |Yξξ

Yξ
(τ, ξ; δ)| ≤ C(eµ(δ)τ − 1).

Property (i) is a direct consequence of the profile of f̃δ and so of the
qualitative properties of the solution of the bistable ordinary differential
equation (2.8); for proofs of (ii) and (iii) we refer to [3], subsection 4.1.
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2.2 Construction of sub- and super-solutions

We are now ready to construct a pair of sub- and super-solutions in order
to prove the generation of interface property. By using some cut-off initial
data (see [3], subsection 3.2) we can modify slightly u0 near the boundary
∂Ω and make, without loss of generality, the additional assumption

∂u0

∂ν
= 0 on ∂Ω. (2.9)

We set

w±
ε (x, t) = Y

( t

ε2
, u0(x) ± ε2r(±εG,

t

ε2
);±εG

)
,

where the function r(δ, τ) is given by

r(δ, τ) = C⋆(e
µ(δ)τ − 1),

and the constant G by

G = 2C0|Ω| max
(u,v)∈[−2C0,2C0]×[−1,1]

|∂f

∂v
(u, v)|.

Lemma 2.3. There exist positive constants ε0 and C⋆ such that, for all

ε ∈ (0, ε0), (w−
ε , w+

ε ) is a pair of sub- and super-solutions for Problem (P ε),
in the domain Ω × (0, µ−1ε2| ln ε|).

Before proving the lemma, we remark that w−
ε (x, 0) = w+

ε (x, 0) = u0(x).
Consequently, by the comparison principle, we obtain

w−
ε (x, t) ≤ uε(x, t) ≤ w+

ε (x, t) for all Ω × [0, µ−1ε2| ln ε|]. (2.10)

Proof. First, the inequality w−
ε ≤ w+

ε follows from the fact that Y (τ, ξ; δ)
increases with both ξ (see (ii) Lemma 2.2) and δ (as easily seen from the
ordinary differential equation). Next, (2.9) implies that both w+

ε and w−
ε

satisfy the Neumann homogeneous boundary conditions. Hence, it remains
to prove the inequalities L+w+

ε ≥ 0 and L−w−
ε ≤ 0 (see Definition A.1),

provided that the constants ε0 and C⋆ are appropriately chosen.
If ε0 is sufficiently small, we note that ±εG ∈ (−δ0, δ0) and that, in the

range 0 ≤ t ≤ µ−1ε2| ln ε|,

|ε2C⋆(e
µ(±εG)t/ε2 − 1)| ≤ ε2C⋆(ε

−µ(±εG)/µ − 1) ≤ C0,

using (2.7). The above inequality implies

u0(x) ± ε2r(±εG,
t

ε2
) ∈ [−2C0, 2C0].
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These observations allow us to use the results of Lemma 2.2 with the choices
τ := t/ε2, ξ := u0(x) ± ε2r(±εG, t/ε2) and δ := ±εG. In particular, it fol-

lows from property (i) that |
∫

Ω
w±

ε (x, t) dx| ≤ 2C0|Ω| which in turn implies

(thanks to the choice of G)

max
R

Ω
w−

ε ≤s≤
R

Ω
w+

ε

f(w+
ε , εs) ≤ f̃(w+

ε ) + εG. (2.11)

In view of the above inequality, some straightforward calculations yield

L+w+
ε ≥ 1

ε2
Yτ + C⋆µ(εG)eµ(εG)t/ε2

Yξ − |∇u0|2Yξξ − ∆u0Yξ −
1

ε2
f̃(Y ) − 1

ε
G,

where the argument

(
t

ε2
, u0(x) + ε2C⋆(e

µ(εG)t/ε2 − 1); εG
)

of the function

Y and its derivatives is omitted. Noticing that the ordinary differential
equation (2.8) writes as Yτ = f̃(Y ) + εG, we get

L+w+
ε ≥ Yξ

[
C⋆µ(εG)eµ(εG)t/ε2 − ∆u0 −

Yξξ

Yξ
|∇u0|2

]
.

Using the estimate (iii) in Lemma 2.2, we obtain

L+w+
ε ≥ Yξ

[
C⋆µ(εG)eµ(εG)t/ε2 − |∆u0| − C(eµ(εG)t/ε2 − 1)|∇u0|2

]

≥ Yξ

[
(C⋆µ(εG) − C|∇u0|2)eµ(εG)t/ε2 − |∆u0| + C|∇u0|2

]
.

In view of (2.7), this inequality implies that, for ε ∈ (0, ε0), with ε0 small
enough,

L+w+
ε ≥ Yξ

[
C⋆

1

2
µ − CC0

2 − C0

]
≥ 0,

by choosing C⋆ large enough.
Since one can prove L−w−

ε ≤ 0 by similar arguments, this completes the
proof of Lemma 2.3.

2.3 Proof of the generation of interface property

In order to prove Theorem 2.1 we first quote a lemma from [3]; it makes
more precise the bistable behavior of the ordinary differential equation by
giving basic estimates of the function Y (τ, ξ;±εG) at time τ = µ−1| ln ε|.

Lemma 2.4. Let η ∈ (0, η0) be arbitrary; there exist positive constants ε0

and M⋆ such that, for all ε ∈ (0, ε0),

(i) for all ξ ∈ (−2C0, 2C0),

− 1 − η ≤ Y (µ−1| ln ε|, ξ;±εG) ≤ 1 + η; (2.12)
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(ii) for all ξ ∈ (−2C0, 2C0) such that |ξ − a| ≥ M⋆ε, we have that

if ξ ≥ a + M⋆ε then Y (µ−1| ln ε|, ξ;±εG) ≥ 1 − η, (2.13)

if ξ ≤ a − M⋆ε then Y (µ−1| ln ε|, ξ;±εG) ≤ −1 + η. (2.14)

Proof of Theorem 2.1. By setting t = µ−1ε2| ln ε| in (2.10), we get

Y
(
µ−1| ln ε|, u0(x) − ε2r(−εG, µ−1| ln ε|);−εG

)

≤ uε(x, µ−1ε2| ln ε|) ≤ Y
(
µ−1| ln ε|, u0(x) + ε2r(εG, µ−1| ln ε|);+εG

)
.

(2.15)

We note that (2.7) implies

lim
ε→0

µ − µ(±εG)

µ
ln ε = 0, (2.16)

so that, if ε0 is sufficiently small,

ε2r(±εG, µ−1| ln ε|) = C⋆ε(ε
(µ−µ(±εG))/µ − ε) ∈ (

1

2
C⋆ε,

3

2
C⋆ε),

and, for all x ∈ Ω, it holds that u0(x) ± ε2r(±εG, µ−1| ln ε|) ∈ (−2C0, 2C0).
Hence, the result (2.3) of Theorem 2.1 is a direct consequence of (2.12) and
(2.15).

Next we prove (2.4). We take x ∈ Ω such that u0(x) ≥ a + M0ε; then

u0(x) − ε2r(−εG, µ−1| ln ε|) ≥ a + M0ε − 3
2C⋆ε

≥ a + M⋆ε,

if we choose M0 large enough. Using (2.15) and (2.13) we see that inequal-
ity (2.4) is true. The inequality (2.5) can be shown the same way. This
completes the proof of Theorem 2.1.

3 Motion of interface

In Section 2, we have proved that the solution uε of Problem (P ε) develops a
clear transition layer within a very short time. The aim of the present section
is to show that, once such a clear transition layer is formed, it persists for the
rest of time and that its law of motion is well approximated by the interface
equation (P 0). In order to study this latter time range where the motion of
interface occurs, we will construct another pair of sub- and super-solutions
(u−

ε , u+
ε ) for Problem (P ε). To begin with we present mathematical tools

which are essential for this construction.
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3.1 Preliminaries

The “cut-off signed distance function”. Let Γ = ∪0<t≤T (Γt × {t}) be

the solution of the limit geometric motion problem (P 0) and let d̃ be the
signed distance function to Γ defined by:

d̃(x, t) =

{
−dist(x,Γt) for x ∈ Ω−

t

dist(x,Γt) for x ∈ Ω+
t ,

(3.1)

where dist(x,Γt) is the distance from x to the hypersurface Γt in Ω. The
“cut-off signed distance function” d is defined as follows. First, choose d0 > 0
small enough so that the signed distance function d̃ defined in (3.1) is smooth
in the following tubular neighborhood of Γ:

{(x, t) ∈ Ω̄ × [0, T ] | |d̃(x, t)| < 3d0},

and that
dist(Γt, ∂Ω) ≥ 3d0 for all t ∈ [0, T ]. (3.2)

Next let ζ(s) be a smooth increasing function on R such that

ζ(s) =





s if |s| ≤ d0

−2d0 if s ≤ −2d0

2d0 if s ≥ 2d0.

We then define the cut-off signed distance function d by

d(x, t) = ζ
(
d̃(x, t)

)
. (3.3)

Note that, in view of (3.2) and the definition of d, the equality ∇d = 0
holds in a neighborhood of ∂Ω. Note also that the equality |∇d| = 1 holds
in the region {(x, t) ∈ Ω̄ × [0, T ] | |d(x, t)| < d0}. Moreover, since ∇d
coincides with the outward normal unit vector to the hypersurface Γt, we
have dt(x, t) = −Vn, where Vn is the normal velocity of the interface Γt

in the exterior direction. It is also known that the mean curvature κ of
the interface is equal to ∆d. Hence, since the moving interface Γ satisfies
Problem (P 0), an alternative equation for Γ is given by

dt = ∆d − c0γ(t) on Γt, (3.4)

where γ(t) := |Ω+
t | − |Ω−

t |.

The one dimensional standing wave U0. Let U0(z) be the unique solu-
tion of the stationary problem

{
U0

′′ + f̃(U0) = 0

U0(−∞) = −1, U0(0) = a, U0(+∞) = +1.
(3.5)
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This solution represents the first approximation of the profile of a transition
layer around the interface observed in the stretched coordinates; it naturally
arises when performing a formal asymptotic expansion of the solution uε

(see [3], Section 2). Note that the “balanced stability assumption”, i.e.

the integral condition

∫ +1

−1
f̃(u) du = 0, guarantees the existence of such a

standing wave. In the simple case where f̃(u) = u(1 − u2), we know that
U0(z) = tanh(z/

√
2). In the general case, the following standard estimates

hold.

Lemma 3.1. There exist positive constants C and λ such that

0 < 1 − U0(z) ≤ Ce−λ|z| for z ≥ 0

0 < U0(z) + 1 ≤ Ce−λ|z| for z ≤ 0.

In addition, U0 is a strictly increasing function and, for j = 1, 2,

|DjU0(z)| ≤ Ce−λ|z| for z ∈ R. (3.6)

The solution U1 of a linearized problem. Let U1(z, t) be the solution
of the problem





U1zz + f̃ ′(U0(z))U1 = γ(t)

(
−∂f

∂v
(U0(z), 0) − c0U0

′(z)

)
,

U1(0, t) = 0, U1(·, t) ∈ L∞(R),

(3.7)

where

c0 := −

∫

R

∂f

∂v
(U0(z), 0)U0

′(z) dz
∫

R

(
U0

′
)2

(z) dz
. (3.8)

Again, the above problem arises when performing a formal asymptotic ex-
pansion of the solution uε. Since (3.7) can be seen as a linearized problem for
(3.5), its solvability follows from a Fredholm alternative: thanks to the def-
inition of c0, U0

′ turns out to be orthogonal to the right-hand side member
of (3.7). Moreover, there exist constants M > 0 and C > 0 such that

|U1(z, t)| ≤ M, (3.9)

|U1t(z, t)| ≤ C, (3.10)

|U1z(z, t)| + |U1zz(z, t)| ≤ Ce−λ|z|, (3.11)

for all (z, t) ∈ R × [0, T ]. We omit the details and refer the reader to [3],
Section 2.

Note that, by multiplying equation (3.5) by U0
′ and integrating from

−∞ to z, we obtain U0
′(z) = [2(W (U0(z)) − W (−1))]1/2. Using this, it is

now a matter of routine to deduce from (3.8) the more intrinsic expression
(1.6).
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3.2 Construction of sub- and super-solutions

We look for a pair of sub- and super-solutions u±
ε for (P ε) of the form

u±
ε (x, t) = U0

(
d(x, t) ± εp(t)

ε

)
+ εU1

(
d(x, t) ± εp(t)

ε
, t

)
± q(t), (3.12)

where
p(t) = −e−βt/ε2

+ eLt + K,

q(t) = σ
(
βe−βt/ε2

+ ε2LeLt
)
.

Note that q = σε2 pt. It is clear from the definition of u±
ε that

lim
ε→0

u±
ε (x, t) =

{
+1 for all (x, t) ∈ ∪ 0≤t≤T (Ω+

t × {t})
−1 for all (x, t) ∈ ∪ 0≤t≤T (Ω−

t × {t}).
(3.13)

The main result of this section is the following:

Lemma 3.2. Choose β > 0 and σ > 0 appropriately. Then for any K > 1,
there exist positive constants ε0 and L such that, for any ε ∈ (0, ε0), (u−

ε , u+
ε )

is a pair of sub- and super-solutions for (P ε) in the domain Ω̄ × [0, T ].

Proof. First, we claim that (A.14) and (A.16) hold as a consequence of
(4.5). Then, since d is constant in a neighborhood of ∂Ω, both u+

ε and u−
ε

satisfy the Neumann homogeneous boundary conditions. Hence it remains
to prove the inequalities L+u+

ε ≥ 0 and L−u−
ε ≤ 0, provided that the various

constants are appropriately chosen.

We start with some useful inequalities. On the one hand, by assumption
(1.1), there exist positive constants b, m such that

f̃ ′(U0(z)) ≤ −m if U0(z) ∈ [−1, −1 + b] ∪ [1 − b, 1]. (3.14)

On the other hand, since the region {z ∈ R |U0(z) ∈ [−1 + b, 1 − b] } is
compact and since U0

′ > 0 on R, there exists a constant a1 > 0 such that

U0
′(z) ≥ a1 if U0(z) ∈ [−1 + b, 1 − b]. (3.15)

We set
β =

m

4
, (3.16)

and choose σ that satisfies

0 < σ ≤ min (σ0, σ1, σ2), (3.17)

where

σ0 :=
a1

m + F1
, σ1 :=

1

β + 1
, σ2 :=

4β

H(β + 1)
,

12



the constants F1 and H being given by

F1 := ‖f̃ ′‖L∞(−1,1), H := max
(u,v)∈[−3,3]×[−1,1]

‖Hess(u,v)f‖, (3.18)

where ‖A‖ := maxi,j |aij|. Combining (3.14) and (3.15), and considering
that σ ≤ σ0, we obtain

U0
′(z) − σf̃ ′(U0(z)) ≥ σm for −∞ < z < ∞. (3.19)

Now let K > 1 be arbitrary. In what follows we will show that L+u+
ε ≥ 0

provided that the constants ε0 and L are appropriately chosen. We recall
that −1 < U0 < 1 and that |U1| ≤ M . We go on under the following
assumption

ε0M ≤ 1, ε2
0LeLT ≤ 1 . (3.20)

Then, given any ε ∈ (0, ε0), since σ ≤ σ1 we have 0 ≤ q(t) ≤ 1, so that

− 3 ≤ u±
ε (x, t) ≤ +3 . (3.21)

In order to evaluate the “nonlocal part” of L+u+
ε , we need bounds for

the quantities

∫

Ω
u±

ε (x, t) dx. For the sake of clarity, the arguments of most

of the functions are omitted in the following. We write

∫

Ω
u+

ε dx =

∫

Ω+
t

(U0−

1) dx + |Ω+
t | +

∫

Ω−

t

(U0 + 1) dx − |Ω−
t | +

∫

Ω
(εU1 + q) dx, which yields

∫

Ω
u+

ε dx − γ(t) = |Ω|q(t) +

∫

Ω
εU1 dx

+

∫

Ω+
t

(U0 − 1) dx +

∫

Ω−

t

(U0 + 1) dx

=: |Ω|q(t) + Iε(t) + I+(t) + I−(t).

In the following we will denote by C various positive constants that are
independent of ε ∈ (0, ε0). Since U1 is bounded, we have |Iε(t)| ≤ Cε.

In order to estimate I+(t), we use the partition

Ω+
t = {x| d(x, t) ≥ d0} ∪ {x| 0 < d(x, t) < d0}.

First assume d(x, t) ≥ d0. From Lemma 3.1, we deduce that

0 ≤ 1 − U0(
d(x, t) + εp(t)

ε
) ≤ Ce−λ|d(x,t)+εp(t)|/ε ≤ Ce−λd0/ε,

13



from which we infer that

0 ≤
∫

d(x,t)≥d0

(
1 − U0(

d(x, t) + εp(t)

ε
)

)
dx ≤ Ce−λd0/ε.

In order to estimate the integral on {x| 0 < d(x, t) < d0}, we use arguments
similar to those used in [10]. We denote by J(s, d) the Jacobi of the trans-
formation x 7→ (s, d), where s(x, t) is the projection of x on Γt along the
normal of Γt and d(x, t)(= d̃(x, t)) is the signed distance defined above; we
define CJ := max0≤t≤T ‖J(·, ·)‖L∞(Γt×[−d0,d0]). This yields

0 ≤
∫

0<d(x,t)<d0

(
1 − U0(

d(x, t) + εp(t)

ε
)

)
dx

=

∫

Γt

∫ d0

0

(
1 − U0(

r + εp(t)

ε
)

)
J(s, r) drds

≤ CJε

∫

Γt

∫ d0/ε

0
(1 − U0(z + p(t))) dzds

≤ CJε

∫

Γt

∫ +∞

0
(1 − U0(u)) duds ≤ Cε.

As far as I−(t) is concerned, we first assume that d(x, t) ≤ −d0. Note
that 0 < K − 1 ≤ p ≤ eLT + K. Consequently, if we assume

eLT + K ≤ d0

2ε0
, (3.22)

then
d0

ε
−|p| ≥ d0

2ε
. By using similar arguments as the ones above, we obtain

0 ≤
∫

d(x,t)≤−d0

(
U0(

d(x, t) + εp(t)

ε
) + 1

)
dx ≤ Ce−λd0/(2ε).

Concerning the region {x| − d0 < d(x, t) < 0}, we get

0 ≤
∫

−d0<d(x,t)<0

(
U0(

d(x, t) + εp(t)

ε
) + 1

)
dx

=

∫

Γt

∫ 0

−d0

(
U0(

r + εp(t)

ε
) + 1

)
J(s, r) drds

≤ CJε

∫

Γt

∫ 0

−d0/ε
(U0(z + p(t)) + 1)) dzds

≤ CJε

∫

Γt

∫ d0/(2ε0)

−∞
(U0(u) + 1) duds ≤ Cε.
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Since one would obtain similar estimates with u+
ε replaced by u−

ε , the
above estimates yield

∣∣∣∣
∫

Ω
u±

ε dx − γ(t)

∣∣∣∣ ≤ Cε + Cq(t), (3.23)

which, in turn, implies

max
R

Ω
u−

ε ≤s≤
R

Ω
u+

ε

f(u+
ε , εs) ≤ f(u+

ε , εγ(t)) + Cε2 + Cεq(t) (3.24)

and

min
R

Ω
u−

ε ≤s≤
R

Ω
u+

ε

f(u−
ε , εs) ≥ f(u−

ε , εγ(t)) − Cε2 − Cεq(t). (3.25)

Now, we can turn back to the proof of L+u+
ε ≥ 0. From the above

inequality, we get

L+u+
ε ≥ (u+

ε )t − ∆u+
ε − 1

ε2
f(u+

ε , εγ(t)) − C − C
1

ε
q(t). (3.26)

Straightforward computations yield

(u+
ε )t = U0

′(
dt

ε
+ pt) + εU1t + U1z(dt + εpt) + qt

∆u+
ε = U0

′′ |∇d|2
ε2

+ U0
′∆d

ε
+ U1zz

|∇d|2
ε

+ U1z∆d,

where the function U0, as well as its derivatives, are evaluated at z =(
d(x, t) + εp(t)

)
/ε, whereas the function U1, as well as its derivatives, are

evaluated at
((

d(x, t) + εp(t)
)
/ε, t

)
. We also have

f(u+
ε , εγ(t)) ≤f̃(U0) + (εU1 + q)f̃ ′(U0) + εγ(t)

∂f

∂v
(U0, 0)

+ H

(
1

2
(εU1 + q)2 +

1

2
ε2γ2(t) + (εU1 + q)εγ(t)

)
,

where H was defined in (3.18). Combining the above expressions with the
equations (3.5) and (3.7) for U0 and U1, we obtain

L+u+
ε ≥ E1 + · · · + E6,

where:

E1 = − 1

ε2
q

(
f̃ ′(U0) +

1

2
Hq

)
+ U0

′pt + qt

E2 =

(
U0

′′

ε2
+

U1zz

ε

)
(1 − |∇d|2)
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E3 =

(
U0

′

ε
+ U1z

)
(dt − ∆d + c0γ(t))

E4 = εU1zpt +
1

ε
q (−Hγ(t) − HU1 − C)

E5 = −c0γ(t)U1z − 1
2HU1

2 − 1
2Hγ2(t) − Hγ(t)U1 − C

E6 = εU1t.

In the sequel, we estimate the terms E1—E6 and denote by Ci various
positive constants that are independent of ε.

3.2.1 The term E1

Direct computation gives

E1 =
β

ε2
e−βt/ε2

(I − σβ) + LeLt(I + ε2σL),

where

I = U0
′ − σf̃ ′(U0) −

σ2

2
H(βe−βt/ε2

+ ε2LeLt).

In virtue of (3.19), we have

I ≥ σm − σ2

2
H(β + ε2LeLT ).

Combining this, (3.16), (3.20) and the inequality σ ≤ σ2, we obtain I ≥ 2σβ.
Consequently, we have

E1 ≥ σβ2

ε2
e−βt/ε2

+ 2σβLeLt.

3.2.2 The term E2

First, in the region where |d| < d0, we have |∇d| = 1, hence E2 = 0. Next
we consider the region where |d| ≥ d0. We deduce from Lemma 3.1 and from
(3.11) that

|E2| ≤ C(
1

ε2
+

1

ε
)e−λ|d+εp|/ε ≤ 2C

ε2
e−λ(d0/ε−|p|).

In view of (3.22) we have 0 < p ≤ d0

2ε
so that

|E2| ≤
2C

ε2
e−λd0/(2ε) ≤ C2.
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3.2.3 The term E3

Recall that

(dt − ∆d)(x, t) + c0γ(t) = 0 on Γt = {x ∈ Ω, d(x, t) = 0}.
Since the interface Γt is smooth, both ∆d and dt are Lipschitz continuous
near Γt. It follows from the mean value theorem applied on both sides of Γt

that there exists a constant N > 0 such that:

|(dt − ∆d)(x, t) + c0γ(t)| ≤ N |d(x, t)| for all (x, t) ∈ Ω × (0, T ).

Applying Lemma 3.1 and the estimate (3.11) we deduce that

|E3| ≤ 2NC
|d|
ε

e−λ|d/ε+p|

≤ 2NC maxξ∈R |ξ|e−λ|ξ+p|

≤ 2NC max(|p|, 1

λ
).

Thus, recalling that |p| ≤ eLt + K, we obtain

|E3| ≤ C3(e
Lt + K) + C3

′,

where C3 := 2NC and C3
′ := 2NC/λ.

3.2.4 The terms E4, E5 and E6

Since U1, U1z, U1t and γ are bounded, it is a matter of routine to see that

|E4| ≤ C4

(1

ε
βe−βt/ε2

+ εLeLt
)
, |E5| ≤ C5, |E6| ≤ εC6.

3.2.5 Completion of the proof

Collecting all these estimates gives

L+u+
ε ≥ (

σβ2

ε2
− C4β

ε
)e−βt/ε2

+ (2σβL − C3 − εC4L)eLt − C7, (3.27)

where C7 := C2 + KC3 + C3
′ + C5 + C6. Now we set

L :=
1

T
ln

d0

4ε0
,

which, for ε0 small enough, validates assumptions (3.20) and (3.22). For ε0

small enough, the first term of the right-hand side of (3.27) is positive, and

L+u+
ε ≥

[
σβL − C3]e

Lt − C7 ≥ 1

2
σβL − C7 ≥ 0.

The proof of (A.12) is now complete, with the choice of the constants β, σ
as in (3.16), (3.17). Since one can prove (A.13) by similar arguments, this
completes the proof of Lemma 3.2.
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4 Proof of Theorem 1.1

Let η ∈ (0, η0) be arbitrary. Choose β and σ that satisfy (3.16), (3.17) and

σβ ≤ η

3
. (4.1)

By the generation of interface property, Theorem 2.1, there exist positive
constants ε0 and M0 such that (2.3), (2.4) and (2.5) hold with the constant
η replaced by σβ/2. Since ∇u0 6= 0 everywhere on Γ0 = {x ∈ Ω| u0(x) = a}
and since Γ0 is a compact hypersurface, we can find a positive constant M1

such that

if d0(x) ≥ M1ε then u0(x) ≥ a + M0ε

if d0(x) ≤ −M1ε then u0(x) ≤ a − M0ε.
(4.2)

Here d0(x) := d(x, 0) denotes the signed distance function associated with
the hypersurface Γ0. Now we define functions H+(x),H−(x) by

H+(x) =

{
+1 + σβ/2 if d0(x) > −M1ε
−1 + σβ/2 if d0(x) ≤ −M1ε,

H−(x) =

{
+1 − σβ/2 if d0(x) ≥ M1ε
−1 − σβ/2 if d0(x) < M1ε.

Then from (2.3), (2.4), (2.5) (with η replaced by σβ/2) and (4.2), we see
that

H−(x) ≤ uε(x, µ−1ε2| ln ε|) ≤ H+(x) for x ∈ Ω. (4.3)

Next we fix a sufficiently large constant K > 1 such that

U0(−M1 + K) ≥ 1 − σβ

3
and U0(M1 − K) ≤ −1 +

σβ

3
. (4.4)

For this K, we choose ε0 and L as in Lemma 3.2. We claim that

u−
ε (x, 0) ≤ H−(x), H+(x) ≤ u+

ε (x, 0) for x ∈ Ω, (4.5)

with (u−
ε , u+

ε ) the pair of sub- and super-solutions defined in (3.12) for the
study of the motion of interface. We shall only prove the former inequality,
as the proof of the latter is virtually the same. Then it amounts to showing
that

u−
ε (x, 0) = U0

(d0(x)

ε
−K

)
+εU1

(d0(x)

ε
−K, 0

)
−σ(β+ε2L) ≤ H−(x). (4.6)

Recall that |U1| ≤ M . Therefore, by choosing ε0 small enough so that
ε0M ≤ σβ/6, we see that

u−
ε (x, 0) ≤ U0

(d0(x)

ε
− K

)
− 5

6
σβ.
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In the range where d0(x) < M1ε, the fact that U0 is an increasing function
and the second inequality in (4.4) imply

U0

(d0(x)

ε
− K

)
− 5

6
σβ ≤ U0(M1 − K) − 5

6
σβ ≤ −1 − σβ

2
= H−(x).

On the other hand, in the range where d0(x) ≥ M1ε, we have

U0

(d0(x)

ε
− K

)
− 5

6
σβ ≤ 1 − 5

6
σβ ≤ H−(x).

This proves (4.6), hence (4.5) is established.
Combining (4.3) and (4.5), we obtain

u−
ε (x, 0) ≤ uε(x, µ−1ε2| ln ε|) ≤ u+

ε (x, 0).

Since (u−
ε , u+

ε ) is a pair of sub- and super-solutions for Problem (P ε), the
comparison principle yields

u−
ε (x, t) ≤ uε(x, t + tε) ≤ u+

ε (x, t) for 0 ≤ t ≤ T − tε, (4.7)

where tε = µ−1ε2| ln ε|. Note that, in view of (3.13), this is enough to prove
Corollary 1.2. Now let C be a positive constant such that

U0(C − eLT − K) ≥ 1 − η

2
and U0(−C + eLT + K) ≤ −1 +

η

2
. (4.8)

One then easily checks, using (4.7) and (4.1), that, for ε0 small enough, for
0 ≤ t ≤ T − tε, we have

if d(x, t) ≥ Cε then uε(x, t + tε) ≥ 1 − η

if d(x, t) ≤ −Cε then uε(x, t + tε) ≤ −1 + η,
(4.9)

and
uε(x, t + tε) ∈ [−1 − η, 1 + η],

which completes the proof of Theorem 1.1.

Appendix - Comparison principle

The definition of sub- and super-solutions is the one proposed by Chen,
Hilhorst and Logak [10]. It involves simultaneously a super- and a sub-
solution.

Definition A.1. Let (u−
ε , u+

ε ) be a pair of smooth functions defined on
Ω̄ × [0, T ] and satisfying

u−
ε ≤ u+

ε in Ω̄ × [0, T ], (A.10)
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and
∂u−

ε

∂ν
≤ 0 ≤ ∂u+

ε

∂ν
on ∂Ω × (0, T ). (A.11)

We say that (u−
ε , u+

ε ) is a pair of sub- and super-solutions for Problem (P ε)
if

L+u+
ε := (u+

ε )t − ∆u+
ε − 1

ε2
max

R

Ω
u−

ε ≤s≤
R

Ω
u+

ε

f(u+
ε , εs) ≥ 0 in Ω × (0, T ),

(A.12)

L−u−
ε := (u−

ε )t − ∆u−
ε − 1

ε2
min

R

Ω
u−

ε ≤s≤
R

Ω
u+

ε

f(u−
ε , εs) ≤ 0 in Ω × (0, T ).

(A.13)

As proved in [10], the following comparison principle holds.

Proposition A.2. Let a pair of sub- and super-solutions be given. Assume

that, for all x ∈ Ω,

u−
ε (x, 0) ≤ u0(x) ≤ u+

ε (x, 0). (A.14)

Then, if we denote by uε the solution of Problem (P ε), the function uε

satisfies

u−
ε (x, t) ≤ uε(x, t) ≤ u+

ε (x, t), (A.15)

for all (x, t) ∈ Ω × [0, T ].

As easily seen from the proof in [10], one could replace the assumption
(A.10) by the assumption (A.14) together with the condition that

∫

Ω
u−

ε (x, t) dx ≤
∫

Ω
u+

ε (x, t) dx, (A.16)

for all t ∈ [0, t0] with t0 > 0. More precisely if (A.14), (A.16), (A.11), (A.12)
and (A.13) hold, then the conclusion (A.15) follows.
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