Matthieu Alfaro 
  
Harald Garcke 
  
Danielle Hilhorst 
  
Hiroshi Matano 
  
Reiner Schätzle 
  
Motion by anisotropic mean curvature as sharp interface limit of an inhomogeneous and anisotropic Allen-Cahn equation *

Keywords: Classifications: 35K55, 35K57, 35B25, 35R35, 58B20 nonlinear PDE, anisotropic diffusion, bistable reaction, inhomogeneity, singular perturbation, Finsler metric, generation of interface, motion by anisotropic mean curvature

We consider the spatially inhomogeneous and anisotropic reactiondiffusion equation

involving a small parameter ε > 0 and a bistable nonlinear term whose stable equilibria are 0 and 1. We use a Finsler metric related to the anisotropic diffusion term and work in relative geometry. We prove a weak comparison principle and perform an analysis of both the generation and the motion of interfaces. More precisely, we show that, within the time scale of order ε 2 | ln ε|, the unique weak solution u ε develops a steep transition layer that separates the regions {u ε ≈ 0} and {u ε ≈ 1}. Then, on a much slower time scale, the layer starts to propagate. Consequently, as ε → 0, the solution u ε converges almost everywhere to 0 * AMS Subject

Introduction

Evolution laws for interfaces frequently appear in materials science, differential geometry and image processing. In this paper we relate so called diffuse and sharp interface models in which interfaces evolve according to an evolution law, which involves anisotropic and inhomogeneous driving forces. The evolution equations we will consider in particular decrease an inhomogeneous interfacial energy. A diffuse interface model is based on a free energy which includes gradient terms and, in this paper, the energy is assumed to be of the following Ginzburg-Landau type

F(u) = Ω [a(x, ∇u) + 1 ε 2 W (u)]m(x)dx ,
where Ω ⊂ R N , N ≥ 2, is a bounded domain with smooth boundary, ε > 0 is a small parameter related to the thickness of a diffuse interfacial layer, W is a double well potential with wells of equal depth and m is a positive function. We will allow a to be x-dependent and anisotropic, i.e. the value of a will depend on the direction of ∇u. Taking the gradient flow of F with respect to the weighted L 2 -inner-product (u, v) = Ω u(x)v(x)m(x)dx leads to the following initial boundary value problem for an inhomogeneous and anisotropic Allen-Cahn equation

(P ε )          u t = 1 m(x)
div m(x)a p (x, ∇u) + 1 ε 2 f (u) in Ω × (0, +∞),

a p (x, ∇u) • ν = 0 on ∂Ω × (0, +∞), u(x, 0) = u 0 (x) in Ω,
where f (u) = -W ′ (u), ν is the Euclidean unit normal vector exterior to ∂Ω and a p refers to differentiation with respect to the variable corresponding to ∇u. We easily derive that solutions to (P ε ) fulfill

d dt F(u) = - Ω (u t ) 2 m(x)dx ≤ 0 ,
i.e. F serves as a Lyapunov function.

It can be shown that under appropriate assumptions, see [START_REF] Bouchitte | Singular perturbations of variational problems arising from a two-phase transition model[END_REF], [START_REF] Owen | Non convex variational problems with general singular perturbations[END_REF], [START_REF] Owen | Non convex variational problems with anisotropic perturbations[END_REF], the energies εF converge in the sense of Γ-convergence to an anisotropic functional defined for hypersurfaces, i.e. in the limit ε → 0 the interface is sharp. For a smooth hypersurface Γ the limiting energy becomes Γ 2a(x, n(x)) m(x)dH N -1 (x) ,

where n is a suitable Euclidean unit normal vector to Γ and dH N -1 refers to integration with respect to the (N -1)-dimensional Hausdorff measure. Anisotropic energies for hypersurfaces can be analyzed in the context of Finsler geometry. If one considers the steepest descent of the anisotropic surface energy in relative geometry, where geometric quantities such as curvature and normal velocity are computed within the context of a Finsler metric, one obtains an anisotropic and inhomogeneous generalization of mean curvature flow. In fact the moving interface Γ t evolves according to the law

(P 0 )        m(x) 2a(x, n) V n = -div m(x) 2a(x, n) a p (x, n) on Γ t , Γ t t=0 = Γ 0 ,
where V n is the normal velocity of Γ t . We will show below that this equation can be rewritten in the relative geometry associated with a Finsler metric; then it has the form

(P 0 )      V n,φ = -κ φ on Γ t , Γ t t=0 = Γ 0 ,
where n φ , V n,φ and κ φ are, respectively, the anisotropic unit normal in the exterior direction, the anisotropic normal velocity of Γ t in the n φ direction, and the anisotropic mean curvature at each point of Γ t . In the isotropic homogeneous case one recovers the mean curvature flow V n = -κ. We refer to a paper by Bellettini and Paolini [START_REF] Bellettini | Anisotropic motion by mean curvature in the context of Finsler geometry[END_REF] and Section 2 for details.

It is the goal of this paper to rigorously prove that Problem (P ε ) converges to the anisotropic inhomogeneous mean curvature flow (P 0 ), as ε → 0, and to give an optimal error estimate between the solutions of (P ε ) and those of (P 0 ). We remark that a formal derivation is already contained in the paper by Bellettini and Paolini [START_REF] Bellettini | Anisotropic motion by mean curvature in the context of Finsler geometry[END_REF].

Before going into the details, we note that (P ε ) includes the following equations as special cases: the spatially inhomogeneous diffusion equation

u t = div(A(x)∇u) + 1 ε 2 f (u) , (1.1) 
where A(x) is a positive definite symmetric matrix depending on x; the fully anisotropic equation

u t = div a p (∇u) + 1 ε 2 f (u). (1.
2)

The significant difference between (1.1) and (1.2) is that the anisotropy in (1.2) depends on the solution u itself, while it does not in (1.1). In other words, in (1.2) the dependence of the energy density on the spatial orientation of the interface can be chosen much more general when compared with (1.1) where only ellipsoidal energy densities appear. We refer to Garcke, Nestler and Stoth [START_REF] Garcke | Anisotropy in multiphase sytems: a phase-field approach[END_REF], Barrett, Garcke and Nürnberg [START_REF] Barrett | Numerical approximation of anisotropic geometric evolution equations in the plane[END_REF][START_REF] Barrett | A variational formulation of anisotropic geometric evolution equations in higher dimensions[END_REF] for possible anisotropic energy densities. Note also that we allow a pp (p) to be discontinuous at p = 0 (see Remark 1.3 below).

We suppose in what follows that W (u) is a double-well potential with equal well-depth, taking its global minimum value at u = 0 and u = 1. More precisely we assume that f = -W ′ is smooth and has exactly three zeros 0 < a < 1 such that

f ′ (0) < 0, f ′ (a) > 0, f ′ (1) < 0, (1.3) 
and that

1 0 f (u)du = 0. (1.4)
Remark 1.1. Note that we could also consider the case where f is slightly unbalanced by order ε so that (1.4). In this case, the singular limit of (P ε ) will have an additional driving force term in (P 0 ). See Remark 3.2 for details.

1 0 f (u)du = O(ε) stands instead of
The assumptions concerning the anisotropic term are the following.

(i) a(x, p) is a real valued function, of class C 3+ϑ loc (for some 0 < ϑ < 1) on Ω × R N \{0}; Remark 1.2. The fact that a is homogeneous of degree two implies that, for all (x, p) ∈ Ω × R N \{0}, all α = 0,

(ii) a(x, p) is positive on Ω × R N \{0}; (iii) a(x, •) is strictly convex for all x ∈ Ω; (iv) a(x, p) is homogeneous of degree two in the p variable, i.e. a(x, αp) = α 2 a(x, p) for all (x, p) ∈ Ω × R N \{0}, all α = 0. (1.5) If p is given by p = (p 1 , • • • , p N ), the vector valued function a p is defined by a p (x, p) = ∂a ∂p 1 (x, p), • • • , ∂a ∂p N (x,
a p (x, αp) = αa p (x, p), a pp (x, αp) = a pp (x, p), a p (x, αp) • p = 2αa(x, p), a pp (x, αp)p = a p (x, p).
By setting a(x, 0) = 0 and a p (x, 0) = 0, one can understand that a(x, p) is of class C 1 on the whole of Ω × R N .

Remark 1.3. In many important applications in physics, a pp (x, p) is discontinuous at p = 0 and this makes Problem (P ε ) singularly parabolic. Because of lack of uniform parabolicity, our analysis becomes more involved than the case (1.1) or the case of isotropic Allen-Cahn equation studied in [START_REF] Alfaro | The singular limit of the Allen-Cahn equation and the FitzHugh-Nagumo system[END_REF], [START_REF] Bronsard | Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics[END_REF], [START_REF] Chen | Generation and propagation of interfaces for reactiondiffusion equations[END_REF], [START_REF] De Mottoni | Development of interfaces in R n[END_REF][START_REF] De Mottoni | Geometrical evolution of developed interfaces[END_REF].

We assume that m : Ω → (0, +∞) is a function of class C 2 such that 0 < m 1 ≤ m(x) ≤ m 2 < +∞ for any x ∈ Ω, and that ∇m and D 2 m are in

L ∞ (Ω), where D 2 m(x) := ∂ 2 m ∂x j ∂x i (x) . Remark 1.4. Observe that 1 m(x) div m(x)a p (x, ∇u) = div a p (x, ∇u) + ∇ log m(x) • a p (x, ∇u) , (1.6) 
so that our equation contains the generalized Allen-Cahn equations discussed in Bellettini, Paolini [START_REF] Bellettini | Anisotropic motion by mean curvature in the context of Finsler geometry[END_REF], Bellettini, Paolini and Venturini [START_REF] Bellettini | Some results on surface measures in calculus of variations[END_REF].

We also assume that the initial data u 0 ∈ C 2 (Ω), and define C 0 as

C 0 := u 0 C 0 (Ω) + ∇u 0 C 0 (Ω) + D 2 u 0 C 0 (Ω) . (1.7) 
Furthermore we define the "initial interface" Γ 0 by

Γ 0 := {x ∈ Ω, u 0 (x) = a},
and suppose that Γ 0 is a C 3+ϑ closed hypersurface without boundary (0 < ϑ < 1), such that, n being the Euclidian unit normal vector exterior to Γ 0 ,

Γ 0 ⊂⊂ Ω and ∇u 0 (x) = 0 if x ∈ Γ 0 , (1.8) 
u 0 > a in Ω + 0 , u 0 < a in Ω - 0 , (1.9) 
where Ω - 0 denotes the region enclosed by Γ 0 and Ω + 0 the region enclosed between ∂Ω and Γ 0 .

For T > 0, we set Q T = Ω × (0, T ). We define below a notion of weak solutions of Problem (P ε ). For this definition, it is sufficient to only suppose that

u 0 ∈ H 1 (Ω) ∩ L ∞ (Ω). Definition 1.5. A function u ε ∈ L 2 (0, T ; H 1 (Ω)) ∩ L ∞ (Q T ) is a weak solu- tion of Problem (P ε ), if (i) u ε t ∈ L 2 (Q T ), (ii) a p (x, ∇u ε (x, t)) ∈ L ∞ (0, T ; L 2 (Ω)), (iii) u ε (x, 0) = u 0 (x) for almost all x ∈ Ω, (iv) u ε satisfies the integral equality t 0 Ω u ε t ϕ + a p (x, ∇u ε ) • ∇ϕ - 1 ε 2 f (u ε )ϕ m(x)dxdt = 0 , (1.10) for all nonnegative function ϕ ∈ L 2 (0, T ; H 1 (Ω)) ∩ L ∞ (Q T )
and for all t ∈ (0, T ).

One may prove, using monotonicity and compactness arguments as is done in [START_REF] Beneš | Mathematical analysis of phase-field equations with gradient coupling term[END_REF], [START_REF] Beneš | Simulation of anisotropic motion by mean curvature-comparison of phase field and sharp interface approaches[END_REF], that Problem (P ε ) possesses a unique weak solution which we denote by u ε . As ε → 0, the qualitative behavior of this solution is the following. In the very early stage, the anisotropic diffusion term is negligible compared with the reaction term ε -2 f (u). Hence, rescaling time by τ = t/ε 2 , the equation is well approximated by the ordinary differential equation u τ = f (u). In view of the bistable nature of f , u ε quickly approaches the values 0 or 1, the stable equilibria of the ODE, and an interface is formed between the regions {u ε ≈ 0} and {u ε ≈ 1}. Once such an interface has been developed, the anisotropic diffusion term becomes large near the interface, and comes to balance with the reaction term so that the interface starts to propagate, on a much slower time scale.

To understand such interfacial behavior, we have to study the singular limit of (P ε ) as ε → 0. Then the limit solution ũ(x, t) is a step function taking the values 0 and 1 on the sides of the moving interface Γ t . In the case of the usual Allen-Cahn equation, it is well known that Γ t evolves according to the mean curvature flow V n = -κ and we will show in this paper that the sharp interface limit of (P ε ) is given by (P 0 ).

Using the theory of analytic semigroups (see e.g. Lunardi [START_REF] Lunardi | Analytic semigroups and optimal regularity in parabolic problems[END_REF]) it is possible to show that the limit Problem (P 0 ) possesses locally in time a unique smooth solution. More precisely, there exists a T > 0 such that Problem (P 0 ) has a unique solution Γ = 0≤t<T (Γ t × {t}) which satisfies Γ ∈ C 3+ϑ,(3+ϑ)/2 . For proofs of the local in time existence of solutions of related limit problems, we also refer the reader to [START_REF] Giga | Geometric evolution of phase-boundaries[END_REF] and the discussion at the end of Chapter 1 in [START_REF] Giga | Surface evolution equations[END_REF].

For each t ∈ (0, T ), we define Ω - t as the region enclosed by the hypersurface Γ t and Ω + t as the region lying between ∂Ω and Γ t . Furthermore we define a step function ũ(x, t) by

ũ(x, t) = 1 in Ω + t 0 in Ω - t for t ∈ (0, T ). (1.11)
It is convenient to present our main result, Theorem 1.6, in the form of a convergence theorem, mixing generation and propagation. It describes the profile of the solution after a very short initial period. It asserts that: given a virtually arbitrary initial data u 0 , the solution u ε quickly becomes close to 0 or 1, except in a small neighborhood of the initial interface Γ 0 , creating a steep transition layer around Γ 0 (generation of interface). The time t ε for the generation of interface is of order ε 2 | ln ε|. The theorem then states that the solution u ε remains close to the step function ũ on the time interval (t ε , T ) (motion of interface). Moreover, as is clear from the estimates in the theorem, the thickness of the transition layer is of order ε.

Theorem 1.6 (Generation, motion and thickness of interface). Let η be an arbitrary constant satisfying 0 < η < min(a, 1a) and set

µ = f ′ (a).
Then there exist positive constants ε 0 and C such that, for all ε ∈ (0, ε 0 ) and for almost all (x, t) such that t ε ≤ t ≤ T , where

t ε := µ -1 ε 2 | ln ε| ,
(1.12)

we have,

u ε (x, t) ∈            [-η, 1 + η] if x ∈ N Cε (Γ t ) [-η, η] if x ∈ Ω - t \ N Cε (Γ t ) [1 -η, 1 + η] if x ∈ Ω + t \ N Cε (Γ t ), (1.13) 
where N r (Γ t ) := {x ∈ Ω, dist φ (x, Γ t ) < r} denotes the r-neighborhood of Γ t ; by dist φ (x, Γ t ), we mean the δ φ distance to the set Γ t , where δ φ is the distance associated to a Finsler metric, whose definition is to be given in Section 2.

Corollary 1.7 (Convergence). As ε → 0, the solution u ε converges to ũ almost everywhere in 0<t<T (Ω ± t × {t}).

The organization of this paper is as follows. In Section 2, we recall notations and results concerning Finsler metrics that give a natural and efficient framework for dealing with anisotropic problems. In Section 3, we perform formal asymptotic expansions in order to derive the equation for the motion of interface, and collect useful estimates on stationary solutions of related problems. In Section 4 we prove a weak comparison principle for Problem (P ε ). Such a comparison principle is rather standard, but, in view of the fact that a pp (x, p) does not exist at p = 0, we give a complete proof for the convenience of the reader. In Section 5, we prove results on the generation of interface. For the study of this early time range we construct suband super-solutions by modifying the solution of the ordinary differential equation u t = ε -2 f (u). In Section 6, we construct another pair of sub-and super-solutions by using the first two terms of the formal asymptotic expansion given in Section 3. They are used to study the motion of interface in the later stage. In Section 7, by fitting these two pairs of sub-and supersolutions together, we prove our main results for (P ε ): Theorem 1.6 and its corollary.

Let us mention some earlier works on anisotropic problems related to (P ε ). In [START_REF] Bellettini | Convergence of front propagation for anisotropic bistable reaction-diffusion equations[END_REF], Bellettini, Colli Franzone and Paolini study a problem that is slightly more general than (P ε ) -by allowing f to be unbalanced in the same way as in Remarks 1.1, 3.2 of the present paper -and derive a very fine error estimate between the formal asymptotic and actual solutions of (P ε ). We also refer to the articles [START_REF] Elliott | The limit of the anisotropic doubleobstacle Allen-Cahn equation[END_REF][START_REF] Elliott | The limit of the fully anisotropic double-obstacle Allen-Cahn equation in the nonsmooth case[END_REF], by Elliott and Schätzle, on a similar but slightly different problem where the potential W (u) is a double obstacle type, namely W (u) = +∞ for u / ∈ (0, 1). For the spatially homogeneous case a(x, p) = a(p) they prove convergence of the anisotropic diffusion problem to an anisotropic curvature flow similar to (P 0 ). Note that their second paper [START_REF] Elliott | The limit of the fully anisotropic double-obstacle Allen-Cahn equation in the nonsmooth case[END_REF] considers a kinetic term of the form β(∇u)u t , which makes the meaning of solutions very weak, hence they are treated in the framework of viscosity solutions.

However, in these papers, the authors consider only a very restricted class of initial data, namely those having a specific profile with well-developed transition layer. More precisely they prove that if the initial data is very close to the typical profile that appears in the formal asymptotic expansions of the moving interface, then the solution remains close to the formal asymptotic for 0 ≤ t ≤ T . In other words the generation of interface from arbitrary initial data is not studied there. Summarizing, they have obtained a very fine error estimate -of order O(ε 2 ) or higher -between the solutions of specific initial data and formal asymptotic, while, in the present paper, we consider convergence of solutions of (P ε ) with virtually arbitrary initial data to solutions of (P 0 ), with an error estimate of order O(ε). Therefore, the two results are both for the convergence of (P ε ) to (P 0 ), but they are of different nature. Note that, as far as the thickness of the interface is concerned, our O(ε) estimate is optimal (see [START_REF] Alfaro | The singular limit of the Allen-Cahn equation and the FitzHugh-Nagumo system[END_REF] for details).

In [START_REF] Beneš | Interface dynamics for an anisotropic Allen-Cahn equation, Nonlocal elliptic and parabolic problems[END_REF], Beneš, Hilhorst and Weidenfeld study both the generation and the motion of interface for an anisotropic Allen-Cahn equation which is related to ours. Nevertheless, their equation is slightly less general since they do not allow x-dependence in a(x, p). Moreover, with their sub-and super-solutions, they cannot achieve the optimal O(ε) estimate of the thickness of the interface.

For numerical simulations for problems (P ε ) and (P 0 ) we refer to Beneš, Mikula [START_REF] Beneš | Simulation of anisotropic motion by mean curvature-comparison of phase field and sharp interface approaches[END_REF], Garcke, Nestler, Stoth [START_REF] Garcke | Anisotropy in multiphase sytems: a phase-field approach[END_REF], Barrett, Garcke, Nürnberg [START_REF] Barrett | Numerical approximation of anisotropic geometric evolution equations in the plane[END_REF][START_REF] Barrett | A variational formulation of anisotropic geometric evolution equations in higher dimensions[END_REF] and Paolini [START_REF] Paolini | Fattening in two dimensions obtained with a nonsymmetric anisotropy: numerical simulations[END_REF].

Finsler metrics and the anisotropic context

In this section we explain the technique of Bellettini, Paolini [START_REF] Bellettini | Anisotropic motion by mean curvature in the context of Finsler geometry[END_REF], Bellettini, Paolini and Venturini [START_REF] Bellettini | Some results on surface measures in calculus of variations[END_REF] to apply Finsler metric to analyze anisotropic nonlinear problems. The idea is to endow R N with the distance obtained by integrating the Finsler metric which makes otherwise lengthy computations remarkably simpler. For the convenience of the reader, we first recall basic properties of Finsler metrics as stated in [START_REF] Bellettini | Anisotropic motion by mean curvature in the context of Finsler geometry[END_REF], [START_REF] Bellettini | Some results on surface measures in calculus of variations[END_REF]. For more details and proofs, see these references.

Finsler metrics

Suppose that φ : Ω × R N → [0, +∞) is a continuous function satisfying the properties φ(x, αξ) = |α|φ(x, ξ) for all (x, ξ) ∈ Ω × R N and all α ∈ R, (2.1)
λ 0 |ξ| ≤ φ(x, ξ) ≤ Λ 0 |ξ| for all (x, ξ) ∈ Ω × R N , (2.2) 
for two suitable constants 0 < λ 0 ≤ Λ 0 < +∞. We say that φ is strictly convex if, for any x ∈ Ω, the map ξ → φ 2 (x, ξ) is strictly convex on R N . We shall indicate by

B φ (x) = {ξ ∈ R N , φ(x, ξ) ≤ 1} the unit sphere of φ at x ∈ Ω. The dual function φ 0 : Ω × R N → [0, +∞) of φ is defined by φ 0 (x, ξ * ) = sup ξ * • ξ, ξ ∈ B φ (x) , (2.3) 
for any (x, ξ) ∈ Ω × R N . One can prove that φ 0 is continuous, convex, satisfies properties (2.1) and (2.2), and that φ 00 , the dual function of φ 0 , coincides with the convex envelope of φ with respect to ξ.

We say that φ is a (strictly convex smooth) Finsler metric, and we shall write φ ∈ M(Ω) if, in addition to properties (2.1) and (2.2), φ and φ 0 are strictly convex and of class C 2 on Ω × R N \ {0}. In particular φ 00 = φ.

We denote by δ φ the integrated distance associated to φ ∈ M(Ω), that is, for any (x, y) ∈ Ω, we set

δ φ (x, y) = inf 1 0 φ(γ(t), γ(t))dt ; γ ∈ W 1,1 [0, 1]; Ω , γ(0) = x, γ(1) = y . (2.4)
In the special case of the Euclidian metric, the function φ is given by φ

(x, p) = φ(p) = (p 1 2 + • • • + p N 2 ) 1/2
, so that δ φ reduces to the usual distance.

Given φ ∈ M(Ω) and x ∈ Ω, let T 0 (x, •) : R N → R N be the map defined by

T 0 (x, ξ * ) = φ 0 (x, ξ * )φ 0 p (x, ξ * ) if ξ * ∈ R N \ {0} 0 if ξ * = 0. (2.5)
Here φ 0 p denotes the gradient with respect to p whenever we regard φ 0 (x, p) as a function of two variables x and p.

If u : Ω → R is a smooth function with non-vanishing gradient, we define the anisotropic gradient by

∇ φ u = T 0 (x, ∇u) = φ 0 (x, ∇u)φ 0 p (x, ∇u). (2.6) 
If η : Ω → R N is a smooth vector field, we define the m-divergence operator by

div m η = 1 m(x) div m(x)η = div η + ∇ log m(x) • η , (2.7) 
and then the m-anisotropic Laplacian by

∆ φ,m u = div m ∇ φ u. (2.8) 
Note that in [START_REF] Bellettini | Anisotropic motion by mean curvature in the context of Finsler geometry[END_REF], [START_REF] Bellettini | Some results on surface measures in calculus of variations[END_REF] m is related to φ while in the present paper m is a given function independent of φ. Nonetheless, in the sequel, we shall use the simpler notation ∆ φ := ∆ φ,m . As in the isotropic case, if Γ t is a smooth hypersurface of Ω at time t, and n the outer normal vector to Γ t (in the Euclidian sense), we define n φ the φ-normal vector to Γ t and κ φ the φ-mean curvature of Γ t by

n φ = φ 0 p (x, n), κ φ = div m n φ . (2.9)
Furthermore, if ψ is a smooth function with non-vanishing gradient such that Γ t = {x ∈ Ω, ψ(x, t) = 0}, and ψ is positive outside Γ t and negative inside, then

n = ∇ψ |∇ψ| , n φ = φ 0 p (x, ∇ψ), (2.10) 
κ = div ∇ψ |∇ψ| , κ φ = div m φ 0 p (x, ∇ψ), (2.11) 
on Γ t . We also define the normal velocity of Γ t and the φ-normal velocity of Γ t by

V n = - ψ t |∇ψ| , V n,φ = - ψ t φ 0 (x, ∇ψ) . (2.12)
To conclude these preliminaries, we quote a theorem proved in [START_REF] Bellettini | Some results on surface measures in calculus of variations[END_REF].

Theorem 2.1. Let Ω be connected, and let φ ∈ M(Ω). Let δ φ be the integrated distance associated to φ. Let C ⊆ Ω be a closed set, and let dist φ (x, C) be the δ φ distance to the set C defined by

dist φ (x, C) = inf δ φ (x, y) , y ∈ C .
(2.13)

Then φ 0 x, ∇dist φ (x, C) = 1 , (2.14 
)

at each point x ∈ Ω \ C where dist φ (•, C) is differentiable.
In the special case of the Euclidian metric, note that (2.14) reduces to the property that |∇d| = 1.

Application to the anisotropic Allen-Cahn equation

We set, for all (x, p) ∈ Ω × R N , φ 0 (x, p) = 2a(x, p).

(2.15)

First, since a(x, •) is homogeneous of degree two, φ 0 satisfies assumptions (2.1) and (2.2) with the constants

λ 0 = [2 min x∈Ω,|p|=1 a(x, p)] 1/2 > 0 and Λ 0 = [2 max x∈Ω,|p|=1 a(x, p)] 1/2 > 0.
(2.16) By the hypotheses on a(x, p), we see that φ 0 is strictly convex and of class C 2 on Ω × R N \{0}; moreover, by Remark 1.2, φ 0 is continuous on the whole of Ω × R N . It follows that φ is a Finsler metric and the above theory applies. We have

T 0 (x, p) = a p (x, p) if p ∈ R N \ {0} 0 if p = 0.
(2.17)

Let Γ = 0≤t<T (Γ t × {t}) be the unique solution of the limit geometric motion Problem (P 0 ) and let d be the signed distance function to Γ defined by

d(x, t) = dist(x, Γ t ) for x ∈ Ω + t , -dist(x, Γ t ) for x ∈ Ω - t , (2.18) 
where dist(x, Γ t ) is the distance from x to the hypersurface Γ t in Ω. Let d φ be the anisotropic signed distance function to Γ defined by

d φ (x, t) = dist φ (x, Γ t ) for x ∈ Ω + t , -dist φ (x, Γ t ) for x ∈ Ω - t , (2.19) 
where dist φ (x, Γ t ) denotes the δ φ distance to the set Γ t defined in (2.13). By Theorem 2.1, the following equality holds

2a(x, ∇ d φ (x, t)) = 1 in a neighborhood of Γ t . (2.20) 
By setting ψ = d and ψ = d φ in the second equalities in (2.10), (2.11), (2.12), we obtain two equivalent expressions of the φ-normal vector, the φ-mean curvature and the φ-normal velocity:

n φ = 1 2a(x, ∇ d) a p (x, ∇ d) = a p (x, ∇ d φ ), (2.21 
)

κ φ = div m 1 2a(x, ∇ d) a p (x, ∇ d) = div m a p (x, ∇ d φ ) , (2.22) 
V n,φ = - 1 2a(x, ∇ d) d t = -( d φ ) t . (2.23)
The end of this section is devoted to the anisotropic Laplacian

∆ φ u = 1 m(x) div m(x)a p (x, ∇u) (2.24) = div a p (x, ∇u) + ∇ log m(x) • a p (x, ∇u). (2.25) 
In the case of Finsler metrics, it turns out that the term ∆ φ u may be less regular than ∆u. Nevertheless, we show below a boundedness property of the anisotropic Laplacian (see [START_REF] Beneš | Interface dynamics for an anisotropic Allen-Cahn equation, Nonlocal elliptic and parabolic problems[END_REF] for a related property).

Lemma 2.2. There exists a positive constant C L such that, for all u ∈ C 2,1 (Q T ), the following inequality holds:

|∆ φ u(x, t)| ≤ C L (|∇u(x, t)| + |D 2 u(x, t)|) for all (x, t) ∈ Q T . (2.26)
Proof. In view of (2.25), it is sufficient to deal with the term div a p (x, ∇u). We can, with no loss of generality, ignore the dependence on time. First, assume that x is such that ∇u(x) = 0. Regarding a(x, p) as a function of two variables x and p = (p 1 , • • • , p n ), we obtain, by a straightforward calculation, that

div a p (x, ∇u(x)) = j ∂ 2 a ∂x j ∂p j (x, ∇u(x))+ i,j ∂ 2 a ∂p i ∂p j (x, ∇u(x)) ∂ 2 u ∂x i ∂x j (x).
(2.27) It follows from the homogeneity properties that

| div a p (x, ∇u(x))| ≤|∇u(x)| j max y∈Ω,|p|=1 ∂ 2 a ∂x j ∂p j (y, p) + |D 2 u(x)| i,j max y∈Ω,|p|=1 ∂ 2 a ∂p i ∂p j (y, p) ,
where we have used that a is of class C 2 on the compact set Ω × {|p| = 1}. This proves (2.26) under the assumption ∇u(x) = 0. Now assume that x is such that ∇u(x) = 0. We have to proceed in a slightly different way since a pp (x, 0) does not make sense. The operator a p (x, •) is homogeneous of degree one so that, for any direction ζ, t -1 (a p (x, tζ)a p (x, 0)) = a p (x, ζ).

We denote by (e 1 , • • • , e N ) the Euclidian basis of R N . It follows from the above equality that a p (x, •) admits at the point 0 partial derivatives in any direction e i and ∂a p (x, •) 

∂p i (0) = a p (x, e i ) , (2 

Formal derivation of the interface motion equation

In this section we derive the equation of interface motion corresponding to Problem (P ε ) by using a formal asymptotic expansion. The resulting interface equation can be regarded as the singular limit of (P ε ) as ε → 0.

Our argument goes basically along the same lines with the formal derivation given by Nakamura, Matano, Hilhorst and Schätzle [START_REF] Nakamura | Singular limit of a reaction-diffusion equation with a spatially inhomogeneous reaction term[END_REF]: the first two terms of the asymptotic expansion determine the interface equation. Though our analysis in this section is for the most part formal, the results we obtain will help the rigorous analysis in later sections.

Let u ε be the solution of (P ε ). Let Γ = 0≤t<T Γ t ×{t} be the solution of the limit geometric motion problem and d φ the anisotropic signed distance function to Γ defined in (2.19). We then define

Q + T = 0<t<T Ω + t × {t}, Q - T = 0<t<T Ω - t × {t}.
We also assume that the solution u ε has -one the one hand -the outer expansions (away from the interface Γ),

u ε (x, t) = ũ(x, t) + εu ± 1 (x, t) + ε 2 u ± 2 (x, t) + • • • in Q ± T , (3.1) 
where ũ is the step function defined in (1.11), and -on the other handthe inner expansion (near Γ)

u ε (x, t) = U 0 (x, t, ξ) + εU 1 (x, t, ξ) + ε 2 U 2 (x, t, ξ) + • • • , (3.2) 
near Γ (the inner expansion), where U j (x, t, z), j = 0, 1, 2, • • • , are defined for x ∈ Ω, t ≥ 0, z ∈ R. The stretched space variable ξ := d φ (x, t)/ε gives exactly the right spatial scaling to describe the sharp transition between the regions {u ε ≈ 0} and {u ε ≈ 1}. We normalize U 0 in such a way that U 0 (x, t, 0) = a (normalization conditions). To make the inner and outer expansions consistent, we require that

U 0 (x, t, +∞) = 1, U k (x, t, +∞) = u + k (x, t), U 0 (x, t, -∞) = 0, U k (x, t, -∞) = u - k (x, t), (3.3) 
for all k ≥ 1 (matching conditions).

In what follows we will substitute the inner expansion (3.2) into the parabolic equation in Problem (P ε ) and collect the ε -2 and ε -1 terms. For this purpose, note that if V = V (x, t, z) and v(x, t) = V (x, t, ξ) are real valued functions then ∇v

= ε -1 V z ∇ d φ + ∇ x V and v t = ε -1 ( d φ ) t V z + V t ; if v and V are vector valued functions we obtain div v = ε -1 ∇ d φ • V z + div x V .
In the following, we shall use the properties stated in Remark 1.2. A straightforward computation yields

u ε t = 1 ε ( d φ ) t U 0z + U 0t + ( d φ ) t U 1z + εU 1t + • • • ∇u ε = 1 ε U 0z ∇ d φ + ∇ x U 0 + U 1z ∇ d φ + ε∇ x U 1 + • • • a p (x, ∇u ε ) = 1 ε a p (x, U 0z ∇ d φ + ε∇ x U 0 + εU 1z ∇ d φ + ε 2 ∇ x U 1 + • • • ) = 1 ε a p (x, U 0z ∇ d φ ) + a pp (x, U 0z ∇ d φ )(∇ x U 0 + U 1z ∇ d φ ) + • • • = 1 ε U 0z a p (x, ∇ d φ ) + a pp (x, ∇ d φ )(∇ x U 0 + U 1z ∇ d φ ) + • • • . It follows that ∇ log m(x) • a p (x, ∇u ε ) = 1 ε U 0z ∇ log m(x) • a p (x, ∇ d φ ) + • • • and that div a p (x, ∇u ε ) = 1 ε ∇ d φ • ∂ z (a p (x, ∇u ε )) + div x (a p (x, ∇u ε )) = ∇ d φ ε • U 0zz ε a p (x, ∇ d φ ) + a pp (x, ∇ d φ )(∇ x U 0z + U 1zz ∇ d φ ) + 1 ε ∇ x U 0z • a p (x, ∇ d φ ) + U 0z div a p (x, ∇ d φ ) + • • • = 1 ε 2 U 0zz 2a(x, ∇ d φ ) + 1 ε 2a(x, ∇ d φ )U 1zz + 2∇ x U 0z • a p (x, ∇ d φ ) + U 0z div a p (x, ∇ d φ ) + • • • ,
where the functions U i (i = 0, 1), as well as their derivatives, are taken at the point (x, t, d φ (x, t)/ε). Hence, in view of (2.20), we obtain

div a p (x, ∇u ε ) = 1 ε 2 U 0zz + 1 ε [U 1zz + 2∇ x U 0z • a p (x, ∇ d φ ) + U 0z div a p (x, ∇ d φ )] + • • • .
We also use the expansion

f (u ε ) = f (U 0 ) + εU 1 f ′ (U 0 ) + • • • .
Next, we substitute the above expressions in the partial differential equation in Problem (P ε ). Collecting the ε -2 terms yields

U 0zz + f (U 0 ) = 0. (3.4)
In view of the normalization and matching conditions, we can now assert that U 0 (x, t, z) = U 0 (z), where U 0 is the unique solution of the onedimensional stationary problem

U 0 ′′ + f (U 0 ) = 0, U 0 (-∞) = 0, U 0 (0) = a, U 0 (+∞) = 1. (3.5) 
This solution represents the first approximation of the profile of a transition layer around the interface observed in the stretched coordinates. We recall standard estimates on U 0 .

Lemma 3.1. There exist positive constants C and λ such that

0 < 1 -U 0 (z) ≤ Ce -λ|z| for z ≥ 0, 0 < U 0 (z) ≤ Ce -λ|z| for z ≤ 0.
In addition to this U 0 ′ > 0 and, for all j = 1, 2,

|D j U 0 (z)| ≤ Ce -λ|z| for z ∈ R.
Since U 0 depends only on the variable z, we have ∇ x U 0 ′ = 0. Then, by collecting the ε -1 terms, we obtain

U 1zz + f ′ (U 0 )U 1 = ( d φ ) t U 0 ′ -∆ φ d φ U 0 ′ , (3.6) 
which can be seen as a linearized problem for (3.4). The solvability condition for the above equation, which is a variant of the Fredholm alternative, plays the key role in deriving the equation of interface motion. It is given by

R ( d φ ) t (x, t) -∆ φ d φ (x, t) U 0 ′ 2 (z)dz = 0 , for all (x, t) ∈ Q T . It follows that ( d φ ) t = ∆ φ d φ .
In virtue of subsection 2.2, this equation, written in relative geometry, reads as

V n,φ = -κ φ on Γ t , (3.7) 
that is the interface motion equation (P 0 ), whereas, in the Euclidian geometry, the same equation reads as

m(x) 2a(x, n) V n = -div m(x) 2a(x, n) a p (x, n) on Γ t . (3.8) 
Summarizing, under the assumption that the solution u ε of Problem (P ε ) satisfies

u ε → 1 in Q + T 0 in Q - T as ε → 0,
we have formally proved that the boundary Γ t between Ω - t and Ω + t moves according to the law (3.7) or (3.8).

Remark 3.2. To conclude this section, note that (3.6) now yields U 1 = 0. In fact, the second term of the asymptotic expansion vanishes because the two stable zeros of the nonlinearity f have "balanced" stability, or more precisely because of the assumption 1 0 f (u)du = 0. If we perturb the nonlinearity by order ε, say f (u) ←f (u)εg(x, t, u), the equation in the free boundary problem contains an additional driving force term and U 1 no longer vanishes. More precisely, the equation will read as

V n,φ = -κ φ + c 0 1 0 g(x, t, r)dr on Γ t ,
with c 0 a constant explicitly determined by the nonlinearity f . We refer to [START_REF] Alfaro | The singular limit of the Allen-Cahn equation and the FitzHugh-Nagumo system[END_REF] for details.

A comparison principle

This section is devoted to a comparison principle for weak solutions of Problem (P ε ). Such a result is rather standard (see [START_REF] Beneš | Interface dynamics for an anisotropic Allen-Cahn equation, Nonlocal elliptic and parabolic problems[END_REF]), but, since the problem is non-regular where ∇u = 0, we prove it here for the self-containedness of the paper.

To begin with, we define a notion of sub-and super-solution of Problem (P ε ).

Definition 4.1. A function u + ε ∈ L 2 (0, T ; H 1 (Ω)) ∩ L ∞ (Q T ) is a weak super-solution of Problem (P ε ), if (i) (u + ε ) t ∈ L 2 (Q T ), (ii) ∇ φ u + ε (x, t) = a p (x, ∇u + ε (x, t)) ∈ L ∞ (0, T ; L 2 (Ω)), (iii) u ε satisfies the integral inequality t 0 Ω (u + ε ) t ϕ + a p (x, ∇u + ε ) • ∇ϕ - 1 ε 2 f (u + ε )ϕ m(x)dxdt ≥ 0, (4.1) 
for all nonnegative function ϕ ∈ L 2 (0, T ; H 1 (Ω)) ∩ L ∞ (Q T ) and for all t ∈ (0, T ).

We define a weak sub-solution u - ε in a similar way, by changing ≥ in (4.1) by ≤.

The following remark will be useful when constructing smooth sub-and super-solutions in later sections.

Remark 4.2. If u + ε ∈ C 2,1 (Q T )
, it is not difficult to see that u + ε is a supersolution in the sense defined above if and only if

(i) a p (x, ∇u + ε ) • ν ≥ 0 on ∂Ω × (0, T ),
(ii) L 0 u + ε ≥ 0 almost everywhere in Q T , where the operator L 0 is defined by

L 0 u := u t - 1 m(x) div m(x)a p (x, ∇u) - 1 ε 2 f (u) = u t -∆ φ u - 1 ε 2 f (u).
In fact, if u + ε ∈ C 2,1 (Q T ) then, by Lemma 2.2, the function L 0 u + ε is welldefined in Q T . Also, using Lemma 2.2, we deduce that ∆ φ u + ε ∈ L ∞ (Q T ). The statement is then obtained by integrating (4.1) by parts. An analogous remark stands for a sub-solution u - ε ∈ C 2,1 (Q T ).

We prove below an inequality which expresses the strong monotonicity of the function T 0 (x, p) = a p (x, p).

Lemma 4.3.

There exists a constant β > 0 such that, for all x ∈ Ω, for all

p 1 , p 2 ∈ R N , (a p (x, p 2 ) -a p (x, p 1 )) • (p 2 -p 1 ) ≥ β|p 2 -p 1 | 2 . (4.2)
Proof. First we consider the case that sp 1 + (1s)p 2 = 0 for all s ∈ [0, 1]. Then, the function s → a(x, sp 1 + (1s)p 2 ) is of class C 2 on [0, 1] and there exist p 3 , p 4 on the line segment [p 1 , p 2 ] such that

a(x, p 2 ) -a(x, p 1 ) = a p (x, p 1 ) • (p 2 -p 1 ) + 1 2 (p 2 -p 1 ) • a pp (x, p 3 )(p 2 -p 1 ), a(x, p 1 ) -a(x, p 2 ) = a p (x, p 2 ) • (p 1 -p 2 ) + 1 2 (p 1 -p 2 ) • a pp (x, p 4 )(p 1 -p 2 ).
The strict convexity of a(x, •) implies that a pp (x, p) is a positively definite symmetric matrix, so that the function (x, p, p) → a pp (x, p)p • p is strictly positive and continuous on the compact set Ω × S N -1 × S N -1 . Hence there exist constants 0 < λ 2 ≤ Λ 2 such that, for all x ∈ Ω, all

p ∈ R N \ {0}, all p ∈ R N , λ 2 |p| 2 ≤ a pp (x, p)p • p ≤ Λ 2 |p| 2 . (4.3) 
It then follows that

a(x, p 2 ) -a(x, p 1 ) ≥ a p (x, p 1 ) • (p 2 -p 1 ) + λ 2 2 |p 2 -p 1 | 2 , (4.4) a(x, p 1 ) -a(x, p 2 ) ≥ a p (x, p 2 ) • (p 1 -p 2 ) + λ 2 2 |p 2 -p 1 | 2 . (4.5)
Adding up inequalities (4.4) and (4.5) yields the desired inequality, with the constant β = λ 2 .

In the case that sp 1 + (1s)p 2 = 0 for some s ∈ [0, 1], p 1 and p 2 are colinear and we may suppose that there exists l ∈ R such that p 2 = lp 1 . We can assume l = 0, l = 1 and p 1 = 0. By using the properties stated in Remark 1.2, we obtain that

(a p (x, p 2 ) -a p (x, p 1 )) • (p 2 -p 1 ) = (l -1) 2 a p (x, p 1 ) • p 1 = 2(l -1) 2 a(x, p 1 ) = 2a(x, (l -1)p 1 ) ≥ λ 0 2 |(l -1)p 1 | 2 = λ 0 2 |p 2 -p 1 | 2 ,
where λ 0 has been defined in (2.16). The proof is now completed.

We are now ready to prove the following comparison principle.

Proposition 4.4 (Comparison principle). Let u + ε , respectively u - ε , be a super-solution, respectively a sub-solution, of Problem (P ε ). Assume that

u - ε (•, 0) ≤ u + ε (•, 0) almost everywhere in Ω.
Then we have that

u - ε ≤ u ε ≤ u + ε almost everywhere in Q T .
Proof. By subtracting inequality (4.1) for the super-solution u + ε from inequality for the sub-solution u - ε , we obtain that, for all ϕ ∈ L 2 (0, T ; H 1 (Ω))∩ L ∞ (Q T ) such that ϕ ≥ 0, and for all t ∈ (0, T ),

t 0 Ω (u - ε -u + ε ) t ϕ + (a p (x, ∇u - ε ) -a p (x, ∇u + ε )) • ∇ϕ m(x) ≤ C t 0 Ω |u - ε -u + ε |ϕ , (4.6)
where C is a constant depending on ε and the L ∞ norms of f ′ and m. Next

we set ϕ = (u - ε -u + ε ) + , which belongs to L 2 (0, T ; H 1 (Ω)) ∩ L ∞ (Q T ); it follows from (4.2) that t 0 Ω (a p (x, ∇u - ε ) -a p (x, ∇u + ε )) • ∇ϕ m(x) = t 0 {u - ε -u + ε ≥0} (a p (x, ∇u - ε ) -a p (x, ∇u + ε )) • (∇u - ε -∇u + ε )m(x) ≥ m 1 β t 0 {u - ε -u + ε ≥0} |∇u - ε -∇u + ε | 2 ≥ 0.
In view of (4.6), we now have that

m 1 2 t 0 d dt Ω (u - ε -u + ε ) + 2 ≤ C t 0 {u - ε -u + ε ≥0} (u - ε -u + ε ) 2 ,
and therefore

Ω (u - ε -u + ε ) + 2 (t) ≤ 2C m 1 t 0 Ω (u - ε -u + ε ) + 2 + Ω (u - ε -u + ε ) + 2 (0).
Gronwall's lemma yields

Ω (u - ε -u + ε ) + 2 (t) ≤ e 2Ct/m 1 Ω (u - ε -u + ε ) + 2 (0). Since u - ε (x, 0) ≤ u + ε (x, 0) for almost all x ∈ Ω, it follows that u - ε ≤ u + ε a.e. in Q T . Lemma 4.5. Let u ε be the solution of Problem (P ε ) (with initial data u 0 ). Then -u 0 L ∞ (Ω) ≤ u ε ≤ max(1, u 0 L ∞ (Ω) ) a.e. in Q T .
Proof. By the bistable profile of f , we remark thatu 0 L ∞ (Ω) , respectively max(1, u 0 L ∞ (Ω) ), is a sub-solution, respectively a super-solution, of Problem (P ε ).

Generation of the interface

This section deals with the generation of the interface, namely the rapid formation of internal layers that takes place in a neighborhood of Γ 0 = {x ∈ Ω, u 0 (x) = a} within the time span of order ε 2 | ln ε|. In the sequel, η 0 will stand for the quantity η 0 := min(a, 1a).

Our main result in this section is the following.

Theorem 5.1. Let η ∈ (0, η 0 ) be arbitrary and define µ as the derivative of f (u) at the unstable equilibrium u = a, that is

µ = f ′ (a). (5.1)
Then there exist positive constants ε 0 and M 0 such that, for all ε ∈ (0, ε 0 ),

(i) for almost all x ∈ Ω, -η ≤ u ε (x, µ -1 ε 2 | ln ε|) ≤ 1 + η , (5.2) 
(ii) for almost all x ∈ Ω such that |u 0 (x) -a| ≥ M 0 ε, we have that if u 0 (x) ≥ a + M 0 ε then u ε (x, µ -1 ε 2 | ln ε|) ≥ 1 -η, (5.3 
)

if u 0 (x) ≤ a -M 0 ε then u ε (x, µ -1 ε 2 | ln ε|) ≤ η. (5.4) 
We will prove this result by constructing a suitable pair of sub and supersolutions.

The bistable ordinary differential equation

The sub-and super-solutions mentioned above will be constructed by modifying the solution of the problem without diffusion:

ūt = 1 ε 2 f (ū), ū(x, 0) = u 0 (x).
This solution is written in the form

ū(x, t) = Y t ε 2 , u 0 (x) ,
where Y (τ, ξ) denotes the solution of the ordinary differential equation

Y τ (τ, ξ) = f (Y (τ, ξ)) for τ > 0 Y (0, ξ) = ξ. (5.5)
Here ξ ranges over the interval (-2C 0 , 2C 0 ), with C 0 being the constant defined in (1.7). We first collect basic properties of Y .

Lemma 5.2. We have Y ξ > 0, for all ξ ∈ (-2C 0 , 2C 0 ) and all τ > 0. Furthermore,

Y ξ (τ, ξ) = f (Y (τ, ξ)) f (ξ) .
Proof. First, differentiating equation (5.5) with respect to ξ, we obtain

Y ξτ = Y ξ f ′ (Y ), Y ξ (0, ξ) = 1, (5.6) 
which can be integrated as follows:

Y ξ (τ, ξ) = exp τ 0 f ′ (Y (s, ξ))ds > 0.
(5.7)

We then differentiate equation (5.5) with respect to τ and obtain

Y τ τ = Y τ f ′ (Y ), Y τ (0, ξ) = f (ξ), (5.8) 
which in turn implies

Y τ (τ, ξ) = f (ξ) exp τ 0 f ′ (Y (s, ξ))ds = f (ξ)Y ξ (τ, ξ). (5.9) 
This last equality, in view of (5.5), completes the proof of Lemma 5.2.

We define a function A(τ, ξ) by

A(τ, ξ) = f ′ (Y (τ, ξ)) -f ′ (ξ) f (ξ) .
(5.10) Lemma 5.3. We have, for all ξ ∈ (-2C 0 , 2C 0 ) and all τ > 0,

A(τ, ξ) = τ 0 f ′′ (Y (s, ξ))Y ξ (s, ξ)ds.
Proof. Differentiating the equality of Lemma 5.2 with respect to ξ leads to

Y ξξ = A(τ, ξ)Y ξ , (5.11) 
whereas differentiating (5.7) with respect to ξ yields

Y ξξ = Y ξ τ 0 f ′′ (Y (s, ξ))Y ξ (s, ξ)ds.
These two last results complete the proof of Lemma 5.3.

Next we need some estimates on Y and its derivatives. First, we perform some estimates when the initial value ξ lies between η and 1η. Lemma 5.4. Let η ∈ (0, η 0 ) be arbitrary. Then there exist positive constants C1 = C1 (η), C2 = C2 (η) and C 3 = C 3 (η) such that, for all τ > 0, (i) if ξ ∈ (a, 1η) then, for every τ > 0 such that Y (τ, ξ) remains in the interval (a, 1η), we have

C1 e µτ ≤ Y ξ (τ, ξ) ≤ C2 e µτ , (5.12 
)

and |A(τ, ξ)| ≤ C 3 (e µτ -1); (5.13) 
(ii) if ξ ∈ (η, a) then, for every τ > 0 such that Y (τ, ξ) remains in the interval (η, a), (5.12) and (5.13) hold as well, where µ is the constant defined in (5.1).

Proof. We take ξ ∈ (a, 1η) and suppose that for s ∈ (0, τ ), Y (s, ξ) remains in the interval (a, 1η). Integrating the equality

Y τ /f (Y ) = 1 from 0 to τ yields τ = τ 0 Y τ (s, ξ) f (Y (s, ξ)) ds = Y (τ,ξ) ξ dq f (q) . (5.14) 
Moreover, the equality of Lemma 5.2 leads to

ln Y ξ (τ, ξ) = Y (τ,ξ) ξ f ′ (q) f (q) dq = Y (τ,ξ) ξ f ′ (a) f (q) + f ′ (q) -f ′ (a) f (q) dq = µτ + Y (τ,ξ) ξ h(q)dq, (5.15) 
where

h(q) = (f ′ (q) -µ)/f (q). Since h(q) → f ′′ (a) f ′ (a) as q → a, the function h is continuous on [a, 1 -η].
Hence we can define

H = H(η) := h L ∞ (a,1-η) . Since |Y (τ, ξ) -ξ| takes its values in the interval [0, 1 -a -η] ⊂ [0, 1 -a], it follows from (5.15) that µτ -H(1 -a) ≤ ln Y ξ (τ, ξ) ≤ µτ + H(1 -a),
Lemma 5.6. Let η ∈ (0, η 0 ) and M > 0 be arbitrary. Then there exists a positive constant

C 4 = C 4 (η, M ) such that (i) if ξ ∈ [1-η, 1+ M ], then, for all τ > 0, Y (τ, ξ) remains in the interval [1 -η, 1 + M ] and |A(τ, ξ)| ≤ C 4 τ for τ > 0 ; (5.19) (ii) if ξ ∈ [-M, η],
then, for all τ > 0, Y (τ, ξ) remains in the interval [-M, η] and (5.19) holds as well.

Proof. Since the two statements can be treated in the same way, we will only prove the former. The fact that Y (τ, ξ), the solution of the ordinary differential equation (5.5), remains in the interval [1η, 1 + M ] directly follows from the bistable properties of f , or, more precisely, from the sign conditions

f (1 -η) > 0, f (1 + M ) < 0. To prove (5.19), suppose first that ξ ∈ [1, 1 + M ]. In view of (1.3), f ′ is strictly negative in an interval of the form [1, 1 + c] and f is negative in [1, ∞). We denote by -m < 0 the maximum of f on [1 + c, 1 + M ]. Then, as long as Y (τ, ξ) remains in the interval [1+c, 1+ M ], the ordinary differential equation (5.5) implies Y τ ≤ -m.
By integration, this means that, for any ξ ∈ [1, 1 + M ], we have

Y (τ, ξ) ∈ [1, 1 + c] for τ ≥ τ := M -c m .
In view of this, and considering that f ′ (Y ) < 0 for Y ∈ [1, 1 + c], we see from the expression (5.7) that

Y ξ (τ, ξ) = exp τ 0 f ′ (Y (s, ξ))ds exp τ τ f ′ (Y (s, ξ))ds ≤ exp τ 0 f ′ (Y (s, ξ))ds ≤ exp τ 0 sup z∈[-M,1+M ] |f ′ (z)|ds =: C4 = C4 (M ),
for all τ ≥ τ . It is clear from the same expression (5.7) that Y ξ ≤ C4 holds also for 0 ≤ τ ≤ τ . We can then use Lemma 5.3 to deduce that

|A(τ, ξ)| ≤ C4 τ 0 |f ′′ (Y (s, ξ))|ds ≤ C4 sup z∈[-M,1+M ] |f ′′ (z)| τ =: C 4 τ.
The case ξ ∈ [1η, 1] can be treated in the same way. This completes the proof of the lemma. Now we choose the constant M in the above lemma sufficiently large so that [-2C 0 , 2C 0 ] ⊂ [-M, 1 + M ], and fix M hereafter. Then C 4 only depends on η. Using the fact that τ = O(e µτ -1) for τ > 0, one can easily deduce from (5.13) and (5.19) the following general estimate. Lemma 5.7. Let η ∈ (0, η 0 ) be arbitrary and let C 0 be the constant defined in (1.7). Then there exists a positive constant C 5 = C 5 (η) such that, for all ξ ∈ (-2C 0 , 2C 0 ) and all τ > 0,

|A(τ, ξ)| ≤ C 5 (e µτ -1).

Construction of sub-and super-solutions

We are now ready to construct sub-and super-solutions in order to study the generation of the interface. By using some cut-off initial data, see subsection 3.2 in [START_REF] Alfaro | The singular limit of the Allen-Cahn equation and the FitzHugh-Nagumo system[END_REF], we can modify slightly u 0 near the boundary ∂Ω and make, without loss of generality, the additional assumption

a p (x, ∇u 0 (x)) • ν = 0 on ∂Ω.
(5.20)

Our sub-and super-solutions are defined by

w ± ε (x, t) = Y t ε 2 , u 0 (x) ± ε 2 C
6 (e µt/ε 2 -1) .

(5.21)

Lemma 5.8. There exist positive constants ε 0 and C 6 such that, for all ε ∈ (0, ε 0 ), (w - ε , w + ε ) is a pair of sub-and super-solutions of Problem (P ε ), in the domain Ω × (0, µ -1 ε 2 | ln ε|).

Proof. Following Remark 4.2 we define the operator L 0 by

L 0 u := u t - 1 m(x) div m(x)a p (x, ∇u) - 1 ε 2 f (u) , (5.22) 
and prove that L 0 w + ε ≥ 0. We compute

(w ε + ) t = 1 ε 2 Y τ + µC 6 e µt/ε 2 Y ξ , ∇w + ε = ∇u 0 (x)Y ξ .
Using (5.20) and the fact that a p (x, •) is homogeneous of degree one, we see that w ± ε satisfy the anisotropic Neumann boundary condition a p (x, ∇w ± ε ) • ν = 0 on ∂Ω × (0, +∞). In view of the ordinary differential equation (5.5), we obtain

L 0 w + ε = µC 6 e µt/ε 2 Y ξ - 1 m(x) div m(x)a p (x, ∇w + ε ) .
By the estimate of the anisotropic Laplacian (2.26), it follows that

L 0 w + ε ≥ µC 6 e µt/ε 2 Y ξ -C L (|∇w + ε (x, t)| + |D 2 w + ε (x, t)|) , (5.23) 
where we recall that

|D 2 w + ε (x, t)| = max i,j |∂ i ∂ j w + ε (x, t)|. A straightforward calculation yields ∂ i ∂ j w + ε (x, t) = (∂ i ∂ j u 0 )Y ξ + (∂ i u 0 ∂ j u 0 )Y ξξ .
Recalling that Y ξ > 0, we now combine the expression of ∇w + ε , the above expression and inequality (5.23) to obtain

L 0 w + ε /Y ξ ≥ µC 6 e µt/ε 2 -C L C 0 -C 0 -C 0 2 |Y ξξ | Y ξ , (5.24) 
where C 0 is the constant defined in (1.7). We note that, in the range (0, µ -1 ε 2 | ln ε|), we have

0 ≤ ε 2 C 6 (e µt/ε 2 -1) ≤ ε 2 C 6 (ε -1 -1) ≤ C 0 , if ε 0 is small enough. Hence ξ := u 0 (x) ± ε 2 εC 6 (e µt/ε 2 -1) ∈ (-2C 0 , 2C 0 ),
so that, by the results of the previous subsection, Y remains in (-2C 0 , 2C 0 ). In view of (5.11), Y ξξ /Y ξ is equal to A so that, combining the estimate of A in Lemma 5.7 and (5.24), we obtain

L 0 w + ε /Y ξ ≥ (µC 6 -C 0 2 C 5 )e µt/ε 2 -C L C 0 -C 0 . Now, choosing C 6 ≥ 2 µ max C 0 2 C 5 , C 0 (C L + 1) proves L 0 w + ε /Y ξ ≥ 0. Since Y ξ > 0, it follows that L 0 w + ε ≥ 0. Hence, by Remark 4.2, w +
ε is a super-solution of Problem (P ε ). Similarly w - ε is a sub-solution. Lemma 5.8 is proved.

To conclude this subsection, we remark that w ± (x, 0) = Y t ε 2 , u 0 (x) = u 0 (x). Consequently, by the comparison principle,

w - ε (x, t) ≤ u ε (x, t) ≤ w + ε (x, t) , (5.25) 
for almost all (x, t) ∈ Ω × (0, µ -1 ε 2 | ln ε|).

Proof of Theorem 5.1

In order to prove Theorem 5.1 we first present a key estimate on the function Y after a time interval of order τ ∼ | ln ε|.

Lemma 5.9. Let η ∈ (0, η 0 ) be arbitrary; there exist positive constants ε 0 and C 7 such that, for all ε ∈ (0, ε 0 ),

(i) for all ξ ∈ (-2C 0 , 2C 0 ), for all τ ≥ µ -1 | ln ε|, -η ≤ Y (τ, ξ) ≤ 1 + η , (5.26) 
(ii) for all ξ ∈ (-2C 0 , 2C 0 ) such that |ξ -a| ≥ C 7 ε, for all τ ≥ µ -1 | ln ε|, if ξ ≥ a + C 7 ε then Y (τ, ξ) ≥ 1 -η, (5.27) if ξ ≤ a -C 7 ε then Y (τ, ξ) ≤ η.
(5.28)

Proof. We first prove (5.27). For ξ ≥ a + C 7 ε, as long as Y (τ, ξ) has not reached 1η, we can use (5.16) to deduce that

Y (τ, ξ) ≥ a + C 1 e µτ (ξ -a) ≥ a + C 1 C 7 e µτ ε ≥ 1 -η , provided that τ satisfies τ ≥ µ -1 ln 1-a-η C 1 C 7 ε . Choosing C 7 = max(a, 1 -a) -η C 1
completes the proof of (5.27). Using (5.17), one easily proves (5.28). Next we prove (5.26). First, by the bistable assumptions on f , if we leave from a ξ ∈ [-η, 1 + η] then Y (τ, ξ) will remain in [-η, 1 + η]. Now suppose that 1 + η ≤ ξ ≤ 2C 0 . We check below that Y (µ -1 | ln ε|, ξ) ≤ 1 + η. First, in view of (1.3), we can find p > 0 such that

if 1 ≤ u ≤ 2C 0 then f (u) ≤ p(1 -u), if -2C 0 ≤ u ≤ 0 then f (u) ≥ -pu.
(5.29)

We then use the ordinary differential equation (5.5) to obtain, as long as

1 + η ≤ Y ≤ 2C 0 , the inequality Y τ ≤ p(1 -Y ). It follows that Y τ Y -1 ≤ -p.
Integrating this inequality from 0 to τ leads to

Y (τ, ξ) ≤ 1 + (ξ -1)e -pτ ≤ 1 + (2C 0 -1)e -pτ .
One easily checks that, for ε ∈ (0, ε 0 ), with ε 0 = ε 0 (η) small enough, we have Y (τ, ξ) ≤ 1 + η, for all τ ≥ µ -1 | ln ε|, which completes the proof of (5.26).

We are now ready to prove Theorem 5.1. By setting t = µ -1 ε 2 | ln ε| in (5.25), we obtain, for almost all x ∈ Ω,

Y (µ -1 | ln ε|, u 0 (x) -(C 6 ε -C 6 ε 2 )) ≤ u ε (x, µ -1 ε 2 | ln ε|) ≤ Y (µ -1 | ln ε|, u 0 (x) + C 6 ε -C 6 ε 2 ). (5.30)
Furthermore, by the definition of C 0 in (1.7), we have, for ε 0 small enough,

-2C 0 ≤ u 0 (x) ± (C 6 ε -C 6 ε 2 ) ≤ 2C 0 for x ∈ Ω.
Thus the assertion (5.2) of Theorem 5.1 is a direct consequence of (5.26) and (5.30).

Next we prove (5.3). We choose M 0 large enough so that M 0 ε -

C 6 ε + C 6 ε 2 ≥ C 7 ε. Then, for any x ∈ Ω such that u 0 (x) ≥ a + M 0 ε, we have u 0 (x) -(C 6 ε -C 6 ε 2 ) ≥ a + M 0 ε -C 6 ε + C 6 ε 2 ≥ a + C 7 ε.
Combining this, (5.30) and (5.27), we see that

u ε (x, µ -1 ε 2 | ln ε|) ≥ 1 -η ,
for almost all x ∈ Ω that satisfies u 0 (x) ≥ a + M 0 ε. This proves (5.3). The inequality (5.4) can be shown the same way. This completes the proof of Theorem 5.1.

Motion of the interface

We have seen in Section 5 that, after a very short time, the solution u ε develops a clear transition layer. In the present section, we show that it persists and that its law of motion is well approximated by the interface equation (P 0 ).

More precisely, take the first term of the formal asymptotic expansion (3.2) as a formal expansion of the solution:

u ε (x, t) ≈ ũε (x, t) := U 0 d φ (x, t) ε . (6.1) 
The right-hand side of (6.1) is a function having a well-developed transition layer, and its interface lies exactly on Γ t . We show that this function is a very good approximation of the solution; therefore the following holds:

If u ε becomes rather close to ũε at some time moment, then it stays close to ũε for the rest of time.

To that purpose, we will construct a pair of sub-and super-solutions u - ε and u + ε of Problem (P ε ) by slightly modifying ũε . It then follows that, if the solution u ε satisfies u

- ε (x, t 0 ) ≤ u ε (x, t 0 ) ≤ u + ε (x, t 0 ) ,
for some t 0 ≥ 0 and for almost all x ∈ Ω, then

u - ε (x, t) ≤ u ε (x, t) ≤ u + ε (x, t) ,
for almost (x, t) ∈ Q T that satisfies t 0 ≤ t ≤ T . As a result, since both u + ε , u - ε stay close to ũε , the solution u ε also stays close to ũε for t 0 ≤ t ≤ T .

Construction of sub and super-solutions

To begin with we present a mathematical tool which is essential for the construction of sub and super-solutions.

A modified anisotropic signed distance function. Rather than working with the anisotropic signed distance function d φ , defined in (2.19), we define a "cut-off anisotropic signed distance function" d φ as follows. Choose

d 0 > 0 small enough so that d φ (•, •) is smooth in the tubular neighborhood of Γ {(x, t) ∈ Q T , | d φ (x, t)| < 3d 0 },
and that dist φ (Γ t , ∂Ω) > 3d 0 for all t ∈ (0, T ). (6.2)

Next let ζ(s) be a smooth increasing function on R such that

ζ(s) =      s if |s| ≤ d 0 -2d 0 if s ≤ -2d 0 2d 0 if s ≥ 2d 0 .
We define the cut-off anisotropic signed distance function d φ by Construction. We look for a pair of sub-and super-solutions u ± ε for (P ε ) of the form

d φ (x, t) = ζ d φ (x, t) . ( 6 
u ± ε (x, t) = U 0 d φ (x, t) ± εp(t) ε ± q(t), (6.7) 
where U 0 is the solution of (3.4), and where

p(t) = -e -βt/ε 2 + e Lt + K, q(t) = σ(βe -βt/ε 2 + ε 2 Le Lt ). Note that q = σε 2 p t . It is clear from the definition of u ± ε that lim ε→0 u ± ε (x, t) = 1 for all (x, t) ∈ Q + T 0 for all (x, t) ∈ Q - T . (6.8) 
The main result of this section is the following. Lemma 6.1. There exist positive constants β, σ with the following properties. For any K > 1, we can find positive constants ε 0 and L such that, for any ε ∈ (0, ε 0 ), the functions u - ε and u + ε satisfy the anisotropic Neumann boundary condition and L 0 u - ε ≤ 0 ≤ L 0 u + ε , in the range Ω × (0, T ), where the operator L 0 has been defined in (5.22).

Proof of Lemma 6.1

We show below that

L 0 u + ε := (u + ε ) t - 1 m(x) div m(x)a p (x, ∇u + ε ) - 1 ε 2 f (u + ε ) ≥ 0,
the proof of inequality L 0 u - ε ≤ 0 follows by similar arguments.

Computation of L

0 u + ε
In the sequel, the function U 0 and its derivatives are taken at the point (d φ (x, t) + εp(t))/ε. Straightforward computations yield

(u + ε ) t = ( 1 ε (d φ ) t + p t )U 0 ′ + q t , ∇u + ε = 1 ε U 0 ′ ∇d φ , div a p (x, ∇u + ε ) = 1 ε 2 U 0 ′′ ∇d φ • a p (x, ∇d φ ) + 1 ε U 0 ′ div a p (x, ∇d φ ) = 1 ε 2 U 0 ′′ 2a(x, ∇d φ ) + 1 ε U 0 ′ div a p (x, ∇d φ ),
where we have used properties stated in Remark 1.2. Note that, d φ being constant in a neighborhood of ∂Ω, we have that ∇u + ε = 0 on ∂Ω × (0, T ) and u + ε satisfies the anisotropic Neumann boundary condition a p (x, ∇u + ε ) • ν = 0 on ∂Ω × (0, T ). At last, we use the expansion

f (u + ε ) = f (U 0 ) + qf ′ (U 0 ) + 1 2 q 2 f ′′ (θ) ,
for some function θ(x, t) satisfying U 0 < θ < u + ε . Combining the above expressions with (1.6) and (3.5), we obtain L 0 u + ε = E 1 + E 2 + E 3 , where

E 1 = - 1 ε 2 q f ′ (U 0 ) + 1 2 qf ′′ (θ) + U 0 ′ p t + q t , E 2 = U 0 ′′ ε 2 1 -2a(x, ∇d φ ) , E 3 = U 0 ′ ε (d φ ) t - 1 m(x)
div m(x)a p (x, ∇d φ ) .

In order to estimate the above terms, we first present some useful inequalities. As f ′ (0) and f ′ (1) are strictly negative, we can find strictly positive constants b and m such that .

if U 0 (z) ∈ [0, b] ∪ [1 -b, 1] then f ′ (U 0 (z)) ≤ -m. ( 6 
Hence, combining (6.9) and (6.10), we obtain, using that σ ≤ σ 0 , U 0 ′ (z)σf ′ (U 0 (z)) ≥ 4σβ for z ∈ R. (6.14)

Now let K > 1 be arbitrary. In what follows we will show that L 0 u + ε ≥ 0 provided that the constants ε 0 and L are appropriately chosen. From now on, we suppose that the following inequality is satisfied:

ε 2 0 Le LT ≤ 1 . (6.15)
Then, given any ε ∈ (0, ε 0 ), since σ ≤ σ 1 , we have 0 ≤ q(t) ≤ 1, hence where

-M ≤ u ± ε (x, t) ≤ M . ( 6 
I = U 0 ′ -σf ′ (U 0 ) - σ 2 2 f ′′ (θ)(βe -βt/ε 2 + ε 2 Le Lt ).
In virtue of (6.14) and (6.16), we obtain

I ≥ 4σβ - σ 2 2 F (β + ε 2 Le LT ).
Then, in view of (6.15), using that σ ≤ σ 2 , we have I ≥ 2σβ, which implies

E 1 ≥ σβ 2
ε 2 e -βt/ε 2 + 2σβLe Lt =: We remark that 0 < K -1 ≤ p ≤ e LT + K, and suppose from now that the following assumption holds: 

C 1 ε 2 e -βt/ε 2 + C 1 ′ Le Lt .
e LT + K ≤ d 0 2ε 0 . ( 6 

An estimate for E 3

We set G(x, t) = (d φ ) t (x, t) -1 m(x) div m(x)a p (x, ∇d φ (x, t)) .

We recall that d φ ∈ C 3+ϑ,(3+ϑ)/2 in a neighborhood V of Γ, say

V = {(x, t) ∈ Q T , |d φ (x, t)| < d 0 }.
Combining the fact that 2a(x, ∇d φ (x, t)) = 1 in V, with the definition of Λ 0 in (2.16), we see that .18) We also recall that (x, p) → a(x, p) is of class C 3+ϑ loc on Ω × R N \ {0}. Since |∇d φ | is bounded away from zero, it follows that x → G(x, t) is Lipschitz continuous on V. By equation (6.6), we have that G(x, t) = 0 on Γ t = {x ∈ Ω, d φ (x, t) = 0}, and it follows from the mean value theorem applied separately on both sides of Γ t that there exists a constant N 1 such that |G(x, t)| ≤ N 1 |d φ (x, t)| for all (x, t) ∈ V.

|∇d φ | ≥ 1 Λ 0 in V. ( 6 
( 

Completion of the proof

Collecting the above estimates of E 1 , E 2 and E 3 yields

L 0 u + ε ≥ C 1 ε 2 e -βt/ε 2 + (LC 1 ′ -C 3 )e Lt -C 4 ,
where C 4 := C 2 + KC 3 + C 3 ′ . Now, we set

L := 1 T ln d 0 4ε 0 ,
which, for ε 0 small enough, validates assumptions (6.15) and (6.17). If ε 0 is chosen sufficiently small (i.e. L sufficiently large), we obtain, for all ε ∈ (0, ε 0 ),

L 0 u + ε ≥ (LC 1 ′ -C 3 )e Lt -C 4 ≥ 1 2 LC 1 ′ -C 4 ≥ 0.
The proof of Lemma 6.1 is now completed.

  p) , and the matrix valued function a pp by a pp (x, p) = ∂ 2 a ∂p j ∂p i (x, p) . Moreover, for a vector p = (p 1 , • • • , p N ) and a matrix A = (a ij ), we use the notations |p| = max i |p i | and |A| = max i,j |a ij |.

. 9 )

 9 On the other hand, since the region{(x, z) ∈ Ω × R | U 0 (z) ∈ [b, 1b] } is compact and since U 0 ′ > 0 on R, there exists a constant a 1 > 0 such that if U 0 (z) ∈ [b, 1b] then U 0 ′ (z) ≥ a 1 .(6.10)We now choose M > 0 such that |U 0 | ≤ M -1. We then defineF = sup |z|≤M |f (z)| + |f ′ (z)| + |f ′′ (z)| , (6.11) ≤ min(σ 0 , σ 1 , σ 2 ) ,

.16) 6 . 2 . 2 1 A direct computation gives E 1 = β ε 2 e

 622112 An estimate for E -βt/ε 2 (Iσβ) + Le Lt (I + ε 2 σL),

6. 2 . 3 2 ≤ (Λ 0 ) 2 ∇d φ 2 ∞

 2322 An estimate for E 2First, in the points where where |d φ | < d 0 , by (6.4), we have E 2 = 0. Next we consider the points where |d φ | ≥ d 0 . We deduce from the definition of Λ 0 in (2.16) that0 ≤ 2a(x, ∇d φ (x, t)) ≤ (Λ 0 ) 2 |∇d φ (x, t)| := D < ∞.Applying Lemma 3.1 yields|E 2 | ≤ C ε 2 (1 + D)e -λ|d φ +εp|/ε ≤ C ε 2 (1 + D)e -λ(d 0 /ε-|p|) .

  defining C ′ := C(1 + D), |E 2 | ≤ C ′ ε 2 e -λd 0 /(2ε) ≤ C 2 := 16C ′ (eλd 0 ) 2 .

|E 3 |

 3 ≤ C 3 (e Lt + K) + C 3 ′ , where C 3 := N C and C 3 ′ := N C/λ.

  6.19) Next, using Lemma 2.2, we remark that G is bounded on Ω × [0, T ]\V so that there exists a constant N 2 such that supΩ×[0,T ]\V |G(x, t)| ≤ N 2 .(6.20)By the inequalities (6.[START_REF] De Mottoni | Development of interfaces in R n[END_REF]) and (6.20), we deduce that|G(x, t)| ≤ N |d φ (x, t)| in Q T ,with N := max(N 1 , N 2 /d 0 ). Applying Lemma 3.1 we deduce that|E 3 | ≤ N C |d φ | ε e -λ|d φ /ε+p|

≤ N C max y∈R |y|e -λ|y+p| ≤ N C max(|p|,

1 λ ).

Thus, recalling that |p| ≤ e Lt + K, we obtain

which, in turn, proves (5.12). Lemma 5.3 and (5.12) yield

|f ′′ (z)| τ 0 C2 e µs ds ≤ C 3 (e µτ -1), which completes the proof of (5.13). The case where ξ and Y (τ, ξ) are in (η, a) is similar and omitted.

Corollary 5.5. Let η ∈ (0, η 0 ) be arbitrary. Then there exist positive constants

(ii) if ξ ∈ (η, a) then, for every τ > 0 such that Y (τ, ξ) remains in the interval (η, a), we have

Proof. Since f (q)/(qa) → f ′ (a) as q → a, it is possible to find B 1 = B 1 (η) > 0 and B 2 = B 2 (η) > 0 such that, for all q ∈ (a, 1η), B 1 (qa) ≤ f (q) ≤ B 2 (qa).

(5.18)

We write this inequality for a < Y (τ, ξ) < 1η to obtain

We also write this inequality for a < ξ < 1η to obtain

Next we use the equality

which, in view of (5.12), implies that

This proves (5.16). The proof of (5.17) is similar and omitted.

Next we present estimates in the case where the initial value ξ is smaller than η or larger than 1η.

7 Proof of Theorem 1.6 and Corollary 1.7

Let η ∈ (0, η 0 ) be arbitrary. Choose β and σ that satisfy (6.12), (6.13) and

By the generation of interface Theorem 5.1, there exist positive constants ε 0 and M 0 such that (5.2), (5.3) and (5.4) hold with the constant η replaced by σβ/2. Since, by the hypothesis (1.8) and the equality (2.21), ∇u 0 (x) • n φ (x) = 0 everywhere on the initial interface Γ 0 = {x ∈ Ω, u 0 (x) = a} and since Γ 0 is a compact hypersurface, we can find a positive constant

Now we define functions H + (x), H -(x) by

Then from the above observation we see that

for almost all x ∈ Ω.

Next we fix a sufficiently large constant K > 1 such that

For this K, we choose ε 0 and L as in Lemma 6.1. We claim that

for all x ∈ Ω. We only prove the former inequality, as the proof of the latter is virtually the same. Then it amounts to showing that

In the range where d φ (x, 0) < M 1 ε, the second inequality in (7.4) and the fact that U 0 is an increasing function imply

On the other hand, in the range where d φ (x, 0) ≥ M 1 ε, we have

This proves (7.6), so that (7.5) is established. Combining (7.3) and (7.5), we obtain

for almost all x ∈ Ω. Since, by Lemma 6.1, u - ε and u + ε are sub-and supersolutions of Problem (P ε ), the comparison principle yields

for almost all (x, t) ∈ Q T that satisfies 0 ≤ t ≤ Tt ε , where we recall that t ε = µ -1 ε 2 | ln ε|. Note that, in view of (6.8), this is sufficient to prove Corollary 1.7. Now let C be a positive constant such that

One then easily checks, using (7.7) and (7.1), that, for ε 0 small enough and for almost all (x, t) ∈ Q T , we have if d φ (x, t) ≥ Cε then u ε (x, t + t ε ) ≥ 1η, if d φ (x, t) ≤ -Cε then u ε (x, t + t ε ) ≤ η, (7.9) and u ε (x, t + t ε ) ∈ [-η, 1 + η],

which completes the proof of Theorem 1.6.