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Numerical analysis of nonlinear eigenvalue problems

Eric Cancès∗, Rachida Chakir† and Yvon Maday†‡

May 13, 2009

Abstract

We provide a priori error estimates for variational approximations of the
ground state eigenvalue and eigenvector of nonlinear elliptic eigenvalue prob-
lems of the form −div(A∇u) + V u + f(u2)u = λu, ‖u‖L2 = 1. We focus in
particular on the Fourier spectral approximation (for periodic problems) and
on the P1 and P2 finite-element discretizations. Denoting by (uδ, λδ) a vari-
ational approximation of the ground state eigenpair (u, λ), we are interested
in the convergence rates of ‖uδ − u‖H1 , ‖uδ − u‖L2 and |λδ − λ|, when the
discretization parameter δ goes to zero. We prove that if A, V and f satisfy
certain conditions, |λδ − λ| goes to zero as ‖uδ − u‖2

H1 + ‖uδ − u‖L2 . We
also show that under more restrictive assumptions on A, V and f , |λδ − λ|
converges to zero as ‖uδ − u‖2

H1 , thus recovering a standard result for linear

elliptic eigenvalue problems. For the latter analysis, we make use of estimates
of the error uδ − u in negative Sobolev norms.

1 Introduction

Many mathematical models in science and engineering give rise to nonlinear eigen-
value problems. Let us mention for instance the calculation of the vibration modes of
a mechanical structure in the framework of nonlinear elasticity, the Gross-Pitaevskii
equation describing the steady states of Bose-Einstein condensates [9], or the Hartree-
Fock and Kohn-Sham equations used to calculate ground state electronic structures
of molecular systems in quantum chemistry and materials science (see [3] for a
mathematical introduction).

The numerical analysis of linear eigenvalue problems has been thoroughly studied
in the past decades (see e.g. [1]). On the other hand, nonlinear eigenvalue problems
seem to have received much less attention from numerical analysts.

In this article, we focus on a particular class of nonlinear eigenvalue problems arising
in the study of variational models of the form

I = inf

{
E(v), v ∈ X,

∫

Ω

v2 = 1

}
(1)

where∣∣∣∣∣∣

Ω is a regular bounded domain or a rectangular brick of Rd and X = H1
0 (Ω)

or
Ω is the unit cell of a periodic lattice R of Rd and X = H1

#(Ω)
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with d = 1, 2 or 3, and where the energy functional E is of the form

E(v) =
1

2
a(v, v) +

1

2

∫

Ω

F (v2(x)) dx (2)

with

a(u, v) =

∫

Ω

(A∇u) · ∇v +

∫

Ω

V uv. (3)

Recall that if Ω is the unit cell of a periodic lattice R of Rd, then for all s ∈ R and
k ∈ N,

Hs
#(Ω) =

{
v|Ω, v ∈ Hs

loc(R
d) | v R-periodic

}
,

Ck#(Ω) =
{
v|Ω, v ∈ Ck(Rd) | v R-periodic

}
.

We assume in addition that

• A ∈ (L∞(Ω))d×d and A(x) is symmetric for almost all x ∈ Ω (4)

∃α > 0 s.t. ξTA(x)ξ ≥ α|ξ|2 for all ξ ∈ Rd and almost all x ∈ Ω (5)

• V ∈ Lp(Ω) for some p > 2 (6)

• F ∈ C1([0,+∞),R) ∩ C2((0,∞),R) and F ′′ > 0 on (0,+∞) (7)

∀R > 0, ∃CR ∈ R+ s.t. ∀0 < t1 ≤ R, ∀t2 ∈ R,∣∣(F ′(t22) − F ′(t21))t
2
2

∣∣ ≤ CR(1 + |t2|3)|t2 − t1| and (8)
∣∣F ′(t22)t2 − F ′(t21)t2 − 2F ′′(t21)t

2
1(t2 − t1)

∣∣ ≤ CR(1 + |t2|)|t2 − t1|2. (9)

In particular, the function F (t) = ctq satisfies the assumptions (7)-(9) if and only
if c > 0 and 3

2 ≤ q ≤ 2. This allows us to handle the Thomas-Fermi kinetic energy
functional (q = 5

3 ) as well as the repulsive interaction in Bose-Einstein condensates
(q = 2). In order to simplify the notation, we denote by f(t) = F ′(t).

Making the change of variable ρ = v2 and noticing that a(|v|, |v|) = a(v, v) for all
v ∈ X , it is easy to check that

I = inf

{
E(ρ), ρ ≥ 0,

√
ρ ∈ X,

∫

Ω

ρ = 1

}
, (10)

where

E(ρ) =
1

2
a(
√
ρ,
√
ρ) +

1

2

∫

Ω

F (ρ).

Under assumptions (4)-(9), (10) has a unique solution ρ0 and (1) has exactly two
solutions: u =

√
ρ0 and −u. Besides, E is C1 on X and for all v ∈ X , E′(v) = Avv

where
Av = −div(A∇·) + V + f(v2).

Note that Av defines a self-adjoint operator on L2(Ω), with form domain X . The
function u therefore is solution to the Euler equation

∀v ∈ X, 〈E′(u) − λu, v〉X′,X = 0 (11)

for some λ ∈ R (the Lagrange multiplier of the constraint ‖u‖2
L2 = 1) and equa-

tion (11), complemented with the constraint ‖u‖L2 = 1, takes the form of the
nonlinear eigenvalue problem {

Auu = λu
‖u‖L2 = 1.

(12)
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In addition, u ∈ C0(Ω), u > 0 in Ω and λ is the ground state eigenvalue of the
linear operator Au. An important result is that λ is a simple eigenvalue of Au. All
these properties are classical. For the sake of completeness, their proofs are however
given in the Appendix.

Let us now turn to the main topic of this article, namely the derivation of a priori
error estimates for variational approximations of the ground state eigenpair (λ, u).
We denote by (Xδ)δ>0 a family of finite-dimensional subspaces of X such that

min {‖u− vδ‖H1 , vδ ∈ Xδ} −→
δ→0+

0 (13)

and consider the variational approximation of (1) consisting in solving

Iδ = inf

{
E(vδ), vδ ∈ Xδ,

∫

Ω

v2
δ = 1

}
. (14)

Problem (14) has at least one minimizer uδ, which satisfies

∀vδ ∈ Xδ, 〈E′(uδ) − λδuδ, vδ〉X′,X = 0 (15)

for some λδ ∈ R. Obviously, −uδ also is a minimizer associated with the same
eigenvalue λδ. On the other hand, it is not known whether uδ and −uδ are the only
minimizers of (14). This follows from the fact that the set

{
ρ | ∃uδ ∈ Xδ s.t. ‖uδ‖L2 = 1, ρ = u2

δ

}

is not convex in general. We will see however (cf. Theorem 1) that for any global
minimum uδ of (14) such that (u, uδ) ≥ 0, the following holds true

‖uδ − u‖H1 −→
δ→0+

0.

In addition, a simple calculation leads to

λδ − λ = 〈(Au − λ)(uδ − u), (uδ − u)〉X′,X +

∫

Ω

wu,uδ
(uδ − u) (16)

where

wu,uδ
= u2

δ

f(u2
δ) − f(u2)

uδ − u
.

The first term of the right-hand side of (16) is nonnegative and goes to zero as
‖uδ − u‖2

H1 . We will prove in Theorem 1 that the second term goes to zero at least
as ‖uδ−u‖L2. Therefore, |λδ −λ| converges to zero with δ at least as ‖uδ−u‖2

H1 +
‖uδ − u‖L2.

The purpose of this article is to provide more precise a priori error bounds on
‖uδ − u‖H1 , ‖uδ − u‖L2 and |λδ − λ|. In Section 2, we prove a series of estimates
valid in the general framework described above. We then turn to more specific
examples, where the analysis can be pushed further. In Section 3, we concentrate
on the discretization of problem (1) with

Ω = (0, 2π)d,

X = H1
#(0, 2π)d,

E(v) =
1

2

∫

Ω

|∇v|2 +
1

2

∫

Ω

V v2 +
1

2

∫

Ω

F (v2),
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in Fourier modes. In Section 4, we deal with the P1 and P2 finite element discretiza-
tions of problem (1) with

Ω rectangular brick of Rd,

X = H1
0 (Ω),

E(v) =
1

2

∫

Ω

|∇v|2 +
1

2

∫

Ω

V v2 +
1

2

∫

Ω

F (v2).

Lastly, we discuss the issue of numerical integration in Section 5.

2 Basic error analysis

The aim of this section is to establish error bounds on ‖uδ − u‖H1 , ‖uδ − u‖L2 and
|λδ − λ| in a general framework. In the whole section, we make the assumptions
(4)-(9) and (13), and we denote by u the unique positive solution of (1) and by uδ
a minimizer of the discretized problem (14) such that (uδ, u)L2 ≥ 0.

Lemma 1 The functional E is twice differentiable at u and for all (v, w) ∈ X×X,

〈E′′(u)v, w〉 = 〈Auv, w〉X′,X + 2

∫

Ω

f ′(u2)u2vw. (17)

There exists β > 0 and M ∈ R+ such that for all v ∈ X,

0 ≤ 〈(Au − λ)v, v〉X′,X ≤M‖v‖2
H1 (18)

β‖v‖2
H1 ≤ 〈(E′′(u) − λ)v, v〉X′,X ≤M‖v‖2

H1 . (19)

There exists γ > 0 such that for all δ > 0,

γ‖uδ − u‖2
H1 ≤ 〈(Au − λ)(uδ − u), (uδ − u)〉X′,X . (20)

Proof The quadratic functional v 7→ 1
2a(v, v) is clearly twice differentiable on X .

Using (8) and (9), it is easy to check that the functional Φ : v 7→ 1
2

∫
Ω F (v2) is

twice differentiable on X as well and that

Φ′(u) = f(u2)u, 〈Φ′′(u)v, w〉X′,X =

∫

Ω

(f(u2) + 2f ′(u2)u2)vw.

This straightforwardly leads to (17). We have for all v ∈ X ,

〈(Au − λ)v, v〉X′,X ≤ ‖A‖L∞‖∇v‖2
L2 + ‖V ‖L2‖v‖2

L4 + ‖f(u2)‖L∞‖v‖2
L2

and

〈(E′′(u) − λ)v, v〉X′,X ≤ 〈(Au − λ)v, v〉X′,X + 2‖f ′(u2)u2‖L∞‖v‖2
L2.

Hence the upper bounds in (18) and (19). We now use the fact that λ, the lowest
eigenvalue of Au, is simple (see Lemma 2 in the Appendix). This implies that there
exists η > 0 such that

∀v ∈ X, 〈(Au − λ)v, v〉X′,X ≥ η(‖v‖2
L2 − |(u, v)L2 |2) ≥ 0. (21)

This provides on the one hand the lower bound (18), and leads on the other hand
to the inequality

∀v ∈ X, 〈(E′′(u) − λ)v, v〉X′,X ≥ 2

∫

Ω

f ′(u2)u2v2.
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As f ′ = F ′′ > 0 in (0,+∞) and u > 0 in Ω, we therefore have

∀v ∈ X \ {0} , 〈(E′′(u) − λ)v, v〉X′,X > 0.

Reasoning by contradiction, we deduce from the above inequality and the first
inequality in (21) that there exists η̃ > 0 such that

∀v ∈ X, 〈(E′′(u) − λ)v, v〉X′,X ≥ η̃‖v‖2
L2. (22)

Besides, there exists a constant C ∈ R+ such that

∀v ∈ X, 〈(Au − λ)v, v〉X′,X ≥ α

2
‖∇v‖2

L2 − C‖u‖2
L2. (23)

Let us establish this inequality for d = 3 (the case when d = 1 is straightforward
and the case when d = 2 can be dealt with in the same way). For all x ∈ X ,

〈(Au − λ)v, v〉X′,X =

∫

Ω

(A∇v) · ∇v +

∫

Ω

(V + f(v2) − λ)v2

≥ α‖∇v‖2
L2 − ‖V ‖L2‖v‖2

L4 + (f(0) − λ)‖v‖2
L2

≥ α‖∇v‖2
L2 − ‖V ‖L2‖v‖1/2

L2 ‖v‖3/2
L6 + (f(0) − λ)‖v‖2

L2

≥ α‖∇v‖2
L2 − C

3/2
6 ‖V ‖L2‖v‖1/2

L2 ‖∇v‖3/2
L6 + (f(0) − λ)‖v‖2

L2

≥ α

2
‖∇v‖2

L2 +

(
f(0) − λ− 27C6

6

32α3
‖V ‖4

L2

)
‖v‖2

L2 ,

where C6 is the Sobolev constant such that ∀v ∈ X , ‖v‖L6 ≤ C6‖∇v‖L2. The coer-
civity of E′′(u) − λ (i.e. the lower bound in (19)) is a straightforward consequence
of (22) and (23).

To prove (20), we notice that

‖uδ‖2
L2 − |(u, uδ)L2 |2 ≥ 1 − (u, uδ)L2 =

1

2
‖uδ − u‖2

L2.

It therefore readily follows from (21) that

〈(Au − λ)(uδ − u), (uδ − u)〉X′,X ≥ η

2
‖uδ − u‖2

L2.

Combining with (23), we finally obtain (20). �

For w ∈ X ′, we denote by ψw the unique solution to the adjoint problem

{
find ψw ∈ u⊥ such that
∀v ∈ u⊥, 〈(E′′(u) − λ)ψw, v〉X′,X = 〈w, v〉X′,X ,

(24)

where

u⊥ =

{
v ∈ X |

∫

Ω

uv = 0

}
.

The existence and uniqueness of the solution to (24) is a straightforward consequence
of (19) and the Lax-Milgram lemma. Besides,

∀w ∈ X ′, ‖ψw‖H1 ≤ β−1M‖w‖X′ ≤ β−1M‖w‖L2 . (25)

We can now state the main result of this section.
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Theorem 1 It holds

‖uδ − u‖H1 −→
δ→0+

0. (26)

Besides, there exists δ0 > 0 and C ∈ R+ such that for all 0 < δ < δ0,

‖uδ − u‖H1 ≤ C min
vδ∈Xδ

‖vδ − u‖H1 (27)

‖uδ − u‖2
L2 ≤ C

(
‖uδ − u‖2

H1‖uδ − u‖L2

+‖uδ − u‖H1 min
ψδ∈Xδ

‖ψuδ−u − ψδ‖H1

)
(28)

|λδ − λ| ≤ C
(
‖uδ − u‖2

H1 + ‖uδ − u‖L2

)
. (29)

Proof Using (20) and the convexity of F , we get

E(uδ) − E(u) =
1

2
〈Auuδ, uδ〉X′,X − 1

2
〈Auu, u〉X′,X

+
1

2

∫

Ω

F
(
u2
δ

)
− F

(
u2

)
− f

(
u2

)
(u2
δ − u2)

=
1

2
〈(Au − λ)(uδ − u), (uδ − u)〉X′,X

+
1

2

∫

Ω

F
(
u2 + (u2

δ − u2)
)
− F

(
u2

)
− f

(
u2

)
(u2
δ − u2)

≥ γ

2
‖uδ − u‖2

H1 . (30)

Let Πδu ∈ Xδ be such that

‖u− Πδu‖H1 = min {‖u− vδ‖H1 , vδ ∈ Xδ} .

We deduce from (13) that (Πδu)δ>0 converges to u in X when δ goes to zero.
Denoting by ũδ = ‖Πδu‖−1

L2 Πδu (which is well defined, at least for δ small enough),
we also have

lim
δ→0+

‖ũδ − u‖H1 = 0.

The functional E being strongly continuous on X , we obtain

‖uδ − u‖2
H1 ≤ 2

γ
(E(uδ) − E(u)) ≤ 2

γ
(E(ũδ) − E(u)) −→

δ→0+
0. (31)

It follows that there exists δ1 > 0 such that

∀0 < δ ≤ δ1, ‖uδ‖H1 ≤ 2‖u‖H1 , ‖uδ − u‖H1 ≤ 1

2
.
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Next, we remark that

λδ − λ = 〈E′(uδ), uδ〉X′,X − 〈E′(u), u〉X′,X

= a(uδ, uδ) − a(u, u) +

∫

Ω

f(u2
δ)u

2
δ −

∫

Ω

f(u2)u2

= a(uδ − u, uδ − u) + 2a(u, uδ − u) +

∫

Ω

f(u2
δ)u

2
δ −

∫

Ω

f(u2)u2

= a(uδ − u, uδ − u) + 2λ

∫

Ω

u(uδ − u) − 2

∫

Ω

f(u2)u(uδ − u)

+

∫

Ω

f(u2
δ)u

2
δ −

∫

Ω

f(u2)u2

= a(uδ − u, uδ − u) − λ‖uδ − u‖2
L2 − 2

∫

Ω

f(u2)u(uδ − u)

+

∫

Ω

f(u2
δ)u

2
δ −

∫

Ω

f(u2)u2

= 〈(Au − λ)(uδ − u), (uδ − u)〉X′,X +

∫

Ω

wu,uδ
(uδ − u) (32)

where

wu,uδ
= u2

δ

f(u2
δ) − f(u2)

uδ − u
.

Using (8) and (18), we obtain that for all 0 < δ ≤ δ1,

|λδ − λ| ≤ M‖uδ − u‖2
H1 + ‖wu,uδ

‖L2‖u− uδ‖L2

≤ M‖uδ − u‖2
H1 + C‖1 + |uδ|3‖L2‖u− uδ‖L2

≤ M‖uδ − u‖2
H1 + C(1 + ‖uδ‖3

H1)‖u− uδ‖L2

≤ C
(
‖uδ − u‖2

H1 + ‖u− uδ‖L2

)
, (33)

where C denotes constants independent of δ.

In order to evaluate the H1-norm of the error uδ − u, we first notice that

∀vδ ∈ Xδ, ‖uδ − u‖H1 ≤ ‖uδ − vδ‖H1 + ‖vδ − u‖H1 , (34)

and that

‖uδ − vδ‖2
H1 ≤ β−1 〈(E′′(u) − λ)(uδ − vδ), (uδ − vδ)〉X′,X

= β−1

(
〈(E′′(u) − λ)(uδ − u), (uδ − vδ)〉X′,X

+〈(E′′(u) − λ)(u − vδ), (uδ − vδ)〉X′,X

)
. (35)

For all wδ ∈ Xδ

〈(E′′(u) − λ)(uδ − u), wδ〉X′,X

= −
∫

Ω

(
f(u2

δ)uδ − f(u2)uδ − 2f ′(u2)u2(uδ − u)
)
wδ + (λδ − λ)

∫

Ω

(uδ − u)wδ.

Using (9) and (33), we therefore obtain that for all 0 < δ ≤ δ1 and all wδ ∈ Xδ,

|〈(E′′(u) − λ)(uδ − u), wδ〉X′,X | ≤ C‖wδ‖H1‖uδ − u‖2
H1 . (36)

It then follows from (19), (35) and (36) that for all 0 < δ ≤ δ1 and all vδ ∈ Xδ,

‖uδ − vδ‖H1 ≤C
(
‖vδ − u‖H1 + ‖uδ − u‖2

H1

)
.
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Combining with (34) we obtain that there exists 0 < δ2 ≤ δ1 and C ∈ R+ such that
for all 0 < δ ≤ δ2 and all vδ ∈ Xδ,

‖uδ − u‖H1 ≤C‖vδ − u‖H1 . (37)

Thus (27) is proved.

Let u∗δ be the orthogonal projection, for the L2 inner product, of uδ on the affine
space

{
v ∈ L2(Ω) |

∫
Ω
uv = 1

}
. One has

u∗δ ∈ X, u∗δ − u ∈ u⊥, u∗δ − uδ =
1

2
‖uδ − u‖2

L2u,

from which we infer that

‖uδ − u‖2
L2 =

∫

Ω

(uδ − u)(u∗δ − u) +

∫

Ω

(uδ − u)(uδ − u∗δ)

=

∫

Ω

(uδ − u)(u∗δ − u) − 1

2
‖uδ − u‖2

L2

∫

Ω

(uδ − u)u

=

∫

Ω

(uδ − u)(u∗δ − u) +
1

2
‖uδ − u‖2

L2

(
1 −

∫

Ω

uδu

)

=

∫

Ω

(uδ − u)(u∗δ − u) +
1

4
‖uδ − u‖4

L2

= 〈uδ − u, u∗δ − u〉X′,X +
1

4
‖uδ − u‖4

L2

= 〈(E′′(u) − λ)ψuδ−u, u
∗
δ − u〉X′,X +

1

4
‖uδ − u‖4

L2

= 〈(E′′(u) − λ)(uδ − u), ψuδ−u〉X′,X

+
1

2
‖uδ − u‖2

L2〈(E′′(u) − λ)u, ψuδ−u〉X′,X +
1

4
‖uδ − u‖4

L2

= 〈(E′′(u) − λ)(uδ − u), ψuδ−u〉X′,X

+‖uδ − u‖2
L2

∫

Ω

f ′(u2)u3ψuδ−u +
1

4
‖uδ − u‖4

L2.

For all ψδ ∈ Xδ, it holds

‖uδ − u‖2
L2 = 〈(E′′(u) − λ)(uδ − u), ψδ〉X′,X

+〈(E′′(u) − λ)(uδ − u), ψuδ−u − ψδ〉X′,X

+‖uδ − u‖2
L2

∫

Ω

f ′(u2)u3ψuδ−u +
1

4
‖uδ − u‖4

L2

= −
∫

Ω

(
f(u2

δ)uδ − f(u2)uδ − 2f ′(u2)u2(uδ − u)
)
ψδ

+(λδ − λ)

∫

Ω

uδψδ

+〈(E′′(u) − λ)(uδ − u), ψuδ−u − ψδ〉X′,X

+‖uδ − u‖2
L2

∫

Ω

f ′(u2)u3ψuδ−u +
1

4
‖uδ − u‖4

L2

= −
∫

Ω

(
f(u2

δ)uδ − f(u2)uδ − 2f ′(u2)u2(uδ − u)
)
ψδ

+(λδ − λ)

∫

Ω

uδ(ψδ − ψuδ−u) + (λδ − λ)

∫

Ω

(uδ − u)ψuδ−u

+〈(E′′(u) − λ)(uδ − u), ψuδ−u − ψδ〉X′,X

+‖uδ − u‖2
L2

∫

Ω

f ′(u2)u3ψuδ−u +
1

4
‖uδ − u‖4

L2 ,

8



where we have used that

∫

Ω

ψuδ−uu = 0.

Let ψ0
δ ∈ Xδ be such that

‖ψuδ−u − ψ0
δ‖H1 = min

ψδ∈Xδ

‖ψuδ−u − ψδ‖H1 .

Noticing that ‖ψ0
δ‖H1 ≤ ‖ψuδ−u‖H1 ≤ β−1M‖uδ − u‖L2, we obtain from (9), (19)

and (33) that there exists C ∈ R+ such that for all 0 < δ ≤ δ1,

‖uδ − u‖2
L2 ≤ C

(
‖uδ − u‖2

H1‖uδ − u‖L2 + ‖uδ − u‖H1‖ψuδ−u − ψ0
δ‖H1

+‖uδ − u‖3
L2 + ‖uδ − u‖2

L2‖uδ − u‖2
H1

)
.

Therefore, there exists 0 < δ0 ≤ δ2 and C ∈ R+ such that for all 0 < δ ≤ δ0,

‖uδ − u‖2
L2 ≤ C

(
‖uδ − u‖2

H1‖uδ − u‖L2 + ‖uδ − u‖H1‖ψuδ−u − ψ0
δ‖H1

)
, (38)

which completes the proof of Theorem 1. �

Remark 1 In the proof of Theorem 1, we have obtained bounds on |λδ − λ| from
(32), using L2 estimates on wu,uδ

and (uδ − u) to control the second term of the
right hand side. Remarking that

∇wu,uδ
= −u f(u2)u− f(u2

δ)u− 2f ′(u2
δ)u

2
δ(u− uδ)

(uδ − u)2
∇uδ

−uδ
f(u2

δ)uδ − f(u2)uδ − 2f ′(u2)u2(uδ − u)

(uδ − u)2
∇u

+2uuδ
(
f ′(u2

δ)∇uδ + f ′(u2)∇u
)

+ 2uδ
f(u2

δ) − f(u2)

uδ − u
∇uδ ,

we deduce from (8)-(9) that if uδ is uniformly bounded in L∞(Ω), then wu,uδ
is

uniformly bounded in X. It then follows from (32) that

|λδ − λ| ≤ C
(
‖uδ − u‖2

H1 + ‖uδ − u‖X′

)
,

an estimate which is an improvement of (29). In the next two sections, we will see
that this approach (or analogous strategies making use of negative Sobolev norms of
higher orders), can be used in certain cases to obtain optimal estimates on |λδ − λ|
of the form

|λδ − λ| ≤ C‖uδ − u‖2
H1 .

3 Fourier expansion

In this section, we consider the problem

inf

{
E(v), v ∈ X,

∫

Ω

v2 = 1

}
, (39)

where

Ω = (0, 2π)d, with d = 1, 2 or 3,

X = H1
#(Ω),

E(v) =
1

2

∫

Ω

|∇v|2 +
1

2

∫

Ω

V v2 +
1

2

∫

Ω

F (v2).

9



We assume that V ∈ Hσ
#(Ω) for some σ > d/2 and that the function F satisfies

(7)-(9) and is such that the function t 7→ F (t2) is in Cσ+1(R+,R) if σ ∈ N, and in
C [σ]+2(R+,R) if σ /∈ N. Actually, as we know that the unique positive solution u
to (39) stays away from 0 in Ω, the assumptions on F can be slightly relaxed, but
we will not elaborate further on this technical detail.

The positive solution u to (39), which satisfies the elliptic equation

−∆u+ V u+ f(u2)u = λu,

then is in Hσ+2
# (Ω).

A natural discretization of this problem consists in using a Fourier basis. Denoting
by ek(x) = (2π)−d/2eik·x, we have for all v ∈ L2(Ω),

v(x) =
∑

k∈Zd

v̂kek(x),

where v̂k is the kth Fourier coefficient of v:

v̂k =

∫

Ω

v(x) ek(x) dx = (2π)−d/2
∫

Ω

v(x) e−ik·x dx.

The approximation of the solution to (39) by the spectral Fourier approximation is
based on the choice

Xδ = X̃N = Span{ek, |k|∗ ≤ N},

where |k|∗ denotes either the l2-norm or the l∞-norm of k (i.e. either |k| =

(
∑d

i=1 |ki|2)1/2 or |k|∞ = max1≤i≤d |ki|). For convenience, the discretization pa-
rameter for this approximation will be denoted as N .

Endowing Hr
#(Ω) with the norm defined by

‖v‖Hr =




∑

k∈Zd

(
1 + |k|2∗

)r |v̂k|2



1/2

,

we obtain that for all s ∈ R, and all v ∈ Hs
#(Ω), the best approximation of v in

Hr
#(Ω) for any r ≤ s is

ΠNv =
∑

k∈Zd,|k|∗≤N

v̂kek. (40)

The more regular v (the regularity being measured in terms of the Sobolev norms
Hr), the faster the convergence of this truncated series to v: for all real numbers r
and s with r ≤ s, we have

∀v ∈ Hs
#(Ω), ‖v − ΠNv‖Hr ≤ 1

Ns−r
‖v‖Hs . (41)

Let uN be a solution to the variational problem

inf

{
E(vN ), vN ∈ X̃N ,

∫

Ω

v2
N = 1

}
(42)

such that (uN , u)L2 ≥ 0. Using (41), we obtain

‖u− ΠNu‖H1 ≤ 1

Nσ+1
‖u‖Hσ+2 ,

10



Besides, the unique solution to (24) solves the elliptic equation

−∆ψw +
(
V + f(u2) + 2f ′(u2)u2 − λ

)
ψw = 2

(∫

Ω

f ′(u2)u3ψw

)
u+w − (w, u)L2u,

from which we infer that if w ∈ Hr
#(Ω) for some 0 ≤ r ≤ σ, then ψw is in Hr+2

# (Ω)
and satisfies

‖ψw‖Hr+2 ≤ C‖w‖Hr , (43)

for some constant C independent of w. In particular,

‖ψuN−u − ΠNψuN−u‖H1 ≤ 1

N
‖ψuN−u‖H2 ≤ C

N
‖uN − u‖L2.

A direct application of Theorem 1 then yields that there exists δ0 > 0 and C ∈ R+

such that for all 0 < δ ≤ δ0,

‖uN − u‖H1 ≤ C

Nσ+1
(44)

‖uN − u‖L2 ≤ C

Nσ+2
(45)

|λN − λ| ≤ C

Nσ+2
. (46)

The last estimate is slightly deceptive since, in the case of a linear eigenvalue problem
(i.e. for −∆u + V u = λu) the convergence of the eigenvalues goes twice as fast as
the convergence of the eigenvector in the H1-norm. We are going to prove that this
is also the case for the nonlinear eigenvalue problem under study in this section, at
least under some additional assumptions on the function f .

Let us first come back to (32), which we rewrite as,

λN − λ = 〈(Au − λ)(uN − u), (uN − u)〉X′,X +

∫

Ω

wu,uN
(uN − u) (47)

with

wu,uN
= u2

N

f(u2
N) − f(u2)

uN − u
.

We then observe that uN is solution to the elliptic equation

−∆uN + ΠN

[
V uN + f(u2

N )uN
]

= λNuN . (48)

This implies that the sequence (uN )N∈N, which is uniformly bounded in H1
#(Ω), is

in fact also uniformly bounded in Hσ+2
# (Ω). Together with (9), this implies in turn

that (wu,uN
)N∈N is bounded in H1

#(Ω) ∩ L∞(Ω). We therefore obtain from (47)
that

|λN − λ| ≤ C
(
‖uN − u‖2

H1 + ‖uN − u‖H−1

)
. (49)

Let us now compute the H−1-norm of the error. Let w ∈ H1
#(Ω). Proceeding as in

Section 2, we obtain
∫

Ω

w(uN − u)

= −
∫

Ω

(
f(u2

N )uN − f(u2)uN − 2f ′(u2)u2(uN − u)
)
ΠNψw

+(λN − λ)

∫

Ω

uN (ΠNψw − ψw) + (λN − λ)

∫

Ω

(uN − u)ψw

+〈(E′′(u) − λ)(uN − u), ψw − ΠNψw〉X′,X

+‖uN − u‖2
L2

∫

Ω

f ′(u2)u3ψw − 1

2
‖uN − u‖2

L2

∫

Ω

uw.

11



Combining (19), (43), (44)-(46), (47) and the above equality, we obtain that there
exists a constant C ∈ R+ such that for all N ∈ N and all w ∈ H1

#(Ω),

∫

Ω

w(uN − u) ≤ C′
(
‖uN − u‖2

H1 +N−2‖uN − u‖H1

)
‖w‖H1

≤ C

Nmin(2(σ+1),σ+3)
‖w‖H1 .

Therefore

‖uN − u‖H−1 = sup
w∈H1

#
(Ω)\{0}

∫

Ω

w(uN − u)

‖w‖H1

≤ C

Nmin(2(σ+1),σ+3)
, (50)

for some constant C ∈ R+ independent of N . We end up with

|λN − λ| ≤ C

Nmin(2(σ+1),σ+3)
.

To proceed further, we need to make additional assumptions on the function f .
Indeed, if we had a uniform bound on wu,uN

in Hr
#(Ω) for some r > 1, the above

argument would lead to

|λN − λ| ≤ C
(
‖uN − u‖2

H1 + ‖uN − u‖H−r

)

≤ C

Nmin(2(σ+1),σ+r+2)
.

A simple case when this is true is when F (t) = ct2 with c > 0; in this particular
case indeed, wu,uN

= 2cu2
N(uN + u) is uniformly bounded in Hσ+2

# (Ω). We can
summarize the results obtained in this section in the following theorem.

Theorem 2 Assume that V ∈ Hσ
#(Ω) for some σ > d/2 and that the function F

satisfies (7)-(9) and is such that the function t 7→ F (t2) is in Cσ+1(R+,R) if σ ∈ N,
and in C [σ]+2(R+,R) if σ /∈ N. Then there exists C ∈ R+ such that for all N ∈ N,

‖uN − u‖H1 ≤ C

Nσ+1
(51)

‖uN − u‖L2 ≤ C

Nσ+2
(52)

|λN − λ| ≤ C

Nmin(2(σ+1),σ+3)
.

If in addition

wu,uN
:= u2

N

f(u2
N ) − f(u2)

uN − u

is uniformly bounded in Hσ+2
# (Ω), then

|λN − λ| ≤ C

N2(σ+1)
. (53)

In order to evaluate the quality of the error bounds obtained in Theorem 2, we have
performed numerical tests with Ω = (0, 2π), V (x) = sin(|x−π|/2) and F (t2) = t2/2.
The Fourier coefficients of the potential V are given by

V̂k = − 1√
2π

1

|k|2 − 1
4

, (54)
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from which we deduce that V ∈ Hσ
#(0, 2π) for all σ < 3/2. It can be see on Figure 1

that ‖uN − u‖H1 , ‖uN − u‖L2, ‖uN − u‖H−1 , and |λN − λ| decay respectively as
N−2.67, N−3.67,N−4.67 andN−5 (the reference values for u and λ are those obtained
for N = 65). These results are in very good agreement with the upper bounds (51),
(52), (50) and (53), which respectively decay as N−2.5+ǫ, N−3.5+ǫ, N−4.5+ǫ and
N−5+ǫ, for ǫ > 0 arbitrarily small.

y = -2.67617 x +  0.205405
y = -3.67532 x +  0.434802
y = -4.6724 x +  0.677294
y = -5.00941 x -  0.275398

11009. 10 12. 10 13. 10 14. 10 15. 10 16. 10 17. 10

-910

-810

-710

-610

-510

-410

-310

Figure 1: Numerical errors ‖uN −u‖H1 (+), ‖uN −u‖L2 (×), ‖uN −u‖H−1 (∗), and

|λN − λ| (◦), as functions of 2N + 1 (the dimension of X̃N ) in log scales.

4 Finite element discretization

In this section, we consider the problem

inf

{
E(v), v ∈ X,

∫

Ω

v2 = 1

}
, (55)

where

Ω is a rectangular brick of Rd, with d = 1, 2 or 3,

X = H1
0 (Ω),

E(v) =
1

2

∫

Ω

|∇v|2 +
1

2

∫

Ω

V v2 +
1

2

∫

Ω

F (v2).

We assume that V satisfies (6) and that the function F satisfies (7)-(9). Througout
this section, we denote by u the unique positive solution of (55) and by λ the
corresponding Lagrange multiplier.

In the non periodic case considered here, a classical variational approximation of (1)
is provided by the finite element method. We consider a family of regular triangu-
lations (Th)h of Ω. This means, in the case when d = 3 for instance, that for each
h > 0, Th is a collection of tetrahedra such that

• Ω is the union of all the elements of Th;

• the intersection of two different elements of Th is either empty, a vertex, a
whole edge, or a whole face of both of them;

13



• the ratio of the diameter hK of any element K of Th to the diameter of its
inscribed sphere is smaller than a constant independent of h.

As usual, h denotes the maximum of the diameters hK , K ∈ Th. The parameter of
the discretization then is δ = h > 0. For each K in Th and each nonnegative integer
k, we denote by Pk(K) the space of the restrictions to K of the polynomials with d
variables and total degree lower or equal to k.

The finite element space Xh,k constructed from Th and Pk(K) is the space of all con-
tinuous functions on Ω vanishing on ∂Ω such that their restrictions to any element
K of Th belong to Pk(K). Recall that Xh,k ⊂ H1

0 (Ω) as soon as k ≥ 1.

We denote by π0
h,k and π1

h,k the orthogonal projectors on Xh,k for the L2 and

H1 inner products respectively. The following estimates are classical: there exists
C ∈ R+ such that for all r ∈ N such that 1 ≤ r ≤ k + 1,

∀φ ∈ Hr(Ω) ∩H1
0 (Ω), ‖φ− π0

h,kφ‖L2 ≤ Chr‖φ‖Hr , (56)

∀φ ∈ Hr(Ω) ∩H1
0 (Ω), ‖φ− π1

h,kφ‖H1 ≤ Chr−1‖φ‖Hr . (57)

Let uh,k be a solution to the variational problem

inf

{
E(vh,k), vh,k ∈ Xh,k,

∫

Ω

v2
h,k = 1

}
(58)

such that (uh,k, u)L2 ≥ 0. In this setting, we obtain the following a priori error
estimates.

Theorem 3 Assume that V satisfies (6) and that the function F satisfies (7)-(9).
Then there exists h0 > 0 and C ∈ R+ such that for all 0 < h ≤ h0,

‖uh,1 − u‖H1 ≤ C h (59)

‖uh,1 − u‖L2 ≤ C h2 (60)

|λh,1 − λ| ≤ C h2. (61)

If in addition, V ∈ H1(Ω), then there exists h0 > 0 and C ∈ R+ such that for all
0 < h ≤ h0,

‖uh,2 − u‖H1 ≤ C h2 (62)

‖uh,2 − u‖L2 ≤ C h3 (63)

|λh,2 − λ| ≤ C h4. (64)

Proof As Ω is a convex polygon, and as V and F satisfie (6) and (7)-(9) respec-
tively, we have u ∈ H2(Ω). We then use the fact that ψuh,k−u is solution to

−∆ψuh,k−u + (V + f(u2) + 2f ′(u2)u2 − λ)ψuh,k−u

= 2

(∫

Ω

f ′(u2)u3ψuh,k−u

)
u+ (uh,k − u) − (uh,k − u, u)L2u, (65)

to establish that ψuh,k−u ∈ H2(Ω) ∩H1
0 (Ω) and that

‖ψuh,k−u‖H2 ≤ C‖uh,k − u‖L2 (66)

for some constant C independent of h and k. The estimates (59), (60) and (61)
then are directly consequences of Theorem 1, (57) and (66).
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Under the additional assumption that V ∈ H1(Ω), we obtain by elliptic regularity
arguments that u ∈ H3(Ω). The H1 and L2 estimates (62) and (63) immediately
follows from Theorem 1, (57) and (66). We also have

|λ2,h − λ| ≤ Ch3 (67)

for a constant C independent of h. In order to prove (64), we proceed as in Section 3.
We start from the equality

λ2,h − λ = 〈(Au − λ)(u2,h − u), (u2,h − u)〉X′,X +

∫

Ω

w̃h(u2,h − u) (68)

where

w̃h = u2
2,h

f(u2
2,h) − f(u2)

u2,h − u
.

We now claim that uh,2 converges to u in L∞(Ω) when h goes to zero. To establish
this result, we first remark that

‖uh,2 − u‖L∞ ≤ ‖uh,2 − Ih,2u‖L∞ + ‖Ih,2u− u‖L∞,

where Ih,2 is the interpolation projector on Xh,2. As u ∈ H3(Ω) →֒ C1(Ω), we have

lim
h→0+

‖Ih,2u− u‖L∞ = 0.

On the other hand, using the inverse inequality

∃C ∈ R+ s.t. ∀0 < h ≤ h0, ∀vh ∈ Xh,2, ‖vh,2‖L∞ ≤ Cρ(h)‖vh,2‖H1 ,

with ρ(h) = 1 if d = 1, ρ(h) = 1 + lnh if d = 2 and ρ(h) = h−1/2 if d = 3 (see [8]
for instance), we obtain

‖uh,2 − Ih,2u‖L∞ ≤ Cρ(h)‖uh,2 − Ih,2u‖H1

≤ Cρ(h) (‖uh,2 − u‖H1 + ‖u− Ih,2u‖H1)

≤ C′ ρ(h)h2 −→
h→0+

0.

Hence the announced result. This implies in particular that w̃h is bounded inH1(Ω),
uniformly in h. Consequently, there exists C ∈ R+ such that for all 0 < h ≤ h0,

|λh,2 − λ| ≤ C
(
‖uh,2 − u‖2

H1 + ‖uh,2 − u‖H−1

)
. (69)

To estimate the H−1-norm of uh,2 − u, we write that for all w ∈ H1
0 (Ω),

∫

Ω

w(uh,2 − u)

= −
∫

Ω

(
f(u2

h,2)uh,2 − f(u2)uh,2 − 2f ′(u2)u2(uh,2 − u)
)
π1
h,2ψw

+(λN − λ)

∫

Ω

uN (π1
h,2ψw − ψw) + (λh,2 − λ)

∫

Ω

(uh,2 − u)ψw

+〈(E′′(u) − λ)(uh,2 − u), ψw − π1
h,2ψw〉X′,X

+‖uh,2 − u‖2
L2

∫

Ω

f ′(u2)u3ψw − 1

2
‖uh,2 − u‖2

L2

∫

Ω

uw, (70)

where ψw is solution to

−∆ψw + (V + f(u2) + 2f ′(u2)u2 − λ)ψw

= 2

(∫

Ω

f ′(u2)u3ψw

)
u+ w − (w, u)L2u. (71)
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It then follows from (71) that ψw is in H3(Ω) and that there exists C ∈ R+ such
that for all w ∈ H1

0 (Ω) and all 0 < h ≤ h0,

‖ψw‖H3 ≤ C‖w‖H1 .

We therefore obtain the inequality

‖ψw − π1
h,2ψw‖H1 ≤ Ch2‖w‖H1 , (72)

where the constant C is independent of h.

Putting together (9), (19), (57), (62), (63), (67) and (72), we get

‖uh,2 − u‖H−1 = sup
w∈H1

0(Ω)\{0}

∫
Ω
w(uh,2 − u)

‖w‖H1

≤ C h4.

Combining with (62) and (69), we end up with (64). �

Numerical results for the case when Ω = (0, π)2, V (x1, x2) = x2
1 + x2

2 and F (t2) =
t2/2 are reported on Figure 2. The agreement with the error estimates obtained in
Theorem 3 is good for the P1 approximation and excellent for the P2 approximation.

5 The effect of numerical integration

Let us now address one further consideration that is related to the practical imple-
mentation of the method, and more precisely to the numerical integration of the
nonlinear term. For simplicity, we focus on the case when A = 1.

From a practical viewpoint, the solution (uδ, λδ) to the nonlinear eigenvalue prob-
lem (15) can be computed iteratively, using for instance the optimal damping algo-
rithm [4, 2, 7]. At the pth iteration (p ≥ 1), the ground state (upδ , λ

p
δ) ∈ Xδ × R of

some linear, finite dimensional, eigenvalue problem of the form
∫

Ω

∇upδ · ∇vδ +

∫

Ω

(
V + f(ρ̃p−1

δ )
)
upδ vδ = λpδ

∫

Ω

upδvδ, ∀vδ ∈ Xδ, (73)

has to be computed. In the optimal damping algorithm, the density ρ̃p−1
δ is a

convex linear combination of the densites ρqδ = |uqδ|2, for 0 ≤ q ≤ p − 1. Solving
(73) amounts to finding the lowest eigenelement of the matrix Hp with entries

Hp
kl :=

∫

Ω

∇φk · ∇φl +
∫

Ω

V φk φl +

∫

Ω

f(ρ̃p−1
δ )φk φl, (74)

where (φk)1≤k≤dim(Xδ) stands for the canonical basis of Xδ.

In order to evaluate the last two terms of the right-hand side of (74), numerical
integration has to be resorted to. In the finite element approximation of (55), it
is generally made use of a numerical quadrature formula over each triangle (2D)
or tetrahedron (3D) based on Gauss points. In the Fourier approximation of the
periodic problem (39), the terms

∫

Ω

V ek el and

∫

Ω

f(ρ̃p−1
δ ) ek el,

which are in fact, up to a multiplicative constant, the (k− l)th Fourier coefficients of
V and f(ρ̃p−1

δ ) respectively, are evaluated by Fast Fourier Transform (FFT), using
an integration grid which may be different from the natural discretization grid

{(
2π

2N + 1
j1, · · · ,

2π

2N + 1
jd,

)
, 0 ≤ j1, · · · , jd ≤ 2N

}
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Figure 2: Errors ‖uh,k − u‖H1 (+), ‖uh,k − u‖L2 (×) and |λh,k − λ| (∗) for the P1

(k = 1, top) and P2 (k = 2, bottom) approximations as a function of h in log scales.

associated with X̃N . This raises the question of the influence of the numerical
integration on the convergence results obtained in Theorems 1, 2 and 3.

Remark 2 In the case of the periodic problem considered in Section 3 and when
F (t) = ct2 for some c > 0, the last term of the right-hand side of (74) can be
computed exactly (up to round-off errors) by means of a Fast Fourier Transform
(FFT) on an integration grid twice as fine as the discretization grid. This is due to
the fact that the function ρ̃p−1

δ ek el belongs to the space Span{en | |n|∗ ≤ 4N}. An
analogous property is used in the evaluation of the Coulomb term in the numerical
simulation of the Kohn-Sham equations for periodic systems.

In the sequel, we focus on the simple case when d = 1, Ω = [0, 2π), X = H1
#(0, 2π),

and

E(v) =
1

2

∫ 2π

0

|v′|2 +
1

2

∫ 2π

0

V v2 +
1

4

∫ 2π

0

|v|4
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with V ∈ Hσ
#(0, 2π) for some σ > 1/2. More difficult cases will be addressed

elsewhere [5].

In view of Remark 2, we consider an integration grid

2π

Ng
Z ∩ [0, 2π) =

{
0,

2π

Ng
,
4π

Ng
, · · · , 2π(Ng − 1)

Ng

}
,

with Ng ≥ 4N + 1 for which we have

∀vN ∈ X̃N ,

∫ 2π

0

|vN |4 =
2π

Ng

∑

r∈ 2π
Ng

Z∩[0,2π)

|vN (r)|4,

and for all ρ ∈ X̃2N ,

∀|k|, |l| ≤ N,

∫ 2π

0

ρ ek el =
1

Ng

∑

r∈ 2π
Ng

Z∩[0,2π)

ρ(r)e−i(k−l)r = ρ̂FFT
k−l , (75)

where ρ̂FFT
k−l is the (k− l)th coefficient of the discrete Fourier transform of ρ. Recall

that if φ =
∑

g∈Z
φ̂g eg ∈ C0

#(0, 2π), the discrete Fourier transform of φ is the

NgZ-periodic sequence (φ̂FFT
g )g∈Z defined by

∀g ∈ Z, φ̂FFT
g =

1

Ng

∑

r∈ 2π
Ng

Z∩[0,2π)

φ(r)e−igr .

We now introduce the subspacesWM for M ∈ N∗ such that WM = X̃(M−1)/2 if M is

odd and WM = X̃M/2−1⊕C(eM/2 +e−M/2) is M is even (note that dim(WM ) = M
for all M ∈ N∗). It is then possible to define an interpolation projector INg

from
C0

#(0, 2π) onto WNg
by

∀x ∈ 2π

Ng
Z ∩ [0, 2π), [INg

(φ)](x) = φ(x).

The expansion of INg
(φ) in the canonical basis of WNg

is given by

INg
(φ) =

∣∣∣∣∣∣∣∣∣

(2π)1/2
∑

|g|≤(Ng−1)/2

φ̂FFT
g eg (Ng odd),

(2π)1/2
∑

|g|≤Ng/2−1

φ̂FFT
g eg + (2π)1/2φ̂FFT

Ng/2

(
eNg/2 + e−Ng/2

2

)
(Ng even).

Under the condition that Ng ≥ 4N + 1, the following property holds: for all φ ∈
C0

#(0, 2π),

∀|k|, |l| ≤ N,

∫ 2π

0

INg
(φ) ek el = φ̂FFT

k−l .

It is therefore possible, in the particular case considered here, to efficiently evaluate
the entries of the matrix Hp using the formula

Hp
kl :=

∫ 2π

0

e′k · e′l +
∫ 2π

0

V ek el +

∫ 2π

0

ρ̃p−1
N ek el

≃ |k|2δkl + V̂ FFT
k−l + ̂[ρ̃p−1

N ]FFT
k−l , (76)
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and resorting to Fast Fourier Transform (FFT) algorithms to compute the discrete
Fourier transforms. Note that only the second term is computed approximatively.
The third term is computed exactly since, at each iteration, ρ̃p−1

N belongs to X̃2N

(see Eq. (75)). Of course, this situation is specific to the nonlinearity F (t) = t2/2
considered here.

Using the approximation formula (76) amounts to replace the original problem

inf

{
E(vN ), vN ∈ X̃N ,

∫ 2π

0

|vN |2 = 1

}
, (77)

with the approximate problem

inf

{
ENb

(vN ), vN ∈ X̃N ,

∫ 2π

0

|vN |2 = 1

}
, (78)

where

ENb
(vN ) =

1

2

∫ 2π

0

|v′N |2 +
1

2

∫ 2π

0

INg
(V )v2

N +
1

4

∫ 2π

0

|vN |4.

Let us denote by uN a solution of (77) such that (uN , u)L2 ≥ 0 and by uN,Ng

a solution to (78) such that (uN,Ng
, u)L2 ≥ 0. It is easy to check that uN,Ng

is
bounded in H1

#(0, 2π) uniformly in N and Ng.

Besides, we know from Theorem 2 that (uN )N∈N converges to u in H1
#(0, 2π), hence

in L∞
# (2, π), when N goes to infinity. This implies that the sequence (Au−AuN

)N∈N

converges to 0 in operator norm. Consequently, for all N large enough and all Ng
such that Ng ≥ 4N + 1,

γ

4
‖uN,Ng

− uN‖2
H1 ≤ E(uN,Ng

) − E(uN )

≤ ENg
(uN,Ng

) − ENg
(uN )

+

∫ 2π

0

(V − INg
(V ))

(
|uN,Ng

|2 − |uN |2
)

≤
∫ 2π

0

(V − INg
(V ))

(
|uN,Ng

|2 − |uN |2
)

≤ C‖Π2N (V − INg
(V ))‖L2‖uN,Ng

− uN‖H1 ,

where we have used the fact that
(
|uN,Ng

|2 − |uN |2
)
∈ X̃2N . Therefore,

‖uN,Ng
− uN‖H1 ≤ C‖Π2N (V − INg

(V ))‖L2 , (79)

for a constant C independent of N and Ng. Likewise,

λN,Ng
− λN = 〈(AuN

− λN )(uN,Ng
− uN ), (uN,Ng

− uN )〉X′,X

+

∫ 2π

0

(V − IN (V ))|uN,Ng
|2

+

∫ 2π

0

|uN,Ng
|2(uN,Ng

+ uN )(uN,Ng
− uN),

from which we deduce, using (79),

|λN,Ng
− λN | ≤ C‖Π2N (V − INg

(V ))‖L2 .

An error analysis of the interpolation operator INg
is given in [6]: for all non-

negative real numbers 0 ≤ r ≤ s with s > 1/2 (for d = 1),

‖ϕ− INg
(ϕ)‖Hr ≤ C

Ns−r
g

‖ϕ‖Hs , ∀ϕ ∈ Hs
#(0, 2π). (80)
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Thus,

‖Π2N (V − INg
(V ))‖L2 ≤ ‖V − INg

(V )‖Hσ ≤ C

Nσ
g

, (81)

and the above inequality provides the following estimates:

‖uN,Ng
− u‖H1 ≤ C

(
N−σ−1 +N−σ

g

)
(82)

‖uN,Ng
− u‖L2 ≤ C

(
N−σ−2 +N−σ

g

)
(83)

|λN,Ng
− λ| ≤ C

(
N−2σ−2 +N−σ

g

)
, (84)

for a constant C independent of N and Ng. The first component of the error bound
(82) corresponds to the error ‖uN − u‖H1 while the second component corresponds
to the numerical integration error ‖uN,Ng

−uN‖H1 (the same remark applies to the
error bounds (83) and (84)).

It is classical that for the norm ‖ϕ − INg
ϕ‖Hr for r < 0 is in general of the same

order of magnitude as ‖ϕ−INg
ϕ‖L2 . As the existence of better estimates in negative

norms is a corner stone in the derivation of the improvement of the error estimate
(46) for the eigenvalues (doubling of the convergence rate), we expect that the
eigenvalue approximation will be dramatically polluted by the use of the numerical
integration formula.

This can be checked numerically. Considering again the one-dimensional example
used in Section 3 (Ω = (0, 2π), V (x) = sin(|x − π|/2), F (t) = t2/2), we have
computed for 4 ≤ N ≤ 30 and Ng = 2p with 7 ≤ p ≤ 15, the errors ‖uN,Ng

− u‖H1 ,
‖uN,Ng

− u‖L2, ‖uN,Ng
− u‖H−1 , and |λN,Ng

−λ|. On Figure 3, these quantities are

plotted as functions of 2N + 1 (the dimension of X̃N ), for various values of Ng.

The non-monotonicity of the curve N 7→ |λN,Ng
− λ| originates from the fact that

λN,Ng
− λ can be positive or negative depending on the values of N and Ng.

The numerical errors ‖uN,Ng
−u‖H1 , ‖uN,Ng

−u‖L2, ‖uN,Ng
−u‖H−1 , and |λN,Ng

−λ|,
for N = 30, as functions of Ng (in log scales) are plotted on Figure 4. When Ng goes
to infinity, the sequences log10 ‖uN,Ng

− u‖H1 , log10 ‖uN,Ng
− u‖L2, log10 ‖uN,Ng

−
u‖H−1 , and log10 |λN,Ng

− λ| converge to log10 ‖uN − u‖H1 , log10 ‖uN − u‖L2,
log10 ‖uN − u‖H−1 , and log10 |λN − λ| respectively. For smaller values of Ng, the
numerical integration error dominates and these functions all decay linearly with
log10Ng with a slope very close to −2. For fixed N , the upper bounds (82)-(84)
also decay linearly with log10Ng, but with a slope equal to −1.5. To obtain sharper
upper bounds for the numerical integration error, we need to replace (81) with
a sharper estimate of ‖Π2N (V − INg

(V ))‖L2 , which is possible for the particular
example under consideration here. Indeed, remarking that under the condition
Ng ≥ 4N + 1,

‖Π2N (V − INg
(V ))‖L2 =




∑

|g|≤2N

∣∣∣∣∣
∑

k∈Z∗

V̂g+kNg

∣∣∣∣∣

2



1/2

,

we can, using (54), show that

‖Π2N (V − INg
(V ))‖L2 ≤ C N1/2

N2
g

,
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Figure 3: Numerical errors ‖uN,Ng
− u‖H1 (top left), ‖uN,Ng

− u‖L2 (top right),
‖uN,Ng

− u‖H−1 (bottom left), and |λN,Ng
− λ| (bottom right), as functions of

2N + 1 (the dimension of X̃N ), for Ng = 128 (red), Ng = 256 (green), Ng = 512
(cyan), Ng = 1024 (gold), Ng = 2048 (magenta), Ng = 4096 (pink), Ng = 8192
(black), Ng = 16384 (blue), Ng = 32768 (light blue).

for a constant C independent of N and Ng. We deduce that for this specific example

‖uN,Ng
− u‖H1 ≤ C

(
N−5/2 +N1/2N−2

g

)

‖uN,Ng
− u‖L2 ≤ C

(
N−7/2 +N1/2N−2

g

)

|λN,Ng
− λ| ≤ C

(
N−9/2 +N1/2N−2

g

)
.
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6 Appendix: properties of the ground state

The mathematical properties of the minimization problems (1) and (10) which are
useful for the numerical analysis reported in this article are gathered in the following
lemma.
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Figure 4: Numerical errors ‖uN,Ng
−u‖H1 (×), ‖uN,Ng

−u‖L2 (+), ‖uN,Ng
−u‖H−1

(∗), and |λN,Ng
− λ| (◦), for N = 30, as functions of Ng (in log scales).

Lemma 2 Under assumptions (4)-(9), (10) has a unique minimizer ρ0 and (1)
has exactly two minimizers u =

√
ρ0 and −u. The function u is solution to the

nonlinear eigenvalue problem (12) for some λ ∈ R. Besides, u ∈ C0,α(Ω) for some
0 < α < 1, u > 0 in Ω, and λ is the lowest eigenvalue of Au and is non-degenerate.

Proof As A is uniformly bounded and coercive on Ω and V ∈ Lq(Ω) for some q >
2, v 7→ a(v, v) is a quadratic form onX , bounded below on the set {v ∈ X | ‖v‖L2 = 1}.
Replacing a(v, v) with a(v, v) − C‖v‖2

L2 and F (t) with F (t) − F (0) − tF ′(0) does
not change the minimizers of (1) and (10). We can therefore assume, without loss
of generality, that

∀v ∈ X, a(v, v) ≥ ‖v‖2
L2 and F (0) = F ′(0) = 0. (85)

It then follows from (9), making t1 equal to zero, that 0 ≤ F (v2) ≤ C(v2 + |v|5).
As X →֒ L2(Ω) ∩ L6(Ω), E(v) is finite for all v ∈ X , I > −∞ and the minimizing
sequences of (1) are bounded in X . Let (vn)n∈N be a minimizing sequence of (1).
Using the fact that X is compactly embedded in L2(Ω), we can extract from (vn)n∈N

a subsequence (vnk
)k∈N which converges weakly in X , strongly in L2(Ω) and almost

everywhere in Ω to some u ∈ X . As ‖vnk
‖L2 = 1 and E(vnk

) ↓ I, we obtain
‖u‖L2 = 1 and E(u) ≤ I (E is convex and strongly continuous, hence weakly l.s.c.,
on X). Hence u is a minimizer of (1). As |u| ∈ X , ‖|u|‖L2 = 1 and E(|u|) = E(u),
we can assume without loss of generality that u ≥ 0. Assumptions (4)-(9) imply
that E is C1 on X and that E′(u) = Auu. It follows that u is solution to (11)
for some λ ∈ R. By elliptic regularity arguments [10], we get u ∈ C0,α(Ω) for
some 0 < α < 1. We also have u > 0 in Ω; this is a consequence of the Harnack
inequality [11]. Making the change of variable ρ = v2, it is easily seen that if v is
a minimizer of (1), then v2 is a minimizer of (10), and that, conversely, if ρ is a
minimizer of (10), then

√
ρ and −√

ρ are minimizers of (1). Besides, the functional E
is strictly convex on the convex set

{
ρ ≥ 0 | √ρ ∈ X,

∫
Ω
ρ = 1

}
. Therefore ρ0 = u2

is the unique minimizer of (10) and u and −u are the only minimizers of (1).

It is easy to see that Au is bounded below and has a compact resolvent. It therefore
possesses a lowest eigenvalue λ0, which, according to the min-max principle, satisfies

λ0 = inf

{∫

Ω

(A∇v) · ∇v +

∫

Ω

(V + f(u2))v2, v ∈ X,

∫

Ω

v2 = 1

}
. (86)
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Let v0 be a normalized eigenvector of Au associated with λ0. Clearly, v0 is a
minimizer of (86) and so is |v0|. Therefore, |v0| is solution to the Euler equation
Au|v0| = λ0|v0|. Using again elliptic regularity arguments and the Harnack in-
equality, we obtain that |v0| ∈ C0,α(Ω) for some 0 < α < 1 and that |v0| > 0 on Ω.
This implies that either v0 = |v0| > 0 in Ω or v0 = −|v0| < 0 in Ω. In particular
(u, v0)L2 6= 0. Consequently, λ = λ0 and λ is a simple eigenvalue of Au. �

It is interesting to note that λ is also the ground state eigenvalue of the nonlinear
eigenvalue problem





search (µ, v) ∈ R ×X such that
Avv = µv
‖v‖L2 = 1,

(87)

in the following sense: if (µ, v) is solution to (87) then either µ > λ or µ = λ and
v = ±u.
To see this, let us consider a solution (µ, v) ∈ R×X to (87) and denote by w̃ = |v|−u.
As for u, we infer from elliptic regularity arguments [10] that v ∈ C0,α(Ω). We have
‖v‖L2 = ‖u‖L2 = 1. Therefore, if w ≤ 0 in Ω, then |v| = u, which yields v = ±u and
µ = λ. Otherwise, there exists x0 ∈ Ω such that w̃(x0) > 0, and, up to replacing v
with −v, we can consider that the function w = v − u is such that w(x0) > 0. The
function w is in X ∩ C0,α(Ω) and satisfies

(Au − λ)w +
f(v2) − f(u2)

v2 − u2
v(u+ v)w = (µ− λ)v. (88)

Let ω = {x ∈ Ω | w(x) > 0} = {x ∈ Ω | v(x) > u(x)} and w+ = max(w, 0). As
w+ ∈ X , we deduce from (88) that

〈(Au − λ)w+, w+〉X′,X +

∫

ω

f(v2) − f(u2)

v2 − u2
v(u + v)w = (µ− λ)

∫

ω

vw.

The left hand side of the above equality is positive and
∫
ω
vw > 0. Therefore, µ > λ.
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