
HAL Id: hal-00392012
https://hal.science/hal-00392012

Submitted on 5 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Cesàro-Volterra formula with little regularity
Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare

To cite this version:
Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. A Cesàro-Volterra formula with little regularity.
Journal de Mathématiques Pures et Appliquées, 2010, 93, pp.41-60. �hal-00392012�

https://hal.science/hal-00392012
https://hal.archives-ouvertes.fr


A CESÀRO-VOLTERRA FORMULA WITH LITTLE

REGULARITY

PHILIPPE G. CIARLET, LILIANA GRATIE, AND CRISTINEL MARDARE

Abstract. If a symmetric matrix field e of order three satisfies the Saint-Venant compat-
ibility conditions in a simply-connected domain Ω in R

3, there then exists a displacement
field u of Ω with e as its associated linearized strain tensor, i.e., e = 1

2
(∇uT + ∇u)

in Ω. A classical result, due to Cesàro and Volterra, asserts that, if the field e is suffi-
ciently smooth, the displacement u(x) at any point x ∈ Ω can be explicitly computed as
a function of the matrix fields e and CURL e, by means of a path integral inside Ω with
endpoint x.

We assume here that the components of the field e are only in L
2(Ω) (as in the clas-

sical variational formulation of three-dimensional linearized elasticity), in which case the
classical path integral formula of Cesàro and Volterra becomes meaningless. We then
establish the existence of a “Cesàro-Volterra formula with little regularity”, which again
provides an explicit solution u to the equation e = 1

2
(∇uT + ∇u) in this case. We also

show how the classical Cesàro-Volterra formula can be recovered from the formula with
little regularity when the field e is smooth. Interestingly, our analysis also provides as a
by-product a variational problem that satisfies all the assumptions of the Lax-Milgram
lemma, and whose solution is precisely the unknown displacement field u.

It is also shown how such results may be used in the mathematical analysis of “intrinsic”
linearized elasticity, where the linearized strain tensor e (instead of the displacement vector
u as is customary) is regarded as the primary unknown.

Une formule de Cesàro-Volterra avec peu de régularité.

Résumé. Si un champ e de matrices symétriques d’ordre trois vérifie les conditions de
compatibilité de Saint-Venant dans un ouvert Ω simplement connexe de R

3, alors il existe
un champ de déplacements u de Ω ayant e comme tenseur linéarisé des déformations
associé, i.e., e = 1

2
(∇uT + ∇u) dans Ω. Un résultat classique de Cesàro et Volterra

affirme que, si le champ e est suffisamment régulier, le déplacement u(x) en chaque point
x ∈ Ω peut être calculé explicitement en fonction des champs de matrices e et CURL e,
au moyen d’une intégrale curviligne dans Ω ayant x comme extrémité.

On suppose ici que les composantes du champ e sont seulement dans L
2(Ω) (comme

dans la formulation variationnelle classique de l’élasticité linéarisée tri-dimensionnelle),
auquel cas la formule classique de Cesàro-Volterra n’a plus de sens. On établit alors une
“formule de Cesàro-Volterra avec peu de régularité”, qui donne à nouveau une solution
explicite u de l’équation e = 1

2
(∇uT + ∇u) dans ce cas. On montre aussi comment

la formule classique de Cesàro-Volterra peut être retrouvée à partir de la formule “avec
peu de régularité” lorsque le champ e est régulier. Il est intéressant de noter que l’un des
corollaires de notre analyse est la formulation d’un problème variationnel qui vérifie toutes
les hypothèses du lemme de Lax-Milgram, et dont la solution est précisément le champ u.

On montre également comment de tels résultats peuvent être utilisés dans l’analyse

mathématique de l’élasticité linéarisée “intrinsèque”, où le tenseur linéarisé des déformations

e (au lieu du champ de déplacements comme il est usuel) est considéré comme étant

l’inconnue principale.
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1. Introduction

For simplicity, we consider only the three-dimensional case in this introduction.
But the results presented here can be extended to, and are subsequently established
in, the n-dimensional case for any n ≥ 2.

Latin indices range in the set {1, 2, 3} and the summation convention with respect
to repeated Latin indices is used in conjunction with this rule. The sets of all
real matrices of order three and of all real symmetric matrices of order three are
respectively denoted M

3 and S
3. Other notations used, but not defined, in this

introduction are defined in the next section.
Let Ω be an open subset of R

3. Given a vector field u = (ui) ∈ C3(Ω; R3), let
the associated linearized strain tensor field e = (eij) ∈ C2(Ω; S3) be defined by

(1.1) eij :=
1

2
(∂jui + ∂iuj) in Ω.

It is then immediately verified that the components eij defined in (1.1) necessarily

satisfy the following compatibility conditions, which were discovered and analyzed
by Saint-Venant [17] in 1864, and since then bear his name:

(1.2) ∂ljeik + ∂kiejl − ∂liejk − ∂kjeil = 0 in C0(Ω).

It is well known that, if Ω is simply-connected, these compatibility conditions
become also sufficient. This means that, if a matrix field e = (eij) ∈ C2(Ω; S3)
satisfies the Saint-Venant compatibility conditons (1.2) in such an open set Ω, then
conversely, there exists a vector field u = (ui) ∈ C3(Ω; R3) that satisfies the equa-
tions

(1.3)
1

2
(∂jui + ∂iuj) = eij in Ω.

Besides, all other solutions ũ = (ũi) ∈ C3(Ω; R3) to the equations 1
2 (∂j ũi +

∂iũj) = eij in Ω are of the form

(1.4) ũ(x) = u(x) + a+ b ∧ ox, x ∈ Ω, for some a, b ∈ R
3.

It is less known (Ref. [15] constitutes an exception) that an explicit solution

u = (ui) to the equations (1.3) can be given in the form of the following Cesàro-

Volterra path integral formula, so named after Cesàro [5] and Volterra [18], who
discovered it in 1906 and 1907: Let γ(x) be any path of class C1 contained in Ω
and joining a point x0 ∈ Ω (considered as fixed) to any point x ∈ Ω. Then

(1.5) ui(x) =

∫

γ(x)

{eij(y) + (∂keij(y) − ∂iekj(y))(xk − yk)}dyj , x ∈ Ω.

It can then be verified that each component ui(x) computed by formula (1.5)
is independent of the path chosen for joining x0 to x (as it should be), precisely
because the functions eij satisfy the compatibility conditions (1.2).

The Cesàro-Volterra path integral formula (1.5) can be equivalently rewritten in
vector-matrix form, as

(1.6) u(x) =

∫

γ(x)

e(y)dy +

∫

γ(x)

yx ∧ ([CURL e(y)]dy), x ∈ Ω,

where ∧ designates the vector product in R
3, and the matrix curl operator CURL :

D′(Ω; M3) → D′(Ω; M3) is defined by

(1.7) (CURL e)ij := εilk∂lejk for any matrix field e = (eij) ∈ D′(Ω; M3),
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where (εilk) denotes the orientation tensor.
The sufficiency of the Saint-Venant compatibility conditons (1.2) was recently

shown to hold under substantially weaker reqularity assumptions on the given tensor

field e = (eij), according to the following result, due to Ciarlet & Ciarlet, Jr. [6]: Let

Ω be a bounded and simply-connected open subset of R
3 with a Lipschitz-continuous

boundary, and let there be given functions eij = eji ∈ L2(Ω) that satisfy

(1.8) ∂ljeik + ∂kiejl − ∂liejk − ∂kjeil = 0 in H−2(Ω).

Then there exists a vector field (ui) ∈ H1(Ω; R3) that satisfies

(1.9)
1

2
(∂jui + ∂iuj) = eij in L2(Ω).

Besides, all the other solutions ũ = (ũi) ∈ H1(Ω; R3) to the equations 1
2 (∂j ũi +

∂iũj) = eij are again of the form (1.4).
Clearly, the “classical” Cesàro-Volterra path integral formula (1.5) becomes

meaningless when the functions eij satisfying (1.8) are only in the space L2(Ω).
The question then naturally arises as to whether there exists any “Cesàro-Volterra

formula with little regularity”, which (i) would again provide an explicit solution to
the equations (1.9) when the functions eij are only in L2(Ω) and (ii) would in some
way resemble (1.5).

One of our objectives is to provide the following positive answer to this question
(thus justifying the title of this paper). Let < · , · > denote the duality pairing
between a topological space and its dual, and let

(1.10) T = (Ti) : L2
0(Ω) := {v ∈ L2(Ω);

∫

Ω

vdx = 0} → H1
0 (Ω; R3)

be a specific continuous linear operator that satisfies (the precise definition of T is
given in Lemma 2.5)

(1.11) −div(T v) = v for all v ∈ L2
0(Ω).

Note that the operator T of (1.10)−(1.11) plays a key role throughout this paper.
We then show (cf. Theorem 4.2) that a vector field u = (ui) ∈ H1(Ω; R3)

satisfies equations (1.9) if and only if

(1.12) < ui, ϕi >=< eij , Tiϕj + ∂k[Ti(Tjϕk − Tkϕj)] >

for all vector field fields ϕ = (ϕi) ∈ D(Ω; R3) that satify

(1.13)

∫

Ω

ϕidx =

∫

Ω

(xjϕi − xiϕj)dx = 0.

In other words, we are able to compute all the “components”

< u,ϕ >:=< ui, ϕi >

of the solution u = (ui) against all vector fields ϕ = (ϕi) ∈ D(Ω; R3) that satisfy
(1.13). Note in passing that it is no surprise that conditions (1.13) should be
satisfied: They simply reflect (cf. Lemma 2.3) that the solution to the equations
(1.9) is defined only up to infinitesimal rigid displacements, i.e., vector fields in
D′(Ω; R3) of the form (cf.(1.4))

(1.14) x ∈ Ω → a+ b ∧ ox, for some vectors a, b ∈ R
3.
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As a consequence, the knowledge of the duality pairings < u,ϕ > for all fields

ϕ ∈ D(Ω; R3) satisfying (1.13) uniquely defines a vector field u = (ui) ∈ D′(Ω; R3)
up to infinitesimal rigid displacements.

Our claim that formula (1.12) is indeed a bona fide generalization of the “classi-
cal” Cesàro-Volterra formula (1.5) rests on two justifications.

First, we show that formula (1.12) can be rewritten in the following vector-matrix

form:

(1.15) < u,ϕ >=≪ e,T ⊗ϕ≫ + ≪ CURL e,T ⊗ (T ∧ϕ) ≫

(cf. Theorem 5.1; the notations used in (1.15) are explained at the beginning of
Section 5), which clearly displays a strong, albeit formal, resemblance with the
vector-matrix form (1.6) of the classical Cesàro-Volterra formula.

Second, and surely more convincingly, we show (cf. Theorem 5.2) that, if the
functions eij happen to be in the space C2(Ω) (as in the “classical” Saint-Venant
conditons (1.2)), the classical Cesàro-Volterra path integral formula (1.5) can be
indeed recovered from formulas (1.12).

The proof of the equivalence between equations (1.9) and (1.12) given in Theorem
4.2 crucially relies on the following Poincaré lemma with little regularity (due to
Ciarlet & Ciarlet, Jr. [6]; see also Remark 3.1 for various recent extensions): Let Ω
be a bounded and simply-connected open subset of R

3 with a Lipschitz-continuous
boundary, and let fi ∈ H−1(Ω) be distributions that satisfy

(1.16) ∂ifj − ∂jfi = 0 in H−2(Ω).

Then there exists a function u ∈ L2(Ω), unique up to an additive constant, that
satisfies

(1.17) ∂iu = fi in H−1(Ω).

We then prove (cf. Theorem 3.2) the following complement to the above Poincaré
lemma, which may be also of interest by itself: Given distributions fi ∈ H−1(Ω)
that satisfy (1.16), a function u ∈ L2(Ω) satisfies (1.17) if and only if

(1.18) < u,ϕ >=< fi, Tiϕ > for all ϕ ∈ D(Ω) that satisfy

∫

Ω

ϕdx = 0,

where T = (Ti) is again the mapping of (1.10)−(1.11).
Formula (1.18) thus provides a means to compute a solution to equations (1.17)

in the same manner that formula (1.12) provides a means to compute a solution to
equations (1.9), in both cases when the data have too little regularity for a path
integral formula to make sense.

Incidentally, a noticeable feature of our analysis is that it provides, as a by-
product, a way to find either the solution of equations (1.9), or the solution of
equations (1.17), in each case as the solution of a variational problem, which satisfies
all the assumptions of the Lax-Milgram lemma (cf. Theorems 3.3 and 4.3).

One of our main motivations here is to provide another building stone for the
mathematical analysis of intrinsic linearized three-dimensional elasticity, as begun
in Ref. [6] (see Ref. [9] for a general survey of intrinsic methods in elasticity). It
was shown there that the pure traction problem (to fix ideas) of linearized three-

dimensional elasticity could be reformulated in a novel way, where the linearized

strain tensor e ∈ L2(Ω; S3) is regarded as the primary unknown, instead of the
displacement field u ∈ H1(Ω; R3) as is customary.
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More specifically, define the space

E(Ω) := {e = (eij) ∈ L2(Ω; S3); ∂ljeik + ∂kiejl − ∂liejk − ∂kjeil = 0 in H−2(Ω)},

and let

R(Ω) := {r ∈ H1(Ω; R3); r(x) = a+ b ∧ ox, x ∈ Ω, for some a, b ∈ R
3}

denote the space of all infinitesimal rigid displacements of the set Ω. Then (cf.
Theorem 4.1 in ibid.) the mapping

(1.19) F : e = (eij) ∈ E(Ω) → v̇ ∈H1(Ω)/R(Ω),

where v̇ denotes the equivalence class of any vector field v = (vi) ∈ H1(Ω; R3)
that satisfies eij = 1

2 (∂jvi + ∂ivj) in L2(Ω), is an isomorphism between the Hilbert

spaces E(Ω) and H1(Ω)/R(Ω).
Thanks to the isomorphism F of (1.19), the pure traction problem of linearized

elasticity can then be equivalently posed in terms of the new unknown e ∈ L2(Ω,S3)
as the following constrained minimization problem: Find a matrix field ε ∈ E(Ω)
that satisfies

(1.20) j(ε) = inf
e∈E(Ω)

j(e),

where the functional j : E(Ω) → R is defined by

(1.21) j(e) :=
1

2

∫

Ω

{λ tr e tr e+ 2µe : e}dx− Λ(e) for all e ∈ E(Ω).

In (1.21), λ and µ denote the Lamé constants of the constituting material (assumed
for simplicity to be homogeneous and isotropic), the notation : denotes the matrix
inner product, and the continuous linear form Λ : E(Ω) → R is defined by

(1.22) Λ(e) =

∫

Ω

f · Fedx+

∫

Γ

g · FedΓ

where f ∈ L2(Ω; R3), resp. g ∈ L2(Γ; R3) where Γ := ∂Ω, denotes the density of
the applied body, resp. surface, forces.

Our main results (cf. Theorem 4.2 and 4.3) thus provide a means to handle, via
an explicit formula for computing the mapping F , the term (1.22) involving the
applied forces in the functional (1.21). They similarly provide a means to handle
boundary conditions involving the displacement field, e.g., u = 0 on a portion
of the boundary Γ. Besides its mathematical interest regarding the minimization
problem (1.20), the Cesàro-Volterra formula with little regularity could be as well
conveniently put to use in the numerical implementation of intrinsic models, as
recently advocated and analyzed in Ciarlet & Ciarlet, Jr. [7].

The results of this paper were announced in Ref. [10].

2. Notations and preliminaries

Latin indices henceforth range in the set {1, 2, . . . , n}, where n is any integer
≥ 2, and the summation convention with respect to repeated indices is used in
conjunction with this rule.

The notations M
n,Sn, and A

n, respectively designate the sets of all real square,
symmetric, and anti-symmetric, matrices of order n. The notation (aij) designates
the matrix in M

n with aij as its elements, the first index being the row index. The
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notation (A)ij designates the element at the i-th row and j-th column of a matrix
A. When it is identified with a matrix, a vector in R

n is a column vector.
The coordinates of a point x ∈ R

n are denoted xi. Partial derivative operators,
in the usual sense or in the sense of distributions, of the first and second order are
denoted ∂i := ∂/∂xi and ∂ij := ∂2/∂xi∂xj .

All the vector spaces considered in this paper are over R. Given an open subset
Ω of R

n, the notations D(Ω) and D′(Ω) respectively designate the space of all
functions that are infinitely differentiable in Ω and have compact support in Ω and
the space of distributions over Ω. The notation < · , · > denotes the duality pairing
between a topological space and its dual space, such as L2(Ω) and itself, H1

0 (Ω)
and H−1(Ω), or D(Ω) and D′(Ω).

The notation Cm(Ω), m ≥ 0, designates the space of all continuous if m = 0,
or m times continuously differentiable if m ≥ 1, functions over Ω. The notations
Hm(Ω), Hm

0 (Ω), and H−m(Ω) = (Hm
0 (Ω))′,m ≥ 1, designate the usual Sobolev

spaces. If X is a finite-dimensional space such as R
n,Sn, etc., notations such as

D(Ω; X), H1
0 (Ω; X), etc., designate spaces of vector fields or matrix fields with values

in X and components in D(Ω), H1
0 (Ω), etc.

Lemmas 2.1 to 2.4 list some properties of specific subspaces of D(Ω) and D(Ω; Rn)
(these subspaces naturally appear in the next two sections).

Lemma 2.1. Let Ω be an open subset of R
n. Define the space

(2.1) D0(Ω) := {ϕ ∈ D(Ω);

∫

Ω

ϕdx = 0}.

Then a distribution u ∈ D′(Ω) satisfies

(2.2) < u,ϕ >= 0 for all ϕ ∈ D0(Ω)

if and only if u is a constant function.

Proof. If u(x) = C for all x ∈ Ω, then < u,ϕ >= C
∫
Ω
ϕdx for all ϕ ∈ D(Ω), and

thus < u,ϕ >= 0 for all ϕ ∈ D0(Ω). To establish the converse, let θ ∈ D(Ω) be a
function that satisfies

(2.3)

∫

Ω

θdx = 1.

Given any function ψ ∈ D(Ω), the function

ϕ := ψ − λθ, where λ :=

∫

Ω

ψdx =< 1, ψ >,

belongs to the space D0(Ω). If a distribution u ∈ D′(Ω) satisfies (2.2), we thus have

< u,ψ >= λ < u, θ >=< C,ψ > for all ψ ∈ D(Ω), where C :=< u, θ > .

Hence u = C. �
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Remark 2.2. The above proof shows that, given any function θ ∈ D(Ω) that
satisfies (2.3), the space D(Ω) can be written as the direct sum D0(Ω)⊕ Span θ.
More precisely, any function ψ ∈ D(Ω) can be written as

ψ = ϕ+λθ, with ϕ ∈ D0(Ω) and λ =

∫

Ω

ψdx. �

Lemma 2.3. Let Ω be a bounded open subset of R
n. The space D0(Ω) defined in

(2.1) is dense in the space

(2.4) L2
0(Ω) := {v ∈ L2(Ω);

∫

Ω

vdx = 0},

with respect to the norm of the space L2(Ω).

Proof. Let θ ∈ D(Ω) be a function that satisfies (2.3).
Let ‖·‖L2 designate the norm in the space L2(Ω). Given any function v ∈ L2

0(Ω),
there exist functions ψk ∈ D(Ω), k ≥ 1, such that ‖ψk − v‖L2 → 0 as k → ∞ (the
space D(Ω) is dense in L2(Ω)). For each k ≥ 1, let

ϕk := ψk −

(∫

Ω

ψkdx

)
θ,

so that ϕk ∈ D0(Ω). Besides,

‖ϕk − v‖L2 ≤ ‖ψk − v‖L2 +

∣∣∣∣
∫

Ω

ψkdx

∣∣∣∣‖θ‖L2 .

Therefore, ‖ϕk − v‖L2 → 0 as k → ∞, since
∫

Ω

ψkdx →
k→∞

∫

Ω

vdx = 0.

�

Lemma 2.4. Let Ω be an open subset of R
n, n ≥ 2. Define the space

(2.5) D1(Ω; Rn) := {ϕ = (ϕi) ∈ D(Ω; Rn);

∫

Ω

ϕidx =

∫

Ω

(xjϕi − xiϕj)dx = 0}.

Then a vector field u = (ui) ∈ D′(Ω; Rn) satisfies

(2.6) < u,ϕ >:=< ui, ϕi >= 0 for all ϕ ∈ D1(Ω; Rn)

if and only if

(2.7)
u(x) = a+A ox for all x = (xi) ∈ Ω, for some a = (ai) ∈ R

n and A = (aij) ∈ A
n.

Proof. A vector field u ∈ D′(Ω; Rn) of the form (2.7) satisfies

< u,ϕ >=< ai + aijxj , ϕi >= ai

∫

Ω

ϕidx+
∑

i<j

aij

∫

Ω

(xjϕi − xiϕj)dx

for all ϕ = (ϕi) ∈ D(Ω; Rn), thanks to the antisymmetry of the matrix A. Hence
such a a vector field satisfies < u,ϕ >= 0 for all ϕ ∈ D1(Ω; Rn).
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To establish the converse, we first notice that there is no loss of generality in

assuming that 0 ∈ Ω. Otherwise, let x0 = (x0
i ) ∈ Ω, let Ω̃ := {(x−x0) ∈ R

n;x ∈ Ω},

and, given any function ϕ = (ϕi) ∈ D1(Ω; R3), let the function ϕ̃ = (ϕ̃i) : Ω̃ → R
3

be defined by ϕ̃(x−x0) := ϕ(x) for all x ∈ Ω, so that ϕ̃ ∈ D(Ω̃; R3). Furthermore,
∫

eΩ

ϕ̃idx̃ =

∫

Ω

ϕidx = 0,

∫

eΩ

(x̃jϕ̃i − x̃iϕ̃j)dx̃ =

∫

Ω

(xjϕi − xiϕj)dx− x0
j

∫

Ω

ϕidx+ x0
i

∫

Ω

ϕjdx = 0,

which shows that ϕ̃ ∈ D1(Ω̃; R3). Besides, if a vector field ũ ∈ D′(Ω̃; Rn) is of the

form ũ(x̃) = ã+ Ãox̃ for some ã ∈ R
n and Ã ∈ A

n, then the field u ∈ D′(Ω; Rn)

defined by u(x) = ũ(x− x0) is indeed of the form (2.7), with a := ã− Ãox0 and

A = Ã.
Next, let θ ∈ D(Ω) and θj ∈ D(Ω), 2 ≤ j ≤ n, be functions that satisfy

(2.8)

∫

Ω

θdx = 1 and

∫

Ω

xiθdx = 0,

(2.9)

∫

Ω

θjdx = 0 and

∫

Ω

xiθjdx = δij .

For instance, let ω(x) := exp(‖x‖2 − 1)−1) if ‖x‖ < 1 and ω(x) := 0 if ‖x‖ ≥ 1,
where ‖ · ‖ denotes the Euclidean norm in R

n, and let r > 0 be such that {x ∈
R

n; ‖x‖ ≤ r} ⊂ Ω (recall that we may assume that 0 ∈ Ω). Then the function

θ defined by θ(x) :=
(∫

Ω
ω
(

x
r

)
dx

)−1
ω
(

x
r

)
for x ∈ Ω belongs to the space D(Ω)

and satisfies (2.8). Likewise for instance, let a function χ ∈ D(Ω) be such that∫
Ω
χdx = −1; then the functions θj := ∂jχ belong to the space D(Ω) and they

satisfy (2.9), since
∫

Ω

θjdx =

∫

Ω

∂jχdx = 0,

∫

Ω

xiθjdx =

∫

Ω

xi∂jχdx = −

∫

Ω

δijχdx = δij .

Given functions θ ∈ D(Ω) and θj ∈ D(Ω), 2 ≤ j ≤ n, satisfying (2.8)−(2.9), we
then define vector fields θi ∈ D(Ω; Rn) and θij ∈ D(Ω; Rn), 2 ≤ j ≤ n, by letting

(2.10) θi := θei and θij = θjei, 1 ≤ i < j ≤ n,

where ei denote the vectors of the canonical basis of R
n.

Given any vector field ψ = (ψi) ∈ D(Ω; Rn), let the vector field ϕ = (ϕi) ∈
D(Ω; Rn) be defined by

ϕi := ψi − λiθ −
∑

i<j

λijθj ,

or equivalently, by

(2.11) ϕ = ψ − λiθi −
∑

i<j

λijθij ,

where

(2.12) λi :=

∫

Ω

ψidx and λij :=

∫

Ω

(xjψi − xiψj)dx.
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We then observe that, thanks to relations (2.8)−(2.9), the vector field ϕ defined
in (2.11) belongs to the space D1(Ω; Rn) : First,

∫

Ω

ϕidx =

∫

Ω

ψidx− λi

∫

Ω

θdx−
∑

i<j

λij

∫

Ω

θjdx = 0.

Second, for i < j (the case j < i is similar),
∫

Ω

(xjϕi − xiϕj)dx = λij −
∑

i<p

λip

∫

Ω

xjθpdx+
∑

j<q

λjq

∫

Ω

xiθqdx = 0,

since
∑

i<p

λip

∫

Ω

xjθpdx = λij and
∑

j<q

λjq

∫

Ω

xiθqdx = 0.

If a vector field u ∈ D′(Ω; Rn) satisfies (2.6), we thus have

(2.13) < u,ψ >= λi < u,θi > +
∑

i<j

λij < u,θij > for all ψ ∈ D(Ω; Rn),

where the vector fields θi and θij and the coefficients λi and λij are respectively
defined as in (2.10) and (2.12). Letting

ai :=< u,θi >, aii = 0, and aij = −aji :=< u,θij > if i < j,

we can rewrite relations (2.13) as

< u,ψ > =

∫

Ω

aiψidx+
∑

i<j

∫

Ω

(aijxjψi − aijxiψj)dx(2.14)

=

∫

Ω

(ai + aijxj)ψidx.

Since relations (2.14) hold for all ψ ∈ D(Ω; Rn), the vector field u ∈ D′(Ω; Rn) is
indeed of the announced form (2.7), with a := (ai) ∈ R

n and A := (aij) ∈ A
n. �

Remark 2.5. (1) The above proof shows that, given any functions θ ∈ D(Ω) and
θj ∈ D(Ω), 2 ≤ j ≤ n, that satisfy (2.8)−(2.9), the space D(Ω; Rn) can be written
as the direct sum D1(Ω; Rn)⊕ Span (θi)⊕ Span (θij)i<j , where the vector fields θi

and θij are those defined in (2.10). More precisely, any vector field ψ ∈ D(Ω; Rn)
can be written as

ψ = ϕ+ λiθi +
∑

i<j

λijθij ,

with

ϕ ∈ D1(Ω; Rn), λi :=

∫

Ω

ψidx, λij :=

∫

Ω

(xjψi − xiψj)dx.

(2) If n = 3, a vector field of the form (2.7) is nothing but an infinitesimal rigid

displacement, i.e., of the form (1.14). �

Lemma 2.6. Let Ω be a bounded open subset of R
n. The space D1(Ω; Rn) defined

in (2.5) in dense in the space

(2.15) L2
1(Ω; Rn) := {v = (vi) ∈ L2(Ω; Rn);

∫

Ω

vidx =

∫

Ω

(xjvi − xivj)dx = 0},

with respect to the norm of the space L2(Ω; Rn).
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Proof. Let the vector fields θi ∈ D(Ω; Rn) and θij ∈ D(Ω; Rn), 2 ≤ j ≤ n, be
defined as in (2.10), where the functions θ ∈ D(Ω) and θj ∈ D(Ω), 2 ≤ j ≤ n,
satisfy relations (2.8)−(2.9).

Let ‖ · ‖L2 designate the norm in the space L2(Ω; Rn). Given any vector field

v ∈ L2
1(Ω; Rn), there exist vector fields ψk = (ψk

i ) ∈ D(Ω; Rn), k ≥ 1, such that

‖ψk − v‖L2 → 0 as k → ∞. For each k ≥ 1, let

ϕk := ψk −

(∫

Ω

ψk
i dx

)
θi −

∑

i<j

(∫

Ω

(xjψ
k
i − xiψ

k
j )dx

)
θij ,

so that ϕk ∈ D1(Ω; Rn) (to see this, argue as in the proof of Lemma 2.3). Besides,

‖ϕk − v‖L2 ≤ ‖ψk − v‖L2 +

∣∣∣∣
∫

Ω

ψk
i dx

∣∣∣∣‖θi‖L2 +
∑

i<j

∣∣∣∣
∫

Ω

(xjψ
k
i − xiψ

k
j )dx

∣∣∣∣‖θij‖L2 .

Therefore, ‖ϕk − v‖L2 → 0 as k → ∞, since
∫

Ω

ψk
i dx →

k→∞

∫

Ω

vidx = 0,

∫

Ω

(xjψ
k
i − xiψ

k
j )dx →

k→∞

∫

Ω

(xjvi − xivj)dx = 0.

�

While Lemmas 2.1 and 2.3, resp. 2.2 and 2.4, hold in any open, resp. bounded
open, subset of R

n, some restrictions need to be imposed in the next lemma (which
concludes our list of “preliminaries”), according to the following definition : A
domain in R

n is an open, bounded, connected subset Ω of R
n, with a Lipschitz-

continuous boundary Γ, the set Ω being locally on one side of Γ.
The mapping T = (Ti) defined in the next lemma plays a key role in the rest of

the paper.

Lemma 2.7. Let Ω be a domain in R
n. Then the Hilbert space H1

0 (Ω; Rn) equipped

with the norm (vi) 7→ (
∫
Ω
∂jvi∂jvidx)

1/2 can be written as the direct sum

(2.16) H1
0 (Ω; Rn) = V ⊕ V ⊥,

where the subspace V and its orthogonal complement V ⊥ are defined by

V := {v ∈ H1
0 (Ω; Rn); div v = 0 in L2(Ω)},(2.17)

V ⊥ := {v ∈ H1
0 (Ω; Rn);−∆v = grad q for some q ∈ L2(Ω)}.(2.18)

Let the space L2
0(Ω) be defined as in (2.4). Then there exists a bijection

(2.19) T = (Ti) : v ∈ L2
0(Ω) 7→ T v = (Tiv) ∈ V

⊥ ⊂ H1
0 (Ω; Rn),

which is linear and continuous, hence an isomorphism, between the spaces L2
0(Ω)

and V ⊥, and that satisfies

(2.20) −div(T v) = v for all v ∈ L2
0(Ω).
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Proof. That the space H1
0 (Ω; Rn) can be written as the direct sum (2.16), with

the spaces V and V ⊥ being defined as in (2.17)−(2.18), is proved in Corollary 2.3,
Chapter 1, of Girault & Raviart [14]. It is also shown in Corollary 2.4, Chapter

1, of ibid., that the operator div is an isomorphism of V ⊥ onto L2
0(Ω); hence the

operator T of (2.19) is an isomorphism of L2
0(Ω) onto V ⊥ since, in view of (2.20),

T is nothing but the inverse of the operator −div. �

Remark 2.8. (1) That the domain of the operator T should be the subspace L2
0(Ω)

of L2(Ω) is clear, since the range of T is a subspace of H1
0 (Ω; Rn).

(2) For a given function v ∈ L2
0(Ω), all the solutions u ∈ H1

0 (Ω; Rn) to the
equation −div u = v are thus of the form u = T v +w for some w ∈ V .

(3) It is shown in Theorem 2’ of Bourgain & Brezis [4] that, more generally for
any 1 < p <∞, there likewise exists a linear and continuous mapping

T : Lp
0(Ω) :=

{
v ∈ Lp(Ω);

∫

Ω

vdx = 0
}
→W 1,p

0 (Ω; Rn)

such that −div(T v) = v for all v ∈ Lp
0(Ω). �

3. A Poincaré lemma with little regularity

A classical lemma of Poincaré asserts that, if functions fi ∈ C1(Ω) satisfy ∂ifj −
∂jfi = 0 in a simply-connected open subset Ω of R

n, then there exists a function
u ∈ C2(Ω) such that ∂iu = fi in Ω. It is easily verified that, in this case, an explicit

solution to the equations ∂iu = fi in Ω is given by the path integral formula

(3.1) u(x) =

∫

γ(x)

fi(y)dyi for all x ∈ Ω,

where γ(x) is any path of class C1 contained in Ω and joining a point x0 ∈ Ω
(considered as fixed) to the point x ∈ Ω, the relations ∂ifj − ∂jfi = 0 in Ω insuring
that the value u(x) computed by (3.1) is independent of the path chosen for joining
x0 to x.

The above classical lemma of Poincaré was extended in Theorem 2.9, Chapter 1,
of Girault & Raviart [14], as follows: If functions fi ∈ L2(Ω) satisfy ∂ifj −∂jfi = 0
inH−1(Ω), where Ω is a simply-connected domain in R

n (domains are defined before
Lemma 2.5), then there exists a function u ∈ H1(Ω) such that ∂iu = fi in L2(Ω).
This extension was then carried out one step further in Theorem 3.1 of Ciarlet &
Ciarlet, Jr. [6], according to the next theorem.

Theorem 3.1 (Poincaré lemma with little regularity). Let Ω be a simply-connected

domain in R
n, and let fi ∈ H−1(Ω) be distributions that satisfy

∂ifj − ∂jfi = 0 in H−2(Ω).

Then there exists a function u ∈ L2(Ω), unique up to an additive constant, such

that

∂iu = fi in H−1(Ω).
�
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Remark 3.2. Theorem 3.1 holds in the more general situation where fi ∈ H−m(Ω)
for any integer m ≥ 2 (in which case u ∈ H−m+1(Ω)); see Amrouche, Ciarlet &
Ciarlet, Jr. [1, 2] and Geymonat & Krasucki [12, 13], where the extension to a non
simply-connected domain is also treated. The last word in this direction is due to
S. Mardare [16], who has shown that the Poincaré lemma holds in fact in the sense
of distributions. �

We first show that, even under the weaker regularity assumptions of Theorem 3.1
(in which case formula (3.1) becomes meaningless), there is still a way to “compute”
a solution u ∈ L2(Ω) to the equations ∂iu = fi in H−1(Ω). This objective is
achieved by means of an explicit expression in terms of the data fi of the duality
pairings< u,ϕ > for all functions ϕ ∈ D(Ω) that satisfy

∫
Ω
ϕdx = 0; cf. (3.4) below.

Note that, by Lemma 2.1, the knowledge of such duality pairings determines the
distribution u only up to an additive constant (as expected).

Theorem 3.3. Let Ω be a simply-connected domain in R
n, let the space D0(Ω) be

defined as in (2.1), viz.,

D0(Ω) := {ϕ ∈ D(Ω);

∫

Ω

ϕdx = 0},

and let fi ∈ H−1(Ω) be distributions that satisfy

(3.2) ∂ifj − ∂jfi = 0 in H−2(Ω).

Then a function u ∈ L2(Ω) satisfies

(3.3) ∂iu = fi in H−1(Ω)

if and only if

(3.4) < u,ϕ >=< fi, Tiϕ > for all ϕ ∈ D0(Ω),

where T = (Ti) : L2
0(Ω) → H1

0 (Ω; Rn) is the continuous linear operator defined in

Lemma 2.5.

Proof. Note that, in (3.4), < u,ϕ >=
∫
Ω
uϕdx, and < fi, Tiϕ > is the duality

pairing between the spaces H1
0 (Ω) and H−1(Ω).

Assume first that a function u ∈ L2(Ω) satisfies ∂iu = fi in H−1(Ω). Given any
function ϕ ∈ D0(Ω) ⊂ L2

0(Ω), Lemma 2.5 shows that the vector field Tϕ = (Tiϕ) ∈
H1

0 (Ω; Rn) satisfies −∂i(Tiϕ) = ϕ in the space L2
0(Ω) = {v ∈ L2(Ω);

∫
Ω
vdx = 0}.

Therefore,

< u,ϕ >=< u,−∂i(Tiϕ) >=< ∂iu, Tiϕ >=< fi, Tiϕ > .

Assume next that a function u ∈ L2(Ω) satisfies < u,ϕ >=< fi, Tiϕ > for
all ϕ ∈ D0(Ω). Since, given any vector field (ψj) ∈ D(Ω; Rn), the function ∂jψj

belongs to the space D0(Ω), it follows that

−∂iTi(∂jψj) = ∂jψj in L2
0(Ω),

which in turn implies that

< ∂ju, ψj > =< u,−∂jψj >= − < fi, Ti(∂jψj) >

=< fi, ψi > − < fi, ψi + Ti(∂jψj) > .
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But

∂i(ψi + Ti(∂jψj)) = ∂iψi + ∂iTi(∂jψj) = ∂iψi − ∂jψj = 0,

and since ∂ifj − ∂jfi = 0 in H−2(Ω), there exists by Theorem 3.1 a function
p ∈ L2(Ω) such that ∂ip = fi in H−1(Ω). Therefore,

< fi, ψi + Ti(∂jψj) >=< ∂ip, ψi + Ti(∂jψj) >=< p,−∂i(ψi + Ti(∂jψj)) >= 0.

We are thus left with < ∂ju, ψj >=< fi, ψi > for all (ψi) ∈ D(Ω; Rn), which
shows that ∂iu = fi in H−1(Ω). �

Remark 3.4. The function p appearing in the above proof is of course of the form
p = u+C for some constant C, but this observation is not used in the above proof.
The only reason for introducing p is to allow to rewrite the vector field (fi) as a
gradient, in this case the gradient of the function p. �

We next show that the solution to the equations ∂iu = fi in H−1(Ω) can also
be found by solving a variational problem (cf. (3.5) below), which satisfies all
the assumptions of the Lax-Milgram lemma. The operators Ti : L2

0(Ω) → H1
0 (Ω)

appearing in (3.5) are again those defined in Lemma 2.5.

Theorem 3.5. Let Ω be a simply-connected domain in R
n, let the space L2

0(Ω) be

defined as in (2.4), viz.,

L2
0(Ω) := {v ∈ L2(Ω);

∫

Ω

vdx = 0},

and let there be given distributions fi ∈ H−1(Ω) that satisfy

∂ifj − ∂jfi = 0 in H−2(Ω).

Then the variational problem: Find a function u ∈ L2
0(Ω) such that

(3.5) < u, v >=< fi, Tiv > for all v ∈ L2
0(Ω),

has a unique solution, which is also a solution to the equations

(3.6) ∂iu = fi in H−1(Ω),

in effect the only solution to (3.6) that satisfies
∫
Ω
udx = 0.

Proof. Since < u, v >=
∫
Ω
uvdx, the bilinear form appearing in the left-hand side

of the variational equations (3.5) is clearly continuous and coercive over the space
L2

0(Ω). The linear form appearing in their right-hand side is clearly continuous,
since Ti ∈ L(L2

0(Ω);H1
0 (Ω)) (Lemma 2.5). Hence the variational equations (3.5)

have a unique solution u in the space L2
0(Ω). Furthermore, u is a solution to the

equations ∂iu = fi in H−1(Ω), by Theorem 3.2. �
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Remark 3.6. Interestingly, the existence of a solution to the variational equations
(3.5) can be obtained without a recourse to the Lax-Milgram lemma (its uniqueness
is clear): Let u ∈ L2

0(Ω) denote the unique solution to the equations ∂iu = fi in
H−1(Ω) that satisfies

∫
Ω
udx = 0 (the existence of such a solution follows from

Theorem 3.1; its uniqueness is again clear). By Theorem 3.2, this solution satisfies

< u,ϕ >=< fi, Tiϕ > for all ϕ ∈ D0(Ω).

But the space D0(Ω) is dense in the space L2
0(Ω) (Lemma 2.2) and the operators

Ti : L2
0(Ω) → H1

0 (Ω) are continuous (Lemma 2.5); hence the above variational
equations hold more generally for all ϕ ∈ L2

0(Ω). �

4. A Cesàro-Volterra formula with little regularity

As shown in Ref. [6], the classical Saint-Venant compatibility conditions (1.2)
remain sufficient when they take the weaker form of the equations (4.1) below,
which we will call the Saint-Venant compatibility conditions with little regularity

(although the proof in ibid. was given for n = 3, it readily extends to any integer
n ≥ 2):

Theorem 4.1 (Saint-Venant compatibility conditions with little regularity). Let

Ω be a simply-connected domain in R
n, and let eij = eji ∈ L2(Ω) be functions that

satisfy

(4.1) ∂ljeik + ∂kiejl − ∂liejk − ∂kjeil = 0 in H−2(Ω).

Then there exists a vector field u = (ui) ∈ H1(Ω; Rn), unique up to the addition of

a vector field of the form x ∈ Ω → a +A ox for some a ∈ R
n and A ∈ A

n, such

that

(4.2)
1

2
(∂jui + ∂iuj) = eij in L2(Ω).

Remark 4.2. Theorem 4.1 can be extended to non simply-connected domains;
see Geymonat & Krasucki [11] and Ciarlet, Ciarlet, Jr., Geymonat & Krasucki [8].
Theorem 4.1 similarly holds in the more general situation where eij = eji ∈ H−1(Ω)
for some integer m ≥ 0 (in which case u ∈ H−m+1(Ω; Rn); see Amrouche, Ciarlet,
Gratie & Kesavan [3]). �

Under the weak regularity assumptions of Theorem 4.1, the classical Cesàro-
Volterra path integral formula (1.5) becomes meaningless. But we nevertheless show
that there is still a way in this case to “compute” a solution u = (ui) ∈ H1(Ω; Rn)
to the equations (4.2) in this case.

This objective is achieved by means of an explicit expression in terms of the
data eij ∈ L2(Ω) of the duality pairings < u,ϕ >=< ui, ϕi > for all vector fields
ϕ = (ϕi) ∈ D(Ω; Rn) that satisfy

∫
Ω
ϕidx =

∫
Ω
(xjϕi−xiϕj)dx = 0; cf. (4.3) below.

Note that, by Lemma 2.3, the knowledge of such duality pairings determines the
vector field u only up to a vector field of the form a+A ox for some a ∈ R

n and
A ∈ A

n (as expected). By reference with the classical Cesàro-Volterra path integral
formula (1.5), we will say that relations (4.3) contitute the Cesàro-Volterra formula
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with little regularity (this terminology will be further substantiated in Theorem 5.1
and, especially, in Theorem 5.2).

Theorem 4.3 (Cesàro-Volterra formula with little regularity). Let Ω be a simply-

connected domain in R
n, let the space D1(Ω; Rn) be defined as in (2.5), viz.,

D1(Ω; Rn) := {ϕ = (ϕi) ∈ D(Ω; Rn);

∫

Ω

ϕidx =

∫

Ω

(xjϕi − xiϕj)dx = 0},

and let there be given a matrix field e = (eij) ∈ L2(Ω; S3) whose components eij =
eji ∈ L2(Ω) satisfy the Saint-Venant compatibility conditions with little regularity

(4.1), viz.,

∂ljeik + ∂kiejl − ∂liejk − ∂kjeil = 0 in H−2(Ω).

Then a vector field u = (ui) ∈ H1(Ω; Rn) satisfies equations (4.2), viz.,

1

2
(∂jui + ∂iuj) = eij in L2(Ω),

if and only if

(4.3)
< ui, ϕi >=< eij , Tiϕj + ∂k[Ti(Tjϕk − Tkϕj)] > for all ϕ = (ϕi) ∈ D1(Ω; Rn),

where T = (Ti) : L2
0(Ω) → H1

0 (Ω; Rn) is the continuous linear operator defined in

Lemma 2.5.

Proof. Note that the duality pairings < · , · > appearing in (4.3) are simply
those of the space L2(Ω).

(i) Assume first that a vector field u = (ui) ∈ H1(Ω; Rn) satisfies
1

2
(∂jui +

∂iuj) = eij in L2(Ω), and let there be given a vector field ϕ = (ϕi) ∈ D1(Ω; Rn).
Define the functions

aij = −aij :=
1

2
(∂jui − ∂iuj) ∈ L2(Ω),

so that ∂jui = eij + aij . Since each component ϕi of the vector field ϕ belongs
to the space D0(Ω) = {ϕ ∈ D(Ω);

∫
Ω
ϕdx = 0} ⊂ L2

0(Ω), Lemma 2.5 shows that,

for each i, the vector field Tϕi = (Tjϕi) ∈ H1
0 (Ω; Rn) satisfies −∂j(Tjϕi) = ϕi in

L2(Ω). Consequently,

< ui, ϕi > = − < ui, ∂j(Tjϕi) >=< ∂jui, Tjϕi >=< eij + aij , Tjϕi >(4.4)

=< eij , Tiϕj > +
1

2
< aij , Tjϕi − Tiϕj >,

since eij = eji and aij = −aji.
We next note that each function (Tjϕi−Tiϕj) ∈ H1

0 (Ω) also belongs to the space
L2

0(Ω), since

0 =

∫

Ω

(xjϕi − xiϕj)dx =

∫

Ω

{xj [−∂k(Tkϕi)] + xi[∂k(Tkϕj)]}dx

=

∫

Ω

{δjkTkϕi − δikTkϕj}dx =

∫

Ω

(Tjϕi − Tiϕj)dx.

Consequently,

(4.5) Tjϕi − Tiϕj = −∂kTk(Tjϕi − Tiϕj).
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We also note that

(4.6) ∂kaij =
1

2
(∂jkui − ∂ikuj) = −∂iekj + ∂jeki in H−1(Ω).

Using (4.5) and (4.6), we then obtain

< aij ,Tjϕi − Tiϕj >= − < aij , ∂kTk(Tjϕi − Tiϕj) >(4.7)

=< ∂kaij , Tk(Tjϕi − Tiϕj) >=< −∂iekj + ∂jeki, Tk(Tjϕi − Tiϕj) >

=< ekj , ∂i[Tk(Tjϕi − Tiϕj)] > − < eki, ∂j [Tk(Tjϕi − Tiϕj)] >

=< eij , ∂k[Ti(Tjϕk − Tkϕj)] > − < eji, ∂k[Tj(Tkϕi − Tiϕk)] >

= 2 < eij , ∂k[Ti(Tjϕk − Tkϕj)] > .

Therefore, relations (4.3) follow from (4.4) and (4.7).
(ii) Assume next that a vector field u = (ui) ∈ H1(Ω; Rn) satisfies relations

(4.3).
Let then a matrix field ψ = (ψij) ∈ D(Ω; Sn) be given. We first note that

(∂jψij)
n
i=1 ∈ D1(Ω; Rn), since

(4.8)

∫

Ω

∂jψij = 0,

(4.9)

∫

Ω

(xk∂jψlj−xl∂jψkj)dx = −

∫

Ω

(δjkψlj−δjlψkj)dx = −

∫

Ω

(ψlk−ψkl)dx = 0.

We thus have, by (4.3),

1

2
< ∂jui + ∂iuj , ψij >=< ∂jui, ψij >= − < ui, ∂jψij >(4.10)

= − < eij , Ti(∂kψjk) + ∂k[Ti(Tj(∂lψkl) − Tk(∂lψjl))] >

= − < eij , Ti(∂kψjk) > + < ∂keij , Ti(Tj(∂lψkl) − Tk(∂lψjl)) >

= − < eij , Ti(∂kψjk) > + < ∂keij − ∂jeik, Ti(Tj(∂lψkl)) > .

We next observe that the Saint-Venant compatibility conditions with little reg-
ularity (4.1) may be rewritten as

∂lhjki = ∂ihjkl in H−2(Ω), where hjki = −hkji := ∂keji − ∂jeki ∈ H−1(Ω).

The Poincaré lemma with little regularity (Theorem 3.1) then shows that there
exist functions pjk ∈ L2(Ω), each one being unique up to an additive constant,
such that

(4.11) ∂ipjk = hjki = ∂keij − ∂jeik in H−1(Ω).

Since ∂i(pjk + pkj) = hjki + hkji = 0, these additive constants can be adjusted in
such a way that

(4.12) pjk + pkj = 0 in L2(Ω).

Thanks to relations (4.11)−(4.12), we thus have

< ∂keij − ∂jeik, Ti(Tj(∂lψkl)) >=< ∂ipjk, Ti(Tj(∂lψkl)) >(4.13)

= − < pjk, ∂i[Ti(Tj(∂lψkl))] >

= −
1

2
< pjk, ∂i[Ti(Tj(∂lψkl) − Tk(∂lψjl))] > .
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As shown in (4.8), for each k = 1, . . . , n, the function ∂lψkl belongs to the space
L2

0(Ω). Consequently, relations (4.9) combined with the definition of the operator
T = (Ti) : L2

0(Ω) → H1
0 (Ω; Rn) (cf. Lemma 2.5) give

0 =

∫

Ω

(xj∂lψkl − xk∂lψjl)dx

=

∫

Ω

(
−xj∂pTp(∂lψkl) + xk∂qTq(∂lψjl)

)
dx

=

∫

Ω

(
δjpTp(∂lψkl) − δkqTq(∂lψjl)

)
dx =

∫

Ω

(
Tj(∂lψkl) − Tk(∂lψjl

)
dx,

which means that, for each j = 1, . . . , n and each k = 1, . . . , n, the function
(Tj(∂lψkl) − Tk(∂lψjl)) also belongs to the space L2

0(Ω). As a result, relations
(4.13) become

< ∂keij − ∂jeik, Ti(Tj(∂lψkl)) >=
1

2
< pjk, Tj(∂lψkl) − Tk(∂lψjl) >(4.14)

=< pjk, Tj(∂lψkl) >,

thanks again to relations (4.12).
Using (4.14) in (4.10) then gives

(4.15)

1

2
< ∂jui + ∂iuj , ψij > = − < eij , Ti(∂kψjk) > + < pjk, Tj(∂lψkl) >

=< eij , ψij > + < pjk − ejk, ψjk + Tj(∂lψkl) >,

since < pjk, ψjk >= 0 (recall that pjk = −pkj and ψjk = ψkj). Noting that, by
(4.11), the functions

qjk := pjk − ejk ∈ L2(Ω)

satisfy

∂lqjk = ∂jqlk in H−1(Ω),

we again resort to the Poincaré lemma with little regularity (Theorem 3.1) to con-
clude that there exist functions vk ∈ H1(Ω), each one being unique up to an additive
constant, such that

qjk = ∂jvk = pjk − ejk in L2(Ω).

Consequently,

< pjk − ejk,ψjk + Tj(∂lψkl) >=< ∂jvk, ψjk + Tj(∂lψkl) >(4.16)

= − < vk, ∂jψjk + ∂jTj(∂lψkl) >,

since (ψjk +Tj(∂lψkl)) ∈ H1
0 (Ω). But the definition of the operators Tj (recall that

∂lψkl ∈ D0(Ω) ⊂ L2
0(Ω)) and the symmetries ψkl = ψlk together imply that

(4.17) −∂jTj(∂lψkl) = ∂lψkl = ∂jψjk.

Combining (4.15), (4.16), and (4.17), we are thus left with

1

2
< ∂jui + ∂iuj , ψij >=< eij , ψij > .

Since this relation holds for any matrix field ψ = (ψij) ∈ D(Ω; Sn), it follows that
1
2 (∂jui + ∂iuj) = eij in L2(Ω), as announced. �
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We next show that the solution u = (ui) to the equations 1
2 (∂jui +∂iuj) = eij in

L2(Ω) can be found by solving a variational problem (cf (4.18) below), which satisfies
all the assumptions of the Lax-Milgram lemma. The operators Ti : L2

0(Ω) → H1
0 (Ω)

are again those defined in Lemma 2.5.

Theorem 4.4. Let Ω be a simply-connected domain in R
n, let the space L2

1(Ω; Rn)
be defined as in (2.15), viz.,

L2
1(Ω; Rn) := {v = (vi) ∈ L2(Ω; Rn);

∫

Ω

vidx =

∫

Ω

(xjvi − xivj)dx = 0},

and let there be given functions eij = eji ∈ L2(Ω) that satisfy the Saint-Venant

compatibility conditions with little regularity, viz.,

∂ljeik + ∂kiejl − ∂liejk − ∂kjeil = 0 in H−2(Ω).

Then the variational problem : Find a vector field (ui) ∈ L2
1(Ω; Rn) such that

(4.18) < ui, vi >=< eij , Tivj + ∂k[Ti(Tjvk − Tkvj)] > for all (vi) ∈ L2
1(Ω; Rn),

has a unique solution. Besides, (ui) is in fact in the space H1(Ω; Rn) and is a

particular solution to the equations

(4.19)
1

2
(∂jui + ∂iuj) = eij in L2(Ω),

in effect the only solutions to (4.19) that satisfy
∫
Ω
uidx =

∫
Ω
(xjui − xiuj)dx = 0.

Proof. We first note that, given any vector field (vi) ∈ L2
1(Ω; Rn), each function

vi belongs to the space L2
0(Ω) (by definition of the space L2

1(Ω; Rn)), and each
function (Tjvk − Tkvj) also belongs to L2

0(Ω) (the proof is the same as that given
for a vector field (ϕi) ∈ D1(Ω; Rn) in part (i) of the proof of Theorem 4.2). Hence
the right-hand side of the variational equations (4.18) makes sense; besides, it
clearly defines a continuous linear form on the space L2

1(Ω; Rn) since the operators
Ti : L2

0(Ω) → H1
0 (Ω) are continuous. Since < ui, vi >=

∫
Ω
uividx, the bilinear

form appearing in the left-hand side of equations (4.18) is clearly continuous and
coercive over the space L2

1(Ω; Rn). Hence the variational equations (4.18) have a
unique solution u = (ui) ∈ L2

1(Ω; Rn).
We then observe that there exists a unique vector field ũ = (ũi) ∈ H1(Ω; Rn) ∩

L2
1(Ω; Rn) that satisfies 1

2 (∂j ũi + ∂iũj) = eij in L2(Ω) (the existence follows from
Theorem 4.1; the uniqueness follows from Lemma 2.3). Therefore this vector field
ũ ∈ H1(Ω; Rn) satisfies

< ũi, ϕi >=< eij , Tiϕj + ∂k[Ti(Tjϕk − Tkϕj)] > for all ϕ = (ϕi) ∈ D1(Ω; Rn),

by Theorem 4.2. But, since the space D1(Ω; Rn) is dense in the space L2
1(Ω; Rn)

(cf. Lemma 2.4) and the operators Ti : L2
0(Ω) → H1

0 (Ω) are continuous, the vector
field u also satisfies

< ũi, vi >=< eij , Tivj + ∂k[Ti(Tjvk − Tkvj)] > for all v ∈ L2
1(Ω; Rn).

Hence ũ = u, since the variational equations (4.18) have a unique solution in the
space L2

1(Ω; Rn). Therefore, u ∈ H1(Ω; Rn). �
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5. The Cesàro-Volterra formula with little regularity is indeed a

generalization of the classical formula

To begin with, we show how the Cesàro-Volterra formula with little regularity
(4.3) in dimension n = 3 can be rewritten in a vector-matrix form (cf. (5.5) below)
that is, at least formally, highly reminiscent of the vector-matrix form (1.6) of
the classical Cesàro-Volterra path integral formula. To this end, we need some
additional notation.

Given any vector fields u = (ui) and ϕ = (ϕi) in L2(Ω; R3), and given any
matrix fields e = (eij) ∈ D′(Ω; M3) and ψ = (ψij) ∈ D′(Ω; M3), we let

(5.1) < u,ϕ >:=

∫

Ω

uiϕidx and ≪ e,ϕ≫:=< eij , ψij > .

Given any matrix field e = (eij) ∈ D′(Ω; M3), we let the matrix field CURLe ∈
D′(Ω; M3) be defined as in (1.7), viz.,

(5.2) CURL e =



∂2e13 − ∂3e12 ∂3e11 − ∂1e13 ∂1e12 − ∂2e11
∂2e23 − ∂3e22 ∂3e21 − ∂1e23 ∂1e22 − ∂2e21
∂2e33 − ∂3e32 ∂3e31 − ∂1e33 ∂1e32 − ∂2e31


 .

Given any vector field ϕ = (ϕi) ∈ L2
0(Ω; R3), we define the vector field

(5.3) T ∧ϕ :=



T2ϕ3 − T3ϕ2

T3ϕ1 − T1ϕ3

T1ϕ2 − T2ϕ1


 ∈ H1

0 (Ω; R3),

and the matrix field

(5.4) T ⊗ϕ :=



T1ϕ1 T1ϕ2 T1ϕ3

T2ϕ1 T2ϕ2 T2ϕ3

T3ϕ1 T3ϕ2 T3ϕ3


 ∈ H1

0 (Ω; M3),

where the operator T = (Ti) : L2
0(Ω) → H1

0 (Ω; R3) is that defined in Lemma 2.5.

Remark 5.1. The notations (5.3)−(5.4) are to be viewed as symbolic, like the
notation (u · ∇)u often used to denote the vector field ((∂jui)uj) found in the
Navier-Stokes equations. �

Theorem 5.2. Let n = 3 and let the assumptions be those of Theorem 4.2. With

the notations of (5.1)−(5.4), the Cesàro-Volterra formula with little regularity (4.3)
becomes

(5.5)
< u,ϕ >=≪ e,T ⊗ϕ≫ + ≪ CURL e,T ⊗ (T ∧ϕ) ≫ for all ϕ ∈ D1(Ω; R3).

Proof. Formula (4.3) may be equivalently rewritten as

(5.6) < ui, ϕi >=< eij , Tiϕj > − < ∂keij , Ti(Tjϕk − Tkϕj) > .

It is then easily verified that formula (5.5) is simply the vector-matrix form of
formula (5.6), rewritten with the notations defined in (5.1)−(5.4) (recall that each
function ϕj and each function (Tjϕk − Tkϕj) belongs to the domain L2

0(Ω) of the
operators Ti when ϕ = (ϕi) ∈ D1(Ω; R3); cf. the proof of Theorem 4.2). �
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While the first justification above is admittedly not fully convincing, the second
one (given in Theorem 5.2 below) is clearly so, since it establishes that the Cesàro-

Volterra formula with little regularity reduces to the classical Cesàro-Volterra for-

mula (1.5) (reproduced in (5.8) below) when the data are smooth enough.

Note that relation (5.7) below, which only involves the functions eij, is established

without using that its left-hand side is also given by < ui, ϕi >, by Theorem 4.2
(otherwise this information would immediately provide a “proof” of (5.7), through
the expression of ui(x) given by the classical Cesàro-Volterra formula (1.5)). In the
same vein, note that the following proof clearly associates each term in the classical
formula with a corresponding one in the formula with little regularity.

Finally, note that, by contrast with Theorem 5.1, the next result holds in any
dimension n ≥ 2.

Theorem 5.3. Let the assumptions be those of Theorem 4.2, the functions eij =
eji ∈ L2(Ω) being in addition assumed to be in the space C1(Ω) ∩ H1(Ω), and let

the operator (Ti) : L2
0(Ω) → H1

0 (Ω; Rn) be that defined in Lemma 2.5.
Fix a point x0 ∈ Ω, and, given any point x ∈ Ω, let γ(x) be any path of class C1

contained in Ω and joining x0 to x. Then the right-hand side of the Cesàro-Volterra

formula with little regularity (4.3) can be rewritten in this case as

< eij , Tiϕj + ∂k[Ti(Tjϕk − Tkϕj)] >

(5.7)

=

∫

Ω

[∫

γ(x)

{eij(y) + (∂keij(y) − ∂iekj(y))(xk − yk)}dyj

]
ϕi(x)dx

for all (ϕi) ∈ D1(Ω; Rn).
Relations (5.7) in turn imply that any vector field (ui) ∈ H1(Ω; Rn) that satisfies

the Cesàro-Volterra formula with little regularity (4.3) is also given by

(5.8) ui(x) =

∫

γ(x)

{eij(y) + (∂keij(y) − ∂iekj(y))(xk − yk)}dyj , x ∈ Ω,

up to the addition of a vector field of the form x ∈ Ω 7→ a+Aox for some a ∈ R
n

and A ∈ A
n. Besides, (ui) ∈ C2(Ω; Rn) in this case.

Proof. (i) A preliminary result : Let Ω be a simply-connected domain in R
n, and

let fi ∈ C0(Ω) ∩ L2(Ω) be functions that satisfy

(5.9) ∂ifj − ∂jfi = 0 in H−1(Ω).

Fix a point x0 ∈ Ω and, given any point x ∈ Ω, let γ(x) be any path of class C1

contained in Ω and joining x0 to x. Then

(5.10) < fi, Tiϕ >=

∫

Ω

[∫

γ(x)

fj(y)dyj

]
ϕ(x)dx for all ϕ ∈ L2

0(Ω).

Relations (5.9) imply that there exists a function ũ ∈ L2(Ω) such that

(5.11) ∂iũ = fi in C0(Ω) ∩ L2(Ω),
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so that ũ ∈ C1(Ω) ∩ H1(Ω). Therefore, given any function ϕ ∈ L2
0(Ω), Green’s

formula gives (recall that Tiϕ ∈ H1
0 (Ω)) :

< fi, Tiϕ >=< ∂iũ, Tiϕ >= − < ũ, ∂iTiϕ >=< ũ, ϕ >,

by definition of the operator (Ti).
Since the function ũ ∈ C1(Ω) satisfies equation (5.11), its value ũ(x) at any point

x ∈ Ω is given by the path integral

ũ(x) = ũ(x0) +

∫

γ(x)

fj(y)dyj .

Consequently,

< fi, Tiϕ >= ũ(x0)

∫

Ω

ϕdx+

∫

Ω

[∫

γ(x)

fj(y)dyj

]
ϕdx.

Hence the conclusion follows, since
∫
Ω
ϕdx = 0.

(ii) Let the assumption be those of Theorem 5.2. First we observe that any vector
field (ui) ∈ H1(Ω; Rn) that satisfies (4.3) is in the space C2(Ω; Rn) ∩ H2(Ω; Rn),
since the relations 1

2 (∂jui + ∂iuj) = eij imply that

∂jkui = ∂jeik + ∂keij − ∂iejk in C0(Ω) and L2(Ω),

for all indices i, j, k. Noting that (ϕi) ∈ D1(Ω; Rn) implies ϕi ∈ L2
0(Ω) for each

index i, we next infer from the preliminary result of (i) that

(5.12) < eij , Tiϕj >=

∫

Ω

[∫

γ(x)

eij(y)dyj

]
ϕi(x)dx for all (ϕi) ∈ D1(Ω; Rn),

which takes care of the first term appearing in the left-hand side of (5.7).
(iii) It remains to take care of the remaining term < eij , ∂k[Ti(Tjϕk − Tkϕj)] >

appearing in the left-hand side of (5.7). To this end, we first recall that (ϕi) ∈
D1(Ω; Rn) implies that (Tjϕk − Tkϕj) ∈ L2

0(Ω) (cf. the proof of Theorem 4.2).
Noting that eij = eji ∈ H1(Ω) and that Ti(Tjϕk −Tkϕj) ∈ H1

0 (Ω), we next obtain,
by Green’s formula:

< eij , ∂k[Ti(Tjϕk − Tkϕj)] >= − < ∂keij , Ti(Tjϕk − Tkϕj) >(5.13)

= −
1

2
< ∂keij − ∂jeik, Ti(Tjϕk − Tkϕj) > .

The functions hjki := ∂keij − ∂jeik ∈ L2(Ω) satisfy ∂lhjki = ∂ihjkl in H−1(Ω).
Therefore the Poincaré lemma with little regularity (Theorem 3.1) shows that there
exist functions p̃jk = −p̃kj ∈ H1(Ω) such that

∂ip̃jk = ∂keij − ∂jeik in L2(Ω).

Combining another application of Green’s formula with the defining property of
the operator (Ti), the preliminary result of (i), and the antisymmetries p̃jk = −p̃kj ,
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we then obtain

−
1

2
< ∂keij − ∂jeik, Ti(Tjϕk − Tkϕj) >= −

1

2
< ∂ip̃jk, Ti(Tjϕk − Tkϕj) >

(5.14)

=
1

2
< p̃jk, ∂iTi(Tjϕk − Tkϕj) >= −

1

2
< p̃jk, Tjϕk − Tkϕj >

= −
1

2

∫

Ω

[∫

γ(x)

p̃jk(y)dyj

]
ϕk(x)dx+

1

2

∫

Ω

[∫

γ(x)

p̃kj(y)dyj

]
ϕk(x)dx

=

∫

Ω

[∫

γ(x)

p̃ij(y)dyj

]
ϕi(x)dx.

The path γ(x) can be written as γ(x) = f([0, 1]), where the mapping f = (fj) ∈
C1([0, 1]; Rn) satisfies f(0) = x0 and f(1) = x. Consequently,

∫

γ(x)

p̃ij(y)dyj =

∫ 1

0

p̃ij(f(t))
dfj

dt
(t)dt

= −

∫ 1

0

[
d

dt

(
p̃ij(f(t)

)]
fj(t)dt+ p̃ij(f(1))fj(1) − pij(f(0))fj(0)

= −

∫ 1

0

∂j p̃ik(f(t))fk(t)
dfj

dt
(t)dt+ xkp̃ik(x) − x0

kp̃ik(x0)

= −

∫

γ(x)

∂j p̃ik(y)ykdyj + xk(p̃ik(x) − p̃ik(x0)) + (xk − x0
k)p̃ik(x0),

where x0
k designates the k-th coordinate of x0. Since

p̃ik(x) − p̃ik(x0) =

∫ 1

0

d

dt
(p̃ik(f(t))dt =

∫ 1

0

∂j p̃ik(f(t))
dfj

dt
(t)dt

=

∫

γ(x)

∂j p̃ik(y)dyj ,

it follows that

∫

γ(x)

p̃ij(y)dyj = (xk − x0
k)p̃ik(x0) +

∫

γ(x)

(xk − yk)∂j p̃ik(y)dyj

(5.15)

= (xk − x0
k)p̃ik(x0) +

∫

γ(x)

(xk − yk)(∂keij(y) − ∂iejk(y))dyj .

Combining relations (5.12)−(5.15) then yields

< eij ,Tiϕj + ∂k[Ti(Tjϕk − Tkϕj)] >(5.16)

=

∫

Ω

[∫

γ(x)

{eij(y) + (∂keij(y) − ∂iejk(y))(xk − yk)}dyj

]
ϕi(x)dx

+

∫

Ω

p̃ik(x0)(xk − x0
k)ϕi(x)dx for all (ϕi) ∈ D1(Ω; Rn).

(iv) By Lemma 2.3,

(5.17)

∫

Ω

p̃ik(x0)(xk − x0
k)ϕi(x)dx = 0 for all (ϕi) ∈ D1(Ω; Rn),
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since the matrix (p̃ik(x0)) is antisymmetric. We therefore conclude from (5.16)−(5.17)
that, when the functions eij = eji belong to the space C1(Ω) ∩H1(Ω), any vector
field (ui) ∈ H1(Ω; Rn) that satisfies equations (4.3) for all (ϕi) ∈ D1(Ω; Rn) also
satisfies

< ui, ϕi >=

∫

Ω

[∫

γ(x)

{eij(y) + (∂keij(y) − ∂iejk(y))(xk − yk)}dyj

]
ϕi(x)dx

for all (ϕi) ∈ D1(Ω; Rn), and is in the space C2(Ω; Rn) ∩H2(Ω; Rn) by part (ii).
Lemma 2.3 then shows that there exist a vector (ai) ∈ R

n and an antisymmetric
matrix (aij) ∈ A

n such that

ui(x) =

[∫

γ(x)

{eij(y) + (∂keij(y) − ∂iejk(y))(xk − yk)}dyj

]
+ ai + aijxj

for all x = (xi) ∈ Ω, which completes the proof. �
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A CESÀRO-VOLTERRA FORMULA WITH LITTLE REGULARITY 23

[17] A. J. C. B. de Saint-Venant, Etablissement élémentaire des formules et équations générales de
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