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Exemplar-based inpainting from a variational point of view

Jean-François Aujol ∗ Säıd Ladjal ∗∗ Simon Masnou ‡

Abstract

Among all methods for reconstructing missing regions in a digital image, the so-called
exemplar-based algorithms are very efficient and often produce striking results. They are based
on the simple idea – initially used for texture synthesis – that the unknown part of an image
can be reconstructed by simply pasting samples extracted from the known part. Beyond heuris-
tic considerations, there have been very few contributions in the literature to explain from a
mathematical point of view the performances of these purely algorithmic and discrete methods.
More precisely, a recent paper by Levina and Bickel [64] provides a theoretical explanation of
their ability to recover very well the texture, but nothing equivalent has been done so far for
the recovery of geometry. Our purpose in this paper is twofold:

1. To propose well-posed variational models in the continuous domain that can be naturally
associated to exemplar-based algorithms;

2. To investigate their ability to reconstruct either local or long-range geometric features like
edges.

In particular, we propose several optimization models in R
N , we discuss their relation with

the original algorithms, and show the existence of minimizers in the framework of functions of
bounded variation. Focusing on a simple 2D situation, we provide experimental evidences that
basic exemplar-based algorithms are able to reconstruct a local geometric information whereas
the minimization of the proposed variational models allows a global reconstruction of geometry
and in particular of smooth edges. The derivation of globally minimizing algorithms associated
to these models is still an open problem. Yet the results presented in this paper are a first step
towards new inpainting algorithms with an improved quality of geometry reconstruction and no
loss of quality for texture reconstruction.

1 Introduction

Image inpainting has become a generic term to refer to the process of restoring missing and/or
damaged areas in digital images. The problem can be stated as follows : given a region A to
be restored, use the valid surrounding information for synthesizing the most plausible data in
A. Several classes of methods have been developed in the past ten years. In the first category of
approaches, the focus has been on recovering the geometry. One of the very first contributions in this
direction is [68] (see also [67]), where the geometry is recovered in a way similar to our brain’s ability
to “see” occluded contours, the so-called amodal completion process studied by G.Kanizsa [59] and
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introduced in the context of digital image interpretation in [73]. The model proposed in [68] is
variational and related to generalizations of the celebrated Willmore functional [4]. The word
inpainting has appeared for the first time in this context in [15], where a PDE model has been
proposed to model a convection of the valid information from outside the inpainting domain towards
the inside, in the spirit of the real “inpainting” operation used by conservators in art restoration.
In the subsequent years, many contributions have been proposed, either variational or involving a
PDE [13, 29, 30, 28, 42, 47, 74, 17, 14, 12, 44, 78]. To our best knowledge, the most efficient methods
falling in the category of variational/PDE approaches are [81], which gives very nice results when
the parameters have been carefully chosen and, most of all, [21] which is a very efficient, fast and
reliable method based on the combination of a first order advection equation and a fast marching
algorithm. The drawbacks of all these methods is their well-known incapacity to restore texture.

In parallel to these geometry-oriented approaches and roughly at the same time, the late 90’s, a
category of very powerful methods have appeared in the context of texture synthesis. Before then,
the traditional way to texture synthesis was to model the texture as a Markov Random Field, to
learn its statistics on the known part of the image and to resample it on the unknown part [18, 33].
Other approaches try to constrain different kinds of statistics or inter-scale dependencies [19, 52, 79].
The main drawbacks of all these methods are their inability to reproduce large-scale structured
patterns and the well-known difficulty to find the correct parameters. In contrast, the so-called
exemplar-based methods that were initially proposed in [38, 43, 84], appear to be much more
efficient. They basically exploit the locality and the stationarity at a certain scale of any texture.1

The first celebrated algorithms in the class of exemplar-based methods, due to Efros and Leung on
one hand [38], Wei and Levoy on the other hand [84], both involve the notion of patch, i.e. a square
window of size r × r, and use as the distance between two patches Γ(p), Γ(q) centered at p, q the
sum of squared differences :

D(Γ(p),Γ(q)) =
∑

i∈[−r,r]2∩Z

∑

k∈{1,2,3}

|Ik(p + i) − Ik(q + i)|2

where I = (I1, I2, I3) maps a pixel onto a vector value in any color representation, for instance RGB,
YCrCb or Lab. To synthesize a pixel p at the boundary of the unknown domain, the algorithm picks
one central value I(q) among all patches Γ(q) with smallest distance to Γ(p). This core algorithm is
proposed with different variants in [38] and [84], see also [51, 20]: a multiscale approach, a random
selection of the central value among a larger class of patches, a careful synthesis order, etc. All these
papers are essentially dedicated to texture synthesis, yet an example of inpainting is given in [38].
Previously, a parametric synthesis approach had been proposed in [54] for illustrating an inpainting
application. To the best of our knowledge, the first explicit and systematic application to inpainting
of a non parametric synthesis method can be found in [20]. Despite the great improvements with
respect to the previous contributions to texture synthesis and despite the huge quantity of variants
that have been proposed, a well-known problem of the exemplar-based methods that we have
mentioned comes from the synthesis of only one pixel at a time, which may sometimes result
in ”cycling” effects like the constant propagation of an erroneous synthesis or the formation of
much too repetitive patterns. Surprisingly, because it amounts to reduce the space of interpolation
possibilities, much better results can be obtained by synthesizing not only the central pixel but

1By scale of a texture, we mean a positive number r, as small as possible, such that two arbitrary disjunct r × r

windows have similar statistical moments up to a certain order.
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entire patches. It also considerably reduces the computational time. Many contributions have been
proposed in this direction with several variants [39, 50, 65, 32, 37, 76, 55, 85, 60, 6]:

• on the location of the patches to be synthesized (using a fixed grid or not, with either no
overlap, a smooth or a sharp overlap between adjacent patches),

• on the filling order (raster scan, concentric layers, incorporation of geometric or intensity
constraints),

• on the searching domain (reinitialized at each iteration or constrained by the previously chosen
sample patch),

• on the distance between patches and the way to find a minimizing candidate (enumeration,
belief propagation, etc.),

• on the artificial extension of the space of samples by introducing rotated and rescaled versions
of the existing patches.

The results are often amazing (see for instance Figure 1) and can be obtained in a very reasonable
time, even for large inpainting domains, if suitable cost-reducing techniques are used (for instance
restricting the computation to a fixed grid of patches). Most approaches in this category are not only
able to reproduce a texture but are also very good at restoring a geometric information whenever it
can be obtained elsewhere in the image. In the case when the interpolation requires the synthesis
of a new geometry or a long-range geometry that does not appear elsewhere, some additional,
geometry-oriented steps are necessary. Different approaches have been proposed in combination
with an exemplar-based inpainting, either based on a manual intervention by the user [80], or trying
to combine texture and geometric interpolation in the most automated possible way [16, 24, 37, 71].

Figure 1: An image with several missing domains and the reconstruction with the method from [76].

Until now, we have described three classes of inpainting methods : the geometry-oriented, the
exemplar-based and the hybrid methods. A fourth category gathers all approaches involving the
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optimization of one or several criterions in a transform domain, e.g. Fourier, wavelet or framelet
domain, see for instance [53, 23, 31] and the inspiring [40] (see also [48, 49]) where a simultaneous
geometry/texture inpainting is performed by optimizing suitable mappings onto different transform
domains, one giving a sparse representation of the geometry (the curvelets domain) and the other
adapted to the texture (the DCT domain).

Among all the works we have cited, some of them have been first formulated as variational, PDE
or stochastic models in the continuous domain. This may help understanding, at least partially,
the pros and cons of the method. The continuous formulation may also give rise to different
discretizations whose quality and performances can be discussed on a theoretical basis.

The case of the exemplar-based methods is different: they all start from a discrete algorithm
whose performances can be experimentally observed. These approaches are obviously very efficient
despite well-known limitations, for example the crucial dependence to an appropriate choice of
patches’ size, the difficulty to adapt this size locally, the difficulty to find a filling order that fits
anywhere in the image, etc. The major reason why it works so well most of the time is obvious: to
synthesize something similar to a given sample, it is enough to copy it or part of it. This subjective
statement has been confirmed by theoretical arguments in a very inspiring paper due to Levina and
Bickel [64]. The authors prove indeed that if a texture sample is modeled as a Markov Mesh Model
(a variant of Markov Random Fields) and its size goes to infinity then the following properties hold
for the texture synthesized with an algorithm similar to Efros-Leung’s :

1. the joint distribution of the pixels in any r × r window

2. and the conditional distribution of the lower right pixel of any r × r window with respect to
the other pixels of the window

converge to the distributions of the observed texture. Interestingly, the authors claim that this
result is a theoretical justification of the visually good performances of Efros-Leung’s algorithm
since, according to the theories of human perception, the joint distribution of pixels in a window is
a key quantity to measure how much two textures are visually similar [56, 57, 58, 66].

The work of Levina and Bickel is a stochastic approach to understand the performances of
exemplar-based inpainting for the synthesis of texture. Our motivation to address these methods
from the point of view of analysis was twofold:

1. to provide a global variational interpretation in the continuous domain;

2. to explain, from a variational point of view, the ability of the method to recover a geometric
information and to characterize the type of geometry that can be recovered.

We believe indeed that exemplar-based methods are naturally variational for the simple reason that
finding a patch that minimizes a distance to another given patch is already a variational task.

To our best knowledge, the analytical modeling of exemplar-based methods has not been ex-
plicitly addressed in the literature, except the interesting model proposed by L. Demanet, B. Song
and T. Chan in [36] that we will detail later on and that has been the starting point of our work.

Although not dedicated to the same problem, the non local TV model of G. Gilboa and S. Osher
could be also an interesting candidate because it involves a metric between patches. Denoting the
image domain as Ω, the inpainting domain as A ⊂ Ω and reformulating the type of energy proposed
in [45] to fit our problem, we could indeed look for the function u that coincides with the original
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image u0 outside A and minimizes the energy

∫

A

√

∫

Ω\A
|u(x) − u(y)|2w(x, y)dy dx

where

w(x, y) = exp

(

−Gσ ∗ |u(x + ·) − u(y + ·)|2(0)

h2

)

with Gσ a smoothing kernel and h > 0 a filtering parameter. This energy is defined for a gray scale
image but it could be easily extended to color images. Anyway, this model is actually too far from
exemplar-based inpainting for it does not particularly favor rigid copies of entire patches.

Analogously, energies similar to the Non Local Means of A. Buades, T. Coll and J.-M Morel [22]
could be proposed coupled with additional rigidity constraints. This is in some sense the spirit of the
denoising model in [82] (see also [77]) that can be adapted to inpainting. In a work in preparation,
P. Arias and V. Caselles [5] show the efficiency of such approach both for texture and geometry
recovery. However, these models cannot be considered as the exact counterparts in the continuous
domain of exemplar-based algorithms since they are basically related to a non rigid process in
contrast to the rigid copy of patches.

A variational model that fits much more with the spirit of exemplar-based algorithms has been
proposed by Demanet, Song and Chan in [36] and, as mentioned before, it has been the starting
point of our work. The presentation of the model in [36] is somewhat informal and prospective but
can be rephrased as follows: again, let us denote the image domain as Ω, the inpainting domain as
A and the original image as u0 : Ω \A → R. Demanet, Song and Chan propose to find an optimal
correspondence map T : A → Ω \A that minimizes (in a space that the authors do not specify) the
criterion

F1(T ) =

∫

A

[

∫

Br(0)
|u0(T (x + y)) − u0(T (x) + y)|2 dy

]

dx,

where Br(0) stands for the ball of radius r centered in 0. Remark that the problem is not rigorously
formulated since T (x+y) is not defined when x+y 6∈ A and u0(T (x)+y) is also not defined whenever
T (x) + y ∈ A. Let us keep for the moment an informal point of view. Once a minimizer T has
been found – whenever it exists – the interpolated image can be defined in A as u0(x) = u0(T (x)),
∀x ∈ A. This model is designed for gray level images but can be easily extended to color images.
Let us comment on the criterion: since the image on A is defined by u0(x) = u0(T (x)), we can
rewrite the energy, once a minimizer T̄ has been found, as

F1(T̄ ) =

∫

A

[

∫

Br(0)

∣

∣u0(x + y) − u0(T̄ (x) + y)
∣

∣

2
dy

]

dx

which corresponds exactly to penalizing the distance at each point x between the patches Br(x)
and Br(T̄ (x)). An additional term is proposed in [36] in order to favor local rigidity of T which
gives the second criterion:

F2(T ) =

∫

A

[

∫

Br(0)
|u0(T (x + y)) − u0(T (x) + y)|2 dy

]

dx + α

∫

A

‖∇T (x) − I‖dx
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This new energy tends to favor T to be close to a translation. As mentioned before, the definitions
of F1 and F2 given in [36] are ambiguous since nothing is said about the definition of T (x + y) if
x + y 6∈ A and the definition of u0(T (x) + y) if T (x) + y ∈ A. Now, T cannot be freely chosen
otherwise the minimization of F1 and F2 would be trivial. Indeed, both F1 and F2 vanish for any
translation Tc(x) = x + c such that Tc(A) ⊂ Ω \ (A + Br). The formulation that we will propose
later incorporate additional assumptions in order to make the problem less trivial but the spirit
remains the same.

To be complete, let us also recall that a third model has been proposed in [36] that incorporates
the total variation of the interpolated u0 on A. The motivation was to favor a better reproduction of
the geometrical features. We observe however that minimizing the total variation is not compatible
with a good recovery of texture, which is the core of all exemplar-based inpainting approaches. But
it can make sense in the context of geometry+texture decomposition, as will be seen later.

We will now revisit the first model of [36] and give a well posed formulation in any dimension
N ≥ 2 that fits our original intention to provide a global variational interpretation in the con-
tinuous domain of exemplar-based inpainting algorithms. The underlying main idea is to mimic
the exemplar-based methods where pieces of patches are pasted, not only the central pixel, see for
instance [65, 76, 32]. These methods are sometimes called patch-based. They usually involve only
translations of patches but more geometrical features can be recovered if we also introduce rotated
patches. So the model we have in mind actually picks pieces of patches in Ω \ A, then rotates
and translates them onto A. The overall mapping T is thus a piecewise roto-translation from A to
Ω \ A, i.e. T can be decomposed as

T (x) =
∑

i∈I

Ri(x − ci)1Ai

where {Ai}i∈I is a partition of A and, for each i ∈ I, Ri is a rotation matrix and ci a translation
vector.

Let us denote by Br(x) the ball centered in x and with radius r. If the interpolated image in A
is defined by u0(x) = u0(T (x)) for all x ∈ A then a global measure of the distance at each point x
between a patch Br(x) and its image Br(T (x)) can be written as

∫

A

∫

Br(0)
|u0(x + y) − u0(T (x) + ∇T (x) y)|2dy dx

since, denoting by Tx the value of T at x and Rx, cx the associated rotation matrix and translation
vector, one has Tx(x + y) = Rx(x + y − cx) = Tx(x) + Rxy = Tx(x) + ∇Tx y. Let us turn back to
the situation where u0 is known only outside A. Once T is given, u0 can be defined on A through
the formula u0(x) = u0(T (x)) for all x ∈ A. One thus gets the criterion

∫

A

∫

Br(0)
|u0(T (x + y)) − u0(T (x) + ∇T (x) y)|2dy dx

that depends only on T and coincides with the criterion F1 of Demanet, Song and Chan when T
is a piecewise translation. Like for F1, we must prevent T from being a global translation to avoid
trivial minimizers. We shall also incorporate the knowledge of the data in a band around A, not
only on the boundary ∂A. This is done using a criterion that penalizes the correspondence map T
not only on A but on an extended domain A + Br where Br denotes the ball Br(0). Finally, the
main criterion that we propose is
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(

Model I
)

E1(T ) =

∫

x∈A+Br

∫

y∈Br

|u0(T (x + y)) − u0(T (x) + ∇T (x) y)|2dy dx

with the constraints

• u0 given on Ω \ A;

• T (A + Br) ⊂ Ω \ (A + Br);

• T = Id on Ω \ (A + Br);

We will show that E1 can be minimized in the class of piecewise roto-translations from Ω onto
itself and we will study several variants.

2 Plan of the paper

In Section 3, we recall a few definitions and results for BV, SBV and sets of finite perimeter (see [2]
for a detailed treatment of the subject). Section 4 is devoted to the definition of piecewise roto-
translations and the proof of a compactness theorem. It is shown in Section 5 that there exists
at least a solution to the minimization of Model I, then the uniqueness is discussed as well as the
connections of the model with the original algorithm. In Section 6, we propose several extensions
with additional first-order terms that focus on the reconstruction of the geometry. In the first
variant (Model II), the regularization term concerns the whole image, while in the second variant
(Model III) only the geometric part of the image is penalized. A third variant (Model IV) is
proposed with a control by the Willmore functional of the geometric part of the reconstruction.

We compare in Section 7 on a particular 2D situation the performances for the reconstruction of
geometry of Models I and II on one hand and basic patch-based algorithms on the other hand. We
obtain numerical evidences that Models I and II are more efficient for reconstructing certain long-
range geometric features, like for instance long edges, straight or non straight. An open problem is
the design of algorithms for the global minimization of Models I and II. The numerical results of
Section 7 might indicate that such algorithms would outperform the usual patch-based techniques
for the reconstruction of geometry without any loss of quality for the reconstruction of texture.

We eventually propose in Section 8 modifications of Models II and III that fulfill some properties
of invariance with respect to multiplicative contrast changes or joint rescalings of the image domain,
the inpainting domain and the reference patch. We also discuss their asymptotic behaviours as the
size of the patch goes to zero.

3 BV, SBV and sets of finite perimeter

We refer the interested reader to [2] for a full introduction to the theory of functions of bounded
variation. The spaces BV and SBV naturally appear when dealing with functionals with linear
growth at infinity. Contrary to the classical Sobolev space W 1,1, they enjoy very useful compactness
properties. The purpose of this section is to provide the reader non familiar with these notions
with the material necessary for this paper. All definitions and properties enumerated below are
taken from [2].
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In what follows, Ω denotes an open bounded subset of R
N with Lipschitz boundary.

Definition 3.1 (BV) A function u ∈ L1(Ω, R) has bounded variation if its distributional deriva-
tive can be represented by a vector-valued Radon measure Du = (D1u, · · · , DNu), i.e.

∫

Ω
u divφdx = −

N
∑

i=1

∫

Ω
φi dDiu ∀φ ∈ C1

c(Ω, RN )

The total variation of u is defined as

|Du|(Ω) = sup

{

N
∑

i=1

∫

Ω
u

∂φ

∂xi
dx, φ ∈ C1

c(Ω, RN ), ‖φ‖∞ ≤ 1

}

The space of functions of bounded variation in Ω is denoted as BV(Ω).

This definition can be extended to vector-valued functions, i.e. u ∈ BV(Ω, Rm) if u ∈ L1(Ω, Rm) and
the distributional derivative of u can be represented as a m × N matrix of measures Dj

i satisfying

m
∑

j=1

∫

Ω
ujdivφjdx = −

m
∑

j=1

N
∑

i=1

∫

Ω
φj

i dDiu
j , ∀φ ∈ C1

c(Ω, RmN )

Recall that any function u ∈ L1(Ω) is approximately continuous LN -almost everywhere in Ω,
i.e. for a.e. x ∈ Ω, there exists z ∈ R such that

lim
r→0+

∫

Br(x)
|u(y) − z|dy = 0

Theorem 3.2 (Approximation by smooth function) Let u ∈ BV(Ω). Then there exists a
sequence (un) ⊂ C∞(Ω) converging to u in L1(Ω) and satisfying

|Du|(Ω) = lim
n→∞

∫

Ω
|∇un|dx

BV can be endowed with different topologies. The strong topology does not have good com-
pactness properties, and instead a weaker topology is used.

Definition 3.3 (Weak-∗ convergence) Let u in BV(Ω), and a sequence (un) in BV(Ω). Then
we say that un weakly-∗ converges in BV(Ω) to u if un converges to u in L1(Ω), and Dun weakly-∗
converges to Du in Ω, i.e. : limn→+∞

∫

Ω φDun =
∫

Ω φ Du for all φ in C0(Ω).

The notion of strict convergence is useful to prove several properties in BV by smoothing
arguments.

Definition 3.4 (Strict convergence) Let u in BV(Ω), and a sequence (un) in BV(Ω). Then we
say that (un) strictly converges in BV(Ω) to u if (un) converges to u in L1(Ω) and the variations
|Dun|(Ω) converge to |Du|(Ω) as n → +∞.
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Notice that strict convergence implies weak-∗ convergence but the converse is false in general.
Functions in BV can have a very complicated distributional derivative [2] and it is often in-

teresting to restrict oneself to a subspace of BV, the class SBV of special functions of bounded
variation, that is composed of all BV functions whose distributional derivative has no Cantor part.

Definition 3.5 (SBV) A function u ∈ BV(Ω) is a special function of bounded variation if its
distributional derivative can be decomposed as

Du = ∇uLN + (u+ − u−)νuHN−1 Su

where Su denotes the approximate discontinuity set, u± the approximate upper and lower limits of
u on Su, νu the generalized normal to Su defined as limr↓0

Du(Br(x))
|Du|(Br(x)) , ∇u the approximate gradient

of u and HN−1 the N − 1-dimensional Hausdorff measure.
The space of special functions of bounded variation in Ω is denoted as SBV(Ω).

Again, this definition can be extended to vector-valued functions and we say that u ∈ SBV(Ω, Rm)
if u ∈ BV(Ω, Rm) and

Du = ∇uLN + (u+ − u−) ⊗ νuHN−1 Su.

A very useful compactness theorem due to L. Ambrosio holds in SBV [2]:

Theorem 3.6 (Compactness in SBV) Let (un)n∈N be a sequence of functions in SBV(Ω) such
that

sup
n∈N

[

‖un‖∞ +

∫

Ω
ϕ(|∇un|)dx + HN−1(Sun)

]

< ∞

where ϕ : [0,∞[→ [0,∞] is a lower semicontinuous, increasing and convex function such that

limt→∞
ϕ(t)

t
= ∞.

Then there exists a subsequence (uh(n))n∈N, and a limit function u ∈ L∞(Ω) ∩ SBV(Ω) such that

• uh(n) weakly-∗ converges to u in BV(Ω),

• ∇uh(n) weakly converges to ∇u in L1(Ω, RN ),

•
∫

Ω
ϕ(|∇u|)dx ≤ lim inf

n→∞

∫

Ω
ϕ(|∇uh(n)|)dx,

• HN−1(Su) ≤ lim infn HN−1(Suh(n)
).

We shall use later in a proof the notion of trace of BV functions. Let us recall the definition
and a couple of important properties [2].

Theorem 3.7 (Boundary trace theorem) Let u in BV(Ω). Then, for HN−1 almost every x in
∂Ω, there exists T u(x) ∈ R such that:

lim
ρ→0

1

ρN

∫

Ω∩Bρ(x)
|u(y) − T u(x)| dy = 0
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Moreover, ‖T u‖L1(∂Ω) ≤ C‖u‖BV(Ω) for some constant C depending only on Ω. The extension ũ

of u to 0 out of Ω belongs to BV(RN ), and viewing Du as a measure on the whole of R
N and

concentrated on Ω, Dũ is given by :

Dũ = Du + (T u)νΩHN−1 ∂Ω

with νΩ the generalised inner normal to ∂Ω.

Let us now state the different definitions and results that will be useful to define and manipulate
piecewise roto-translations. In the BV context, there is a tool particularly suitable for this: the
Caccioppoli partitions, which rely on the notion of sets of finite perimeter.

Definition 3.8 (Sets of finite perimeter) We say that a measurable set A ⊂ R
N has finite

perimeter in Ω if 1A ∈ BV(Ω). The perimeter of A in Ω is defined by

P (A,Ω) = |D1A|(Ω)

and satisfies
P (A,Ω) = HN−1(∂∗A ∩ Ω)

where ∂∗A := S1A
is called the essential boundary of A.

Theorem 3.9 (Coarea formula in BV) If u ∈ BV(Ω), then the set {u > t} has finite perimeter
in Ω for a.e. t ∈ R, and for any Borel set B ⊂ Ω we have

|Du|(B) =

∫ +∞

−∞
P ({u > t}, B)dt

By partition of a measurable set E ⊂ R
N we mean a countable collection of measurable sets

Ei ⊂ R
N such that E = ∪iEi up to a Lebesgue negligible set and |Ei ∩ Ej | = 0, i 6= j.

Definition 3.10 (Caccioppoli partitions) Let Ω ⊂ R
N be an open set and I ⊂ N; we say that a

partition {Ei}i∈I of Ω is a Caccioppoli partition if
∑

i∈I P (Ei,Ω) < ∞. We say that a Caccioppoli
partition is ordered if |Ei| ≥ |Ej | whenever i ≤ j.

Given a (HN−1, N − 1)−rectifiable set K ⊂ Ω, we say that a Caccioppoli partition {Ei}i∈I of
E is subordinated to K if, ∀i, ∂∗Ei ⊂ K up to a HN−1-negligible set.

Remark 3.11 By Theorem 4.17 in [2], if {Ei}i∈I is subordinated to K then
∑

i∈I P (Ei,Ω) ≤
2HN−1(K).

Theorem 3.12 (Compactness of Caccioppoli partitions) Let {Ei,n}i∈I , n ∈ N be Cacciop-
poli partitions of a bounded open set Ω with Lipschitz boundary such that

sup

{

∑

i∈I

P (Ei,n,Ω) : n ∈ N

}

< ∞.

Then, if either I is finite or the partitions are ordered, there exists a Caccioppoli partition {Ei}i∈I

and a subsequence (h(n)) such that (Ei,h(n)) converges in measure to Ei for any i ∈ I.
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Definition 3.13 (Piecewise constant functions) We say that u : Ω → R
m is piecewise con-

stant in Ω if there exists a Caccioppoli partition {Ei}i∈I of Ω and a collection {ti}i∈I ⊂ R
m such

that
u =

∑

i∈I

ti1Ei
.

Theorem 3.14 (Characterization of piecewise constant functions) Let u ∈ [L∞(Ω)]m. Then,
u is (equivalent to) a piecewise constant function if and only if u ∈ [SBV(Ω)]m, Du is concentrated
on Su and HN−1(Su) < ∞. Moreover, denoting by {Ei}i∈I the level sets of u and ti the associated
values (i.e. Ei = {x ∈ Ω : u(x) = ti}) we have u =

∑

i ti1Ei
, ∂∗Ei ⊂ Su for all i up to HN−1

negligible sets and 2HN−1(Su) =
∑

i∈I P (Ei,Ω).

Theorem 3.15 (Compactness of piecewise constant functions) Let (un) ⊂ [SBV(Ω)]m be
a sequence of piecewise constant functions such that (‖un‖∞ + HN−1(Sun)) is uniformly bounded.
Then, there exists a subsequence (uh(n)) converging in L1 to a piecewise constant function.

4 Piecewise roto-translations

We give in this section a suitable definition of piecewise roto-translations and we prove a compact-
ness theorem that will be useful in subsequent proofs. In the sequel, SO(N) denotes the special
orthogonal group of all rotations in R

N .

Definition 4.1 (Piecewise roto-translations) We say that u ∈ SBV(Ω, RN ) is a piecewise
roto-translation in Ω if there exists a Caccioppoli partition {Ei}i∈I of Ω and Ri ∈ SO(N), ti ∈ R

N ,
i ∈ I, such that, for a.e. x ∈ Ω

u(x) =
∑

i∈I

(Ri x + ti)1Ei
(x)

Remark 4.2 Notice that if u is a piecewise roto-translation, then

Su ⊂ ∪i∈I∂
∗Ei

up to a HN−1 negligible set. This is a consequence of |Ei ∩ Ej | = 0, i 6= j and of the fact that, by

Theorem 4.17 in [2],
⋃

i∈I

(Ei)
1 ∪

⋃

i,j∈I,
i6=j

∂∗Ei ∩ ∂∗Ej contains HN−1-almost all of Ω.

Remark 4.3 We use the term roto-translation despite the fact that x 7→ Rix + ti is simply the
rotation x 7→ Ri(x + R−1

i ti) of center −R−1
i ti. Actually, for the sake of clarity, we prefer keeping 0

as the unique reference center so that, in the sequel, we will always mean by roto-translation the
combination of a translation and a rotation with respect to 0.

Theorem 4.4 (Compactness of piecewise roto-translations) Let (un) ⊂ SBV(Ω, RN ) be a
sequence of piecewise roto-translations associated with Caccioppoli partitions {Ei,n}i∈In such that
(‖un‖∞ +

∑

i∈In
P (Ei,n,Ω)) is uniformly bounded. Then, there exists a subsequence (uh(n)) con-

verging in L1 to a piecewise roto-translation.

11



Proof By assumption, for each n ∈ N, there exists a Caccioppoli partition {Ei,n}i∈In of Ω such that
un(x) =

∑

i∈In
(Ri,nx + ti,n)1Ei,n

(x) where Ri,n ∈ SO(N) and ti,n ∈ R
N . Since Sun ⊂ ∪i∈In∂∗Ei,n

(see Remark 4.2) we deduce from the assumptions that supn∈N HN−1(Sun) < +∞. By the com-
pactness theorem in SBV there exists a subsequence, still denoted as (un), that converges in
L1(Ω) to u ∈ SBV(Ω, RN ). Using a common set I for the indices of the Caccioppoli partitions
– possibly adding sets of measure zero – we order each partition and recall that by assumption
supn∈N

∑

i∈I P (Ei,n,Ω) < +∞. By the compactness theorem for Caccioppoli partitions (Theo-
rem 3.12) and possibly taking a subsequence still denoted as (En), there exists a limit Caccioppoli
partition {Ei}i∈I such that (Ei,n) converges in measure to Ei for any i ∈ I. As in the proof of
Theorem 4.25 in [2], for any ǫ > 0 there exists an integer M depending only on ǫ such that

∣

∣

∣
Ω \

M
⋃

i=1

Ei,n

∣

∣

∣
< ǫ, ∀n ∈ N (1)

By a diagonal argument, we can assume that (Ri,n) converges to Ri ∈ SO(N) and (ti,n) converges
to ti ∈ R

N for any i ∈ I. Hence, for every δ > 0, there exits n0 ∈ N such that for every n ≥ n0

M
∑

i=1

|Ei,n∆Ei| < ǫ, sup
1≤i≤M

|ti,n − ti| < δ and sup
1≤i≤M

|Ri,n − Ri| < δ.

Defining v =
∑

i∈I(Ri x + ti)1Ei
, we deduce that there exists a constant C1 such that

|{|un − v| > δ}| < C1ǫ

and since ǫ is arbitrary we conclude by the uniqueness of the limit that

u =
∑

i∈I

(Ri x + ti)1Ei

and the theorem follows.

The following result due to Chambolle, Giacomini and Ponsiglione [25] provides an interesting
characterization of piecewise roto-translations that is useful to study the links between rigidity
and elastic energy in the context of fracture mechanics. This result could be used to give another
proof of the compactness theorem above. We essentially mention it because it is, together with the
paper by Demanet, Song and Chan, at the origin of the work presented here: it convinced us that
SBV and the Caccioppoli partitions are the appropriate tools for representing and manipulating
piecewise roto-translations.

Theorem 4.5 (Chambolle, Giacomini, Ponsiglione [25]) If u ∈ SBV(Ω, RN ) is such that
HN−1(Su) < ∞ and ∇u(x) ∈ SO(N) for LN -a.e. x ∈ Ω, then there exists a Caccioppoli par-
tition (Ei)i∈I subordinated to Su such that

u =
∑

i∈I

(Ri x + ti)1Ei

where Ri ∈ SO(N) and ti ∈ R
N .

12



A
Br(T (x))

Br(x)

inpainting domain

Ω

image domain

Figure 2: The original image u0 is defined on Ω \ A and must be reconstructed in A.

5 Analysis of Model I

We prove in this section that the functional E1 involved in Model I is continuous and admits a
minimizer in an appropriate space.

The image domain and the inpainting domain are represented by two open bounded subsets
A ⊂ Ω ⊂ RN with Lipschitz boundaries (see Figure 2). We assume in addition that there exists
r > 0 such that A + 3Br ⊂ Ω where here and in the sequel Br denotes the ball Br(0). The original
image u0 is defined on Ω \ A. Let C > 0 be such that the set

V1 =
{

T ∈ SBV(Ω, RN ), T is a piecewise roto-translation associated with a Caccioppoli partition

{Ei}i∈IT
such that

∑

i∈IT

P (Ei,Ω) ≤ C, T = Id on Ω\(A+Br), T (A+Br) ⊂ (Ω\[(A+Br)∪(∂Ω+Br)])
}

is not empty.

5.1 Existence of a minimizer for Model I and continuity of E1

Theorem 5.1 (Existence of optimal exemplar-based inpaintings) Let u0 ∈ L∞(Ω\A). Then,
the problem

Min
T∈V1

∫

A+Br

∫

Br

|u0(T (x + y)) − u0(T (x) + ∇T (x) y)|2dy dx

has a solution Topt ∈ V1. The function u : Ω → R defined by

u(x) =

{

u0(x) if x ∈ A
u0(Topt(x)) if x ∈ Ω \ A

is called an optimal exemplar-based inpainting associated with u0.

Remark 5.2 For simplicity, the theorem is stated for gray level images. It can be however imme-
diately generalized to color images using the functional

Min
T∈V1

3
∑

i=1

∫

A+Br

∫

Br

|ui
0(T (x + y)) − ui

0(T (x) + ∇T (x) y)|2dy dx

where u0 = (u1
0, u

2
0, u

3
0) is any color representation, e.g. RGB, YCrCb or Lab, the latter being more

robust to the creation of false colors.
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Proof Denote the energy as

E1(T ) =

∫

A+Br

∫

Br

|u0(T (x + y)) − u0(T (x) + ∇T (x) y)|2dy dx

and take a minimizing sequence (Tn)n∈N in V1 associated with Caccioppoli partitions {Ei,n}i∈In

such that
∑

i∈In
P (Ei,n,Ω) ≤ C . Since STn ⊂ ⋃

i∈In
∂∗Ei,n (see Remark 4.2), we deduce from the

assumptions that supn HN−1(STn) ≤ C and, since Ω is bounded, supn ‖Tn‖∞ < +∞. Applying
the Compactness Theorem 4.4 for piecewise roto-translations, there exists a subsequence, still
denoted as (Tn)n∈N , that converges in L1(Ω, RN ) to a piecewise roto-translation T ∈ SBV(Ω, RN )
associated with a Caccioppoli partition {Ei}i∈I that satisfies, by the semicontinuity of perimeter,
∑

i∈I P (Ei,Ω) ≤ C.
In addition, T =Id a.e. on Ω \ (A + Br) and T (A + Br) ⊂ (Ω \ [(A + Br) ∪ (∂Ω + Br)]) up to a

Lebesgue negligible set. Thus T ∈ V1. Let us now prove that it minimizes E1.
Let ǫ > 0. From Lusin Theorem [2], there exists a continuous function w ∈ C(Ω̄) such that

‖w‖∞ ≤ ‖u0‖∞ and D0 = {x : u0(x) 6= w(x)} satisfies |D0| < ǫ. Possibly taking a subsequence of
(Tn), we deduce from the continuity of w and the Dominated Convergence Theorem that

∫

A+Br

∫

Br

|w(Tn(x + y)) − w(T (x + y))|dy dx → 0 (2)

and
∫

A+Br

∫

Br

|w(Tn(x) + ∇Tn(x)y) − w(T (x) + ∇T (x) y)|dy dx → 0 (3)

Remark that

∫

A+Br

∫

Br

|u0(Tn(x) + ∇Tn(x) y) − u0(T (x) + ∇T (x) y)|dy dx ≤
∫

A+Br

∫

Br

|u0(Tn(x) + ∇Tn(x) y) − w(Tn(x) + ∇Tn(x) y)|dy dx+
∫

A+Br

∫

Br

|w(Tn(x) + ∇Tn(x) y) − w(T (x) + ∇T (x) y)|dy dx+
∫

A+Br

∫

Br

|w(T (x) + ∇T (x) y) − u0(T (x) + ∇T (x) y)|dy dx

Since u0 ∈ L∞(Ω) and ‖w‖∞ ≤ ‖u0‖∞, in order to prove that the left term tends to 0, we will
provide a bound for

sup
n∈N

∫

A+Br

∫

Br

[1D0(Tn(x) + ∇Tn(x) y) + 1D0(T (x) + ∇T (x) y)] dy dx.

We observe that

LN ⊗ LN ({(x, y) ∈ (A + Br) × Br : Tn(x) + ∇Tn(x) y ∈ D0})

=

∫

A+Br

|{y ∈ Br, y ∈ (∇Tn(x))−1(D0 − Tn(x))}|dx

14



which makes sense because ∇Tn(x) ∈ SO(N) almost everywhere. For the same reason, denoting
D0(x) = (∇Tn(x))−1(D0 − Tn(x)), we have LN (D0(x)) = LN (D0) ≤ ǫ. Hence

LN ⊗ LN ({(x, y) ∈ (A + Br) × Br : Tn(x) + ∇Tn(x) y ∈ D0}) ≤ ǫ|Ω|

The same argument is true for T instead of Tn thus

∫

A+Br

∫

Br

|u0(Tn(x) + ∇Tn(x) y) − u0(T (x) + ∇T (x) y)|dy dx

≤ 4ǫ‖u0‖∞|Ω| +
∫

A+Br

∫

Br

|w(Tn(x) + ∇Tn(x) y) − w(T (x) + ∇T (x) y)|dy dx

It follows from (3) that u0(Tn(x) + ∇Tn(x) y) converges to u0(T (x) + ∇T (x) y) in L1((A + Br) ×
Br,LN ⊗ LN ).

Let us now prove that
∫

A+Br

∫

Br

|u0(Tn(x + y)) − u0(T (x + y))|dy dx −→ 0 as n → ∞.

Again we use Lusin Theorem [2] to obtain the existence of a continuous function w ∈ C(Ω̄) such
that ‖w‖∞ ≤ ‖u0‖∞ and D0 = {x : u0(x) 6= w(x)} satisfies |D0| < ǫ. Then we decompose

∫

A+Br

∫

Br

|u0(Tn(x + y)) − u0(T (x + y))|dy dx ≤
∫

A+Br

∫

Br

|u0(Tn(x + y)) − w(Tn(x + y))|dy dx+
∫

A+Br

∫

Br

|w(Tn(x + y)) − w(T (x + y))|dy dx+
∫

A+Br

∫

Br

|w(T (x + y)) − u0(T (x + y))|dy dx

and try to find a bound for

sup
n∈N

∫

A+Br

∫

Br

[1D0(Tn(x + y)) + 1D0(T (x + y))] dy dx.

Observe that for every x ∈ Ω
∫

Br(x)
[1D0(Tn(z)) + 1D0(T (z))] dz ≤ |T−1

n (D0)| + |T−1(D0)|

Recall that
T =

∑

i∈I

(Ri x + ti)1Ei

where the Caccioppoli partition {Ei}i∈I satisfies
∑

i∈I P (Ei,Ω) ≤ C. Since T : Ω → Ω and T Ei

is an isometry we have |T (Ei)| = |Ei|. Therefore, we deduce from |D0| < ǫ that

|T−1(D0)| ≤ ǫ · #{i ∈ I : |Ei| > ǫ} +
∑

i∈I
|Ei|≤ǫ

|Ei|
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where # denotes the counting measure. It follows from Lemma 5.4 below, due to G.P. Leonardi [62],
that there exists a constant C̃ depending only on C, N such that

|T−1(D0)| ≤ C̃ǫ
1
N

thus
∫

A+Br

∫

Br

1D0(T (x + y))dy dx ≤ C̃|A + Br|ǫ
1
N .

The same argument is valid for any Tn in the converging sequence and we conclude that

∫

A+Br

∫

Br

|u0(Tn(x + y)) − u0(T (x + y))|dy dx

≤ 4C̃‖u0‖∞|A + Br|ǫ
1
N +

∫

A+Br

∫

Br

|w(Tn(x + y)) − w(T (x + y))|dy dx,

which, in view of (2), proves that u0(Tn(x+y)) converges to u0(T (x+y)) in L1((A+Br)×Br,LN ⊗
LN ). Since we have already seen that u0(Tn(x) + ∇Tn(x) y) converges to u0(T (x) + ∇T (x) y) in
L1((A+Br)×Br,LN ⊗LN ), possibly taking a subsequence and using the Dominated Convergence
Theorem, we can conclude that

∫

A+Br

∫

Br

|u0(Tn(x + y)) − u0(Tn(x) + ∇Tn(x) y)|2dy dx

−→
∫

A+Br

∫

Br

|u0(T (x + y)) − u0(T (x) + ∇T (x) y)|2dy dx

as n → ∞. Finally, the minimizing sequence (Tn) converges to T ∈ V1 with

E1(T ) = lim
n→∞

E1(Tn)

thus T is a minimizer of E1 in V1.

Remark 5.3 (Continuity of E1) A by-product of the proof above is the continuity of E1 in V1

with respect to the weak-∗ convergence in SBV.

Lemma 5.4 (G.P. Leonardi [62]) Let CP = {{Ei,α}i∈Iα} denote a collection of Caccioppoli par-
titions of Ω such that supα

∑

i∈Iα
P (Ei,α,Ω) ≤ C1. For every ǫ > 0 and E = {Ei}i∈I ∈ CP, let us

define

ϕǫ(E) = ǫ · #{i ∈ I : |Ei| > ǫ} +
∑

i∈I
|Ei|≤ǫ

|Ei|,

where # denotes the counting measure. Then there exists C2 > 0 such that

sup
E∈CP

ϕǫ(E) ≤ C2ǫ
1
N
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Proof Let E = {Ei}i∈I ∈ CP and Kǫ(E) = {i ∈ I : |Ei| ≥ ǫ}. Ω being bounded with Lipschitz
boundary, one has HN−1(∂Ω) < +∞ therefore by adding R

N \ Ω to E one obtains a Caccioppoli
partition of R

N . In addition, by Theorem 3.7,

∑

i∈I

P (Ei, R
N ) =

∑

i∈I

P (Ei,Ω) + HN−1(∂Ω).

By the isoperimetric inequality in R
N , there exists C3 > 0 such that

ǫ
N−1

N #Kǫ(E) ≤
∑

i∈Kǫ(E)

|Ei|
N−1

N ≤
∑

i∈Kǫ(E)

C3P (Ei, R
N ) ≤ (C1 + HN−1(∂Ω)) C3

from which we deduce that

ǫ#Kǫ(E) ≤ (C1 + HN−1(∂Ω)) C3ǫ
1
N .

Besides,

∑

i6∈Kǫ(E)

|Ei| =
∑

i6∈Kǫ(E)

|Ei|
N−1

N |Ei|
1
N ≤ ǫ

1
N

∑

i6∈Kǫ(E)

|Ei|
N−1

N ≤ (C1 + HN−1(∂Ω))C3ǫ
1
N ,

and the lemma follows.

5.2 Non uniqueness of the minimizers

Simple examples show that Model I may have several minimizers, see for instance Figure 3 where
for r small enough translating either the left part to the right or the right part to the left has zero
energy.
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A

Figure 3: A simple situation where, for r small enough, two different translations have zero energy
E1 and yield completely different interpolations.
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5.3 Relation with patch-based algorithms

It is natural to wonder how the model that we propose relates to basic patch-based algorithms, i.e.
algorithms with reasonably sophisticated scans of the inpainting domain (raster scan, spiral scan,
most convex points first, edges first, etc.). As will be shown in Section 7, there are partial numerical
indications that geometric features could be recovered on a global basis with our model when a
basic patch-based method rather works on a local or semi-local basis. We actually believe that the
action of a basic patch-based algorithm is equivalent to a locally minimizing flow with respect to our
model. It consists indeed in iteratively invading the inpainting domain from outwards to inwards.
At each step i an optimal pair (Ei, Ri x+ti) is found and u0 is defined on Ei as u0(Ri x+ti). At the
end, a finite Caccioppoli partition has been built in association with a piecewise roto-translation T
and the reconstructed image in A coincides with u0(T (·)). Therefore, basic patch-based algorithms
can be seen as greedy methods for minimizing the functional, at least locally.

We may also wonder whether a locally minimizing flow can be directly found from the model.
Obviously, the derivation of a Euler-Lagrange equation associated with the model, even in a weak
form, is a highly non trivial problem. And even if we find one, for example up to a prior reg-
ularization of the functional, it will presumably not be able to reconstruct sharp discontinuities
in contrast with most patch-based algorithms. Another option would be to try to decrease the
energy by a suitable perturbation of a given Caccioppoli partition and of an associated piecewise
roto-translation. But this approach is rather difficult to handle and would probably be much too
sensitive to local minima.

Eventually, one may directly try to find a globally minimizing scheme: it is a completely open
problem to the best of our knowledge. A possible direction of research is given by the interesting [60]
where a criterion related to ours is minimized using a belief-propagation technique in Markov
Random Field graphs. As mentioned by the authors, the method is global for tree structured
graphs but might not be global if the graph contains cycles, which is usually the case for graphs
associated with digital images... The authors claim however that “strong” local minima can be
obtained, i.e. local minima that are close to global minima from an experimental point of view.
Yet global minima are still unreachable and we believe that it is an interesting direction of research.

6 Introducing first order penalty terms

The exemplar-based inpainting methods where entire pieces of patches are copied suffer from a
well-known problem: blocky effects are visible in the reconstruction when the patch size parameter
r does not correspond to the texture scale or, more generally, when the patch size becomes large.
Different approaches have been proposed to solve this issue, like finding a “smooth” transition
between adjacent patches. We propose an extension of our model that allows further restrictions
on the reconstruction.

First, we relax the condition that the reconstructed image in A has to be exactly copied from
u0. Instead we introduce an interpolating function u with the constraint that u has to coincide
with u0 outside A. This gives a new criterion

Ẽ2(u, T ) =

∫

A+Br

∫

Br

|u(x + y) − u0(T (x) + ∇T (x) y)|2dy dx

that can be easily minimized in the space {(u, T ) : u ∈ L∞(Ω), ‖u‖∞ ≤ C1, T ∈ V1}. Being
the blocky effects characterized by the creation of spurious edges, we penalize the local variations
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of u as soon as they are larger than the local variations of u0. The new criterion makes sense if
u0, u ∈ L∞(Ω) ∩ BV(Ω) and reads as:

(

Model II
)

E2(u, T ) =
1

rN

∫

A+Br

∫

Br

|u(x + y) − u0(T (x) + ∇T (x) y)|2dy dx

+
1

rN−1

∫

A+Br

(

|Du|(Br(x)) − |Du0|(Br(T (x)))
)+

dx

where (·)+ denotes max(·, 0) and the coefficients 1
rN and 1

rN−1 ensure the homogeneity of the
energy. Observe that the second term does not penalize the total variation of u but only prevents
the local variations from being larger than those of u0. Thus oscillations are still allowed and can
be preserved. In particular, texture images can be processed under the condition that they have
finite total variation, which is somewhat restrictive – it has been shown in particular in [46] that
some textures might have infinite total variation in the continuous domain – but not absurd.

It is worth noticing also that using (·)+ rather than | · | gives some freedom to have a smooth
interpolant and, from a mathematical point of view, is much easier to handle. Besides, it is
legitimate to wonder why we compare the local total variations of u and u0 instead of simply
minimizing

∫

A+Br(0)
|Dvx|(Br)dx

where vx(y) = u(x + y) − u0(T (x) + ∇T (x) y). This term is actually much too regularizing and is
for example absolutely not adapted for comparing similar but not identical samples of a texture or
for the comparison of two geometric samples that coincide up to a small translation. In contrast,
comparing the local total variations is much more adapted.

We shall prove in the next section the existence of minimizers of E2 in a suitable space. Let
us stress that the results remain valid when adding to the criterion any lower semicontinuous (and
coercive if necessary) functional depending on u. This gives the opportunity to play with the
regularity of the reconstructed image. We will propose in section 6.2 a third criterion that aims at
constraining even more the geometry.

6.1 Minimization of Model II

Assume that u0 ∈ BV(Ω) ∩ L∞(Ω) and define

V2 =
{

(u, T ), u ∈ BV(Ω) , ‖u‖∞ ≤ ‖u0‖∞ , u = u0 on Ω \ A, T ∈ SBV(Ω, RN ), T is a

piecewise roto-translation associated with a Caccioppoli partition {Ei}i∈IT
such that

∑

i∈IT

P (Ei,Ω) ≤ C

rN−1
, T = Id on Ω \ (A + Br), T (A + Br) ⊂ (Ω \ [(A + Br) ∪ (∂Ω + Br)])

}

Then we can prove the following theorem

Theorem 6.1 The functional E2 admits a minimizer (u, T ) ∈ V2.
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The proof of Theorem 6.1 requires preliminary results on measures. The following lemma shows
that, given r > 0, a measure on Ω negligible with respect to HN−2 does not charge spheres of radius
r except for at most countably many of them.

Lemma 6.2 Let ν be a positive measure on Ω negligible with respect to HN−2, i.e. HN−2(B) < +∞
implies ν(B) = 0 for any Borel set B ⊂ Ω. For all ǫ > 0, Gǫ := {y / ν(∂Br(y)) > ǫ} is finite thus
G := {y / ν(∂Br(y)) > 0} is at most countable.

Proof Let y1, y2 ∈ Gǫ with y1 6= y2. Then, since ν is negligible with respect to HN−2,

ν(Ω) ≥ ν(Ω ∩ (∂Br(y1) ∪ ∂Br(y2))) = ν(∂Br(y1)) + ν(∂Br(y2)) > 2ǫ.

It follows that

#{y, ν(∂Br(y)) > ǫ} ≤ ν(Ω)

ǫ
,

hence Gǫ is finite. Since G =
⋃

n≥1 G 1
n
, G is at most countable.

Lemma 6.3 With the notations of Lemma 6.2, let τ ∈ BV(Ω,Ω) such that det (∇τ) 6= 0 a.e.,
where ∇τ denotes the approximate differential of τ . Then we have

LN ({x ∈ Ω, τ(x) ∈ G}) = 0.

Proof Let C := {x ∈ Ω, τ(x) ∈ G} and

C̃ = {x / τ approximately differentiable at x and τ(x) ∈ G} .

Obviously, C̃ ⊂ C and LN (C\C̃) = 0 because τ is approximately differentiable LN -almost every-
where by the Calderón-Zygmund Theorem [2]. Denoting N(y, C̃) = #{τ−1(y)

⋂

C̃} and applying
the area formula for approximately differential maps (see for instance (5.5.2) in [3]) yield

∫

C̃

|det(∇τ(x))| dx =

∫

τ(C̃)
N(y, C̃) dy = 0

since τ(C̃) ⊂ τ(C) ⊂ G, and LN (G) = 0 according to the previous lemma. By assumption,
det(∇τ(x)) 6= 0 LN -a.e., thus LN (C) = LN (C̃) = 0 and the proposition ensues.

Lemma 6.4 Let u ∈ BV(Ω) and τ like in Lemma 6.3. Then |Du|(∂Br(x)) = 0 and |Du|(∂Br(T (x))) =
0 for LN -almost every x ∈ Ω.

Proof It suffices to remark that if u ∈ BV(Ω) then |Du| is a positive measure negligible with
respect to HN−2. The conclusion follows from Lemmas 6.2 and 6.3.

Proof of Theorem 6.1:

It is easily seen that there exist pairs (u, T ) ∈ V2 such that E2(u, T ) < ∞. Consider a minimizing
sequence (un, Tn)n≥1 and assume that supn≥1 E2(un, Tn) ≤ δ. One has

∫

A+Br

|Dun|(Br(x)) dx ≤
∫

A+Br

|Du0|(Br(Tn(x))) dx + rN−1δ ≤ |A + Br| |Du0|(Ω) + rN−1δ (4)
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Notice that:

|Dun|(Ω) = |Dun|(Ω\(A + Br)) + |Dun|(A + Br) = |Du0|(Ω\(A + Br)) + |Dun|(A + Br)

≤ |Du0|(Ω) + |Dun|(A + Br) (5)

Let {Si}i=1,··· ,k be a covering of A+Br by cubes of side α < r/2 such that |Si ∩Sj | = 0, i 6= j. Let
a = mini=1,··· ,k{|Si ∩ (A + Br)|}. By the subadditivity of the total variation measure

|Dun|(A + Br) ≤
k

∑

i=1

|Dun|(Si)

By the mean value theorem, for each i ∈ {1, · · · , k} there exists xi ∈ int(Si) ∩ (A + Br) such that

|Dun|(Br(xi)) ≤
∫

Si∩(A+Br)
|Dun|(Br(x))dx

therefore, since Si ⊂ Br(xi),

|Dun|(A+Br) ≤
k

∑

i=1

|Dun|(Br(xi)) ≤
1

a

k
∑

i=1

∫

Si∩(A+Br)
|Dun|(Br(x))dx =

1

a

∫

A+Br

|Dun|(Br(x))dx

Plugging into (5) yields

|Dun|(Ω) ≤ |A + Br| |Du0|(Ω) + rN−1δ

a
+ |Du0|(Ω)

thus the sequence (un)n∈N has uniformly bounded total variation. Since in addition ‖un‖∞ ≤
‖u0‖∞ and Ω is bounded, we can apply the compactness theorem in BV to deduce the existence
of u ∈ BV(Ω) ∩ L∞(Ω) such that, up to a subsequence, (un) weakly-∗ converges to u in BV(Ω),
‖u‖∞ ≤ ‖u0‖∞ and u = u0 on Ω \ A.

The same argument as in the proof of Theorem 5.1 yields that, up to a subsequence, Tn weakly-∗
converges in BV to a piecewise roto-translation T with (u, T ) ∈ V2. In addition and since un → u
in L1, we can prove with a similar argument as for Theorem 5.1 that

∫

A+Br

∫

Br

|un(x+y)−u0(Tn(x)+∇Tn(x)y)|2dy dx →
∫

A+Br

∫

Br

|u(x+y)−u0(T (x)+∇T (x) y)|2dy dx

Let us now examine the second term of E2 in Model II. We know from Lemma 6.4 that for a.e.
x ∈ A + Br, |Du0|(∂Br(T (x))) = 0. Because Tn converges to T in L1, we have Tn(x) → T (x) a.e.
possibly taking a subsequence. Thus, for a.e. x ∈ A + Br, 1Br(Tn(x)) → 1Br(T (x)) |Du0|-almost
everywhere. By the Dominated Convergence Theorem, it follows that for a.e. x ∈ A + Br,

∫

Ω
1Br(Tn(x))d|Du0| = |Du0|(Br(Tn(x))) →

∫

Ω
1Br(T (x))d|Du0| = |Du0|(Br(T (x))).

Then, by the lower semicontinuity of the total variation, for every x ∈ A + Br

|Du|(Br(x)) ≤ lim inf
n→∞

|Dun|(Br(x)),
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therefore

|Du|(Br(x)) − |Du0|(Br(x)) ≤ lim inf
n→∞

(|Dun|(Br(x)) − |Du0|(Br(Tn(x))))

and thus

(

|Du|(Br(x)) − |Du0|(Br(x))
)+

≤ lim inf
n→∞

(

|Dun|(Br(x)) − |Du0|(Br(Tn(x)))
)+

We deduce from Fatou’s Lemma that
∫

A+Br

(

|Du|(Br(x)) − |Du0|(Br(x))
)+

dx ≤ lim inf
n→∞

∫

A+Br

(

|Dun|(Br(x)) − |Du0|(Br(Tn(x)))
)+

dx

In conclusion, the minimizing sequence (un, Tn) converges to (u, T ) ∈ V2 and E2(u, T ) ≤
lim infn→∞ E2(un, Tn) thus (u, T ) is a minimizer of E2 in V2 and Theorem 6.1 ensues.

6.2 Model III: using a decomposition into geometry+texture

Although Model II allows the processing of all textures with finite total variation, comparing the
local variations is more meaningful for a geometric image than for a texture image. We thus propose
a third model where the local variation penalty – and possibly others of higher order – is put on the
geometric part only. Remark that for compactness reasons we still have to assume a BV control of
the whole reconstructed image u – but the bound can be taken arbitrarily large.

Before introducing our third model, let us recall a few basic facts about TV-L1 image decom-
position.

6.2.1 The TV-L1 decomposition

We refer the reader to [70] for an introduction to the problem of image decomposition. The goal
is to write an image as a sum of a geometric component – sometimes called a cartoon image –
and a texture component. There is a wide body of literature related to the question of finding
the most suitable decomposition spaces and the most efficient numerical method to perform the
decomposition, see for instance [83, 75, 9, 7, 10, 35, 61, 86, 8, 26] to name a few. In this paper we
will use a TV-L1 model originally introduced in the context of image denoising [1, 72] and studied
explicitly as a decomposition model in [11, 27, 34, 87] for instance. Starting from a function
v ∈ L∞(Ω), the principle is to find a decomposition v = vg +(v− vg) which is optimal with respect
to the criterion |Dvg|(Ω)+λ‖v−vg‖L1(Ω). This model has interesting properties: the stability with
respect to a class of contrast changes, the stability of the geometric component as long as λ lies in
a certain range of values, and the ability to capture structured patterns in the texture component.
For simplicity, we shall take λ = 1 in the sequel but the results remain valid for any λ > 0.

Definition 6.5 (Geometric part of a TV-L1 decomposition) Let v ∈ L∞(Ω). We mean by
geometric part of v a (possibly non unique) solution vg of

Min
vg∈L∞(Ω)∩BV(Ω)

|Dvg|(Ω) + ‖v − vg‖L1(Ω) (6)
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The existence of solutions to Problem (6) is an easy consequence of the lower semicontinuity of the
total variation in BV. The fact that several minimizers may exist has been in particular examined
in [27].

We define now, and once for all, ug
0 as a solution of (6) with v = u0 and such that ‖ug

0‖∞ ≤
‖u0‖∞, which is possible according to the next proposition. When a function f belongs to L∞(Ω),
we denote by supΩ f and infΩ f the essential supremum and the essential infimum, respectively.

Proposition 6.6 Let us set α ≤ infΩ v and β ≥ supΩ v. If vg is a solution of Problem (6), then

max
(

α, min(β, vg)
)

is also a solution of Problem (6). In particular, max
(

infΩ v,min(supΩ v, vg)
)

is a solution.

In particular, it means that if vg is a solution of Problem (6), then, up to a truncation, we can
always assume that

inf
Ω

v ≤ vg ≤ sup
Ω

v

Proof It is based on a standard truncation argument. We remark that x 7→ |x−a| is decreasing if
x ∈ (−∞, a) and increasing if x ∈ (a,+∞). Therefore, if M ≥ a, one always has: |min(x,M)−a| ≤
|x − a|. Hence, if we let M = β, we find that:

∫

Ω
|min(vg, β) − v| dx ≤

∫

Ω
|vg − v| dx

Moreover, it is a direct consequence of the coarea formula that |D(min(vg, β))|(Ω) ≤ |Dvg|(Ω)
which yields that the function min(vg, β) is a solution of Problem (6). It follows from a similar

argument that also max
(

α, min(β, vg)
)

is solution.

We now introduce the notion of constrained geometric parts whose existence can be proved like
for the generic geometric parts.

Definition 6.7 (Geometric parts constrained by u0) Let u ∈ L∞(Ω) such that u = u0 on
Ω \ A. We mean by geometric part of u constrained by u0 a (possibly non unique) solution ug of

Min
ug∈L∞(Ω)∩BV(Ω)
ug=u

g
0 on Ω\A

|Dug|(Ω) + ‖u − ug‖L1(Ω) (7)

such that ‖ug‖∞ ≤ ‖u‖∞.

6.2.2 Model III: penalizing the local variations of the geometric component only

We propose as a third model to minimize the criterion:
(

Model III
)

E3(u, ug, T ) =
1

rN

∫

A+Br

∫

Br

|u(x + y) − u0(T (x) + ∇T (x) y)|2dy dx

+
1

rN−1

∫

A+Br

(

|Dug|(Br(x)) − |Dug
0|(Br(T (x)))

)+
dx
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where we assume that ug is a geometric part of u constrained by u0. Let C̃ be such that

V3 =
{

(u, ug, T ), u ∈ BV(Ω), ‖u‖∞ ≤ ‖u0‖∞, |Du|(Ω) ≤ C̃

rN−1
, u = u0 on Ω \ A,

ug geometric part of u constrained by u0, T ∈ SBV(Ω, RN ) is a piecewise roto-translation

associated with a Caccioppoli partition {Ei}i∈IT
such that

∑

i∈IT

P (Ei,Ω) ≤ C

rN−1
,

T = Id on Ω \ (A + Br), T (A + Br) ⊂ (Ω \ [(A + Br) ∪ (∂Ω + Br)])
}

.

is not empty. Then we can prove the following

Theorem 6.8 E3 has at least a minimizer (u, ug, T ) ∈ V3.

Proof : First remark that, V3 being not empty, there obviously exist triplets (u, ug, T ) ∈ V3

such that E3(u, ug, T ) < ∞. Consider a minimizing sequence (un, ug
n, Tn)n≥1 and assume that

supn≥1 E3(un, ug
n, Tn) < +∞. Since ug

n is a solution of Problem (7) (with respect to un) and the
function w that vanishes on A and coincides with ug

0 on Ω \ A satisfies the constraints of Problem
(7), we have

|Dug
n|(Ω) ≤ |Dug

n|(Ω) + ‖un − ug
n‖L1(Ω) ≤ |Dw|(Ω) + ‖un − w‖L1(Ω).

By Theorem 3.7, |Dw|(Ω) ≤ |Dug
0|(Ω \ Ā) + ‖ug

0‖∞HN−1(∂A) and since ‖w‖L1(Ω) = ‖ug
0‖L1(Ω\Ā),

we get that for some γ independent of n

|Dug
n|(Ω) ≤ γ + ‖un‖L1(Ω)

But Ω being bounded, we deduce from our assumptions that ‖un‖L1(Ω) ≤ |Ω|‖un‖L∞(Ω) ≤ |Ω|‖u0‖∞
thus |Dug

n|(Ω) ≤ γ+ |Ω|‖u0‖∞. Therefore, the ug
n’s are uniformly bounded in BV(Ω) so there exists

a subsequence, still denoted as (ug
n), that weakly-∗ converges in BV to ū ∈ BV(Ω) ∩ L∞(Ω) such

that ‖ū‖∞ ≤ ‖u0‖∞.
Besides, since un is uniformly bounded in BV(Ω), there exists u in L1(Ω) such that, up to a

subsequence, un → u in L1(Ω).
We now need to show that ū is indeed a geometric part of u constrained by u0. This is

not immediate due to the constraint ū = ug
0 on Ω \ A but can be done using the theory of Γ-

convergence [69]. Let us consider the space X = BV(Ω) ∩ {w : w = ug
0 on Ω \ A} endowed with

the strong L1 convergence and, with the notations above, define on X the functionals

Fn(w) = |Dw|(Ω) + ‖w − un‖L1(Ω).

We will prove that Fn Γ-converges on X with respect to the strong topology of L1 to the functional
F defined by F (w) = |Dw|(Ω) + ‖w − u‖L1(Ω) for every w ∈ X. If (wn) ⊂ X → w ∈ X then the
lower semicontinuity of total variation and the convergence in L1 of un to u imply that

F (w) ≤ lim inf
n→∞

Fn(wn)

Observe now that F (w) = limn→∞ Fn(w) therefore Fn Γ-converges to F in X with respect to
the L1(Ω) convergence. By a well-known property of Γ-convergence [69], since (ug

n) is a sequence
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of minimizers of Fn in X that converges in L1(Ω) to ū, we conclude that ū is a minimizer of F in
X, thus a geometric part of u constrained by u0. We denote from now ug := ū.

The same argument as in the proof of Theorem 5.1 yields that, up to a subsequence, Tn weakly-∗
converges in BV to T with (u, ug, T ) ∈ V3. In addition and since un → u in L1, we can prove with
a similar argument as for Theorem 5.1 that
∫

A+Br

∫

Br

|un(x+y)−u0(Tn(x)+∇Tn(x)y)|2dy dx →
∫

A+Br

∫

Br

|u(x+y)−u0(T (x)+∇T (x) y)|2dy dx

Arguing again like in the proof of Theorem 5.1 – except that we now have to work with the
geometric parts – we can prove the lower semicontinuity of the first-order term, i.e.
∫

A+Br

(

|Dug|(Br(x))−|Dug
0|(Br(T (x)))

)+
dx ≤ lim inf

n→∞

∫

A+Br

(

|Dug
n|(Br(x))−|Dug

0|(Br(Tn(x)))
)+

dx.

To conclude, the minimizing sequence (un, ug
n, Tn) converge to (u, ug, T ) ∈ V3 with E3(u, ug, T ) ≤

lim infn→∞ E3(un, ug
n, Tn) and Theorem 6.8 ensues.

6.2.3 Adding further restrictions to the geometric part: the case of the Willmore
functional

Let us define the functional

F (u) =







∫

A+Br

|∇u|
(

1 + α

∣

∣

∣

∣

div
∇u

|∇u|

∣

∣

∣

∣

p)

dx if u ∈ C2(Ω)

+∞ if u ∈ L1(Ω) \ C2(Ω)

where α > 0 and p > 1. F is an extension to gray-level images of the celebrated Willmore
functional for surfaces

∫

S
|HS |2dH2 where S is a two-dimensional surface and HS denotes the

mean curvature vector. As mentioned in the introduction, F has been proposed in [68] in the
context of inpainting following the idea that the interpolation process must mimic the brain ability
to reconstruct partially visible objects – the so-called amodal completion. The results obtained
in [68, 67, 28, 41] with an optimization model involving F show that this approach performs well
for the inpainting of geometric images. Being not lower semicontinuous, F cannot be directly
minimized but must be replaced by the associated relaxed functional [69] defined by :

∀u ∈ L1(Ω), F (u) = inf{lim inf
n→∞

F (un), (un) ⊂ C2(Ω), un → u in L1(Ω)}

that has been studied in [4, 63]. The lower semicontinuity of F with respect to the convergence in
L1 yields the following result, which is an easy consequence of Theorem 6.8.

Theorem 6.9 Assume that V3 contains at least a triplet (u, ug, T ) such that F (ug) < ∞. Then
the following functional has a minimizer in V3:

(

Model IV
)

E4(u, ug, T ) =
1

rN

∫

A+Br

∫

Br

|u(x + y) − u0(T (x) + ∇T (x) y)|2dy dx

+
1

rN−1

[

∫

A+Br

(

|Dug|(Br(x)) − |Dug
0|(Br(T (x)))

)+
dx + F (ug)

]
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Loosely speaking, this theorem provides a theoretical justification of the minimization of Model III
plus the additional constraint that the geometric part of the reconstructed image must have rather
small and not too oscillating level lines, which agrees with the type of interpolation that our brain
can perform.

7 Comparing Models I and II with basic patch-based inpainting

algorithms: a toy example in dimension 2

One of the motivations for this paper was to understand what kind of geometry can be reconstructed
with exemplar-based inpainting methods and whether our different global variational models are
able to recover geometric features on a non local basis. Our first results in this direction, through
numerical computations performed on a simple example, are very partial but instructive. They
indicate that Models I and II could indeed be better suited for the recovery of long-range geometric
features.

The simple inpainting situation that we shall study is illustrated in Figure 4: it consists of a
two-dimensional binary image from which a rectangular region has been removed. We denote by R
the distance between the upper left vertex of the rectangle and each edge termination. We chose
this configuration because it gives a clue about which continuation could be favored by the different
models in the general situation where two edges with different directions are interrupted by the
inpainting domain.

A

R

0

0

0

0

0

0

00 0

1

1

1

Figure 4: A is the inpainting domain. Outside A, the images takes either value 0 or 1.

First, let us stress that it is virtually impossible to prove that a given inpainting is the best
in the sense of our models. Except in very extremely simple cases for which we can find a zero
energy configuration, we are not able to prove the optimality of a given inpainting candidate. One
of the reasons is the non existence of a simple formula for the gradient of our functional. Therefore,
we will restrain ourselves to compare the respective energies – very precisely computed through a
numerical scheme – of ad hoc interpolations.

7.1 Three inpainting candidates

First, let us recall that a candidate to an inpainting problem in our setting consists in the value
of the image inside the unknown region and the definition of the geometrical transformation T
that reflects where the copy comes from. In the case of Model I the value of the image inside the
inpainting zone is even forced by the choice of T and equals u0(T (x)).
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Figure 5: The three proposed interpolations: 5(a): “Good continuation” of the outer edges. 5(b):
Shortest path continuation 5(c) Polygonal continuation (circle approximation).

Three natural inpaintings can be proposed for filling the unknown region of Figure 4. They are
shown in Figure 5.

First inpainting: prolonging the edges until they meet The first natural interpolation
consists in prolonging the two outer edges until they meet with a 90 degrees angle. This corresponds
to a “good continuation” configuration according to the terminology of vision theory [59]. The
transformation T that produces such a result is defined as follows: on region α (see Figure 5(a)) it
is a vertical translation by a vector long enough to ensure that any point of the unknown region is
transported outside A. On region β, T is a horizontal translation with the same constraint on the
length of the translation vector.

Such configuration is very close to what would provide a generic patch-based algorithm, ex-
cept maybe that the algorithm would not reconstruct exactly the right angle, unless it is present
elsewhere in the image, but rather returns a “cut” angle.

Second inpainting: connecting with the shortest path The second configuration that we
shall study is obtained by connecting the two junctions M and N – i.e. the intersection points
between the inpainting domain and the outer edges – with a straight line and filling the unknown
region with the value 1 on top of this straight line and zero elsewhere. A possible transformation
T that yields this result is, for the interior region, a mere rotation that transforms the segments
[M,N ] into some segment of the two edges outside the inpainting domain. It is a 45 degrees rotation
and it does obviously not matter which one of the two existing lines is chosen to be copied. Above
the bisector of the angle at point N , T is defined as the translation by a vertical vector which is
long enough to get out of A+Br. A similar definition holds under the bisector of the angle at point
M using instead a horizontal translation.

Third inpainting: connecting with a polygonal line The third interpolation we propose
consists in connecting the two end points M and N by a polygonal line, i.e. a rough approximation
of a circle. As before, the upper left region is filled with ones and the rest of the unknown region is
filled with zeros. The length of each segment composing the polygon is chosen to be equal to r and
we do not discuss the fact that the number of segments required may not be an integer because
the contribution to the total energy of each segment is small when r is small thus one can neglect
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the contribution of one last segment of length less than r. A reasonably good map T that produces
such result is a piecewise roto-translation based on a triangular partition of the inpainting domain.

7.2 Numerical setting

Examining the functionals E1 and E2 associated with Models I and II we see that, once the x
variable is fixed, the integration over the y variable amounts to the comparison of two functions
defined on a ball of radius r. To compute the energies of the different configurations under study
we need to evaluate with respect to the variable x the functions ϕx

1 : y 7→ u0(T (x + y)) and
ϕx

2 : y 7→ u0(T (x) + ∇T (x) y). For each proposed inpainting we will present the different possible
behaviors (with respect to x) of these functions, then a simple program will evaluate the respective
energies of our functionals. For this particular choice of interpolations, the only difference between
Model I and Model II is that the latter takes into account the length of the discontinuity set of ϕx

1

and ϕx
2 .

Prolonging the lines until they meet: the rectangular continuation We will examine
in detail the case of the rectangular completion and give a rapid explanation for the other two
inpaintings. In Figure 6(a), when x belongs to region α which is defined as the northeast half disk
of center the right angle in the reconstruction and of radius r, the function

ϕx
1 : y ∈ Br(0) 7→ u0(T (x + y))

maps Br := Br(0) to something equivalent to Figure 6(b) whereas the function

ϕx
2 : y ∈ Br(0) 7→ u0(T (x) + ∇T (x)y)

maps Br to an analog of Figure 6(c). When x lies in region β which is defined as the set of points
that do not belong to region α, are at a distance less than r from the horizontal continuation and
are situated northwest of the right angle then the graph of ϕx

1 is equivalent to Figure 6(d) and
the graph of ϕx

2 is equivalent to 6(e). Finally, for region γ we can change the transformation T
such that it is a southeast translation of some large vector whenever x is situated at a distance
larger than r from the continuation lines (and southeast of them). This does not change the values
taken by the energies but yields ϕx

1(y) = ϕx
2(y) = 0 for every y ∈ Br(0). Of course the same thing

happens for the southwest half plane under the diagonal line of Figure 6(a). Outside the described
regions and their symmetric counterparts, both functions are identical.

The numerical evaluation of E1 and E2 is done as follows: we consider on R
2 a very fine grid

ΓM = {(r k
M

, r ℓ
M

), (k, ℓ) ∈ Z
2}. For each point x ∈ Γ ∩ (A + Br) for which ϕx

1 and ϕx
2 may differ,

we compute – it is an exact area computation –
∫

y∈Br(0)
|ϕx

1(y) − ϕx
2(y)|2dy

using the configurations of ϕx
1 and ϕx

2 given in Figure 6. These terms are added for the finitely
many x ∈ Γ∩ (A+Br) and E1 ensues. A similar computation is done for E2 to which the first-order
term must be added. This is done using the sum for each x ∈ Γ∩(A+Br) of the positive part of the
difference between the lengths of the discontinuity sets of ϕx

1 and ϕx
2 . Again this latter calculation

is exact.
Let us now briefly examine the configurations of ϕx

1 and ϕx
2 for the other two inpaintings under

study.
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Figure 6: Rectangular continuation: representation of y ∈ Br 7→ ϕx
1(y) and y ∈ Br 7→ ϕx

2(y)
depending on the position of x in Figure 6(a). When x lives in region α, the graphs of ϕx

1 and ϕx
2

look like 6(b) and 6(c), respectively. When x belongs to region β then ϕx
1 and ϕx

2 are similar to
6(d) and 6(e).

The shortest path continuation Figure 7(a) shows the different regions of interest in the case
of the completion by the shortest path (we concentrate on one of the end points of the continuation
line). Let α and β denote respectively the upper half and the lower half disks – with respect to the
bisector – with radius r and centered at the junction point. Recall that T is defined on region α
as a vertical translation and on region β as a rotation. For any x in these two regions, the graphs
of ϕx

1 and ϕx
2 on Br(0) are equivalent to Figure 7(b) and 7(c), respectively. Another region is not

shown in the figure: the one situated outside the disk of radius r, on the left with respect to the
junction point, above the bisector and below the tangent to the circle which is parallel to the 45
degrees line forming the junction. This region is very small and plays the same role as region δ of
Figure 10.

α

β

(a)

1

0

(b)

1 0

(c)

Figure 7: Connecting with a shortest path: the graphs of ϕx
1 and ϕx

2 on Br depend on the
position of x in Figure 7(a). They are equivalent to 7(b) and 7(c), respectively, when x ∈ α∪β.

The polygonal continuation is given by a map T defined on a partition made of isosceles
triangles with base length r, principal height length R, and having as common vertex the top left

corner of the inpainting domain. The number of triangles is approximately
π

4 asin( r
2R

)
. Figure 8(a)

shows the different meaningful regions for the definition of the functions ϕx
1 and ϕx

2 . Regions α and
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β are equivalent: they are defined as the set of points at distance less than r from exactly one of the
two endpoints M or N of the base segments of the triangular region under study. Whenever x ∈ α
or β, ϕx

1 and ϕx
2 are similar to Figures 8(b) and 8(c). When x ∈ γ (points that are at distance less

than r from M and N) they look like Figures 8(d) and 8(e).

α

β

γ

γ

M

N

(a)

1

0

(b)

1

0

(c)

1

0

(d)

1

0

(e)

Figure 8: Polygonal continuation: ϕx
1 and ϕx

2 are like Figures 8(b) and 8(c), respectively, when x
is either in region α or in region β of 7(a). They are like Figures 8(d) and 8(e) when x ∈ γ.

7.3 Results

The results are given for a patch size r = 1, R = 10 (see Figure 4) and a grid step r/100. Possibly
using for E1 the same homogeneity factor as for the first term of E2, it is clear that the comparison
results will not be qualitatively modified for other values of r. One may object that the polygonal
inpainting may depend on the relative values of r and R. In fact our numerical computations show
that as far as the ratio R/r is bigger than 10 the value of the functionals are not noticeably modified
by a change of the value of r. In any case, the domain A is assumed to be sufficiently large to
include at least a ball of radius r centered at the point of intersection of the prolonged lines in 6(a).
Recall indeed that outside the regions of interest given in Figures 6(a), 7(a) and 8(a) there is no
contribution to the energy.

We obtain the following numerical approximations for the respective energies E1 and E2 of each
inpainting configuration, with the assumption for the computation of E2 that u coincides with the
reconstructed function.

Model I Model II

Shortest path continuation 0.65 1.22

Rectangular continuation 0.76 1.53

Polygonal continuation 0.62 1.14

Let us first observe that E1 and E2 take a higher value for the shortest path continuation than
they take for the polygonal continuation because the energy is computed on A + Br. If only A
were used, the shortest path continuation would obtain a better score because part of the “bad
continuation” information – i.e. the fact that there is an angle between the incoming edge and the
interpolating line – is located outside A. Instead, using all the information in a band around A
ensures that the compatibility of the interpolation with the outer image is fully considered.

The rectangular continuation is very similar to what classical exemplar-based inpainting algo-
rithms, for example [76], will compute, at least for a sufficiently small size of patch. There probably
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will be a slight difference at the angle point which should be “cut” by the algorithms. When the
size of the patches becomes bigger then the algorithms compute an intermediate solution between
the rectangular continuation and the shortest path continuation.

The results above indicate that the polygonal continuation has lower E1 and E2 energies than
the other configurations. Of course, this does absolutely not prove that the polygonal continuation
is a minimizer but at least that it is a better inpainting than the two others! We propose additional
experiments in the next section in order to understand this fact.

7.4 Why does the polygonal continuation get smaller energy?

This section is devoted to a tentative explanation of why the polygonal continuation has a lower
energy than the two others candidates under study. We actually claim that, among binary inpaint-
ing candidates whose discontinuity set is a polygonal line with vertices at least at a distance of r
apart, those for which the angles at the vertices are more obtuse have lower E1 and E2 energies.
Recall first from the previous sections that, in the particular 2D inpainting situation that we are
examining, the energy associated to an inpainting candidate is concentrated in a Br neighborhood
of each vertex of the polygonal discontinuity set. We shall therefore provide, to justify our claim,
experimental evidences that replacing an angle by two less acute angles like in Figure 9 decreases
both E1 and E2.

α βθ

Figure 9: As will be shown, “cutting” an angle decreases both E1 and E2.

δ
γ

θ

Figure 10: To compute the energy carried by this angle, it is enough to observe that, for any point
x in the region δ, u0(Br(x)) looks like in Figures 6(b) or 6(c) (suitably modifying the angle); for
any point y ∈ γ, u0(Br(x)) looks like in Figures 6(d) or 6(e).

Let us compute the contribution to E1 and E2 of the configuration depicted in Figure 10 when
r = 1. The computation is very similar to what has been done in section 7.2: for any point x in the
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region δ, u0(Br(x)) looks like in Figures 6(b) or 6(c) (suitably modifying the angle); for any point
y ∈ γ u0(Br(x)) looks like in Figures 6(d) or 6(e). The values taken by E1 and E2 for different θ
are shown in Figure 11.
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Figure 11: The energies E1 and E2 with respect to angle θ (in degrees). Both energies tend to infinity
when θ goes to zero, which is consistent with the computations linking them to the curvature of
the discontinuity line (see the next section).
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Figure 12: The contribution to energy of the left configuration (plain curve) and right configuration
(dashed curve) of Figure 9 for different values of θ, assuming that α = β = θ

2 + π
2 .

The contribution of the angle to E1 for different values of θ is shown again in Figure 12 as a
plain curve. We compare with the dashed curve representing the contribution to E1 of the right
configuration in Figure 9 for α, β defined by α = β = θ

2 + π
2 . We can deduce from this experiment

that it is more economical to use several small angular jumps than a single large one. Of course,
the same results hold for the first term of E2 when u is chosen as the appropriate transform of u0.
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Interestingly, similar computations yield similar results for the second term of E2 therefore we can
also conclude that configurations with smaller angular jumps will have smaller E2 energy. In other
words, observing that the results will not qualitatively change when r becomes smaller, both E1

and E2 will promote smooth curves.
As a consequence, the “flattening” or “iterated angle cut” process of Figure 13 decreases both E1

and E2. Observe that, in Figure 13, (a) is the “good continuation” candidate, (b) the shortest path
candidate and (f) the polygonal continuation candidate so that the obtained ordering is coherent
with the numerical results of the previous section. This might also indicate that the smaller is r,
the smoother are the discontinuity sets of the best binary inpainting candidates.

> > >=
(c)(b)(a)

=
(d) (e) (f)

Figure 13: The “flattening” process decreases both E1 and E2. Remark that (a), (b) and (f) coincide
with the configurations studied in the previous sections therefore the numerical results obtained in
Section 7.3 are confirmed.

To conclude this section, our experimental results on a very simple 2D situation indicate that the
minimization of either Model I or II might promote non local and smooth geometric interpolations
in contrast with classical exemplar-based algorithms. We already mentioned that the algorithms
could correspond to locally minimizing flows for Model I. Our numerical observations clearly show
the need for globally minimizing algorithms associated to Models I, II, III and IV.

8 From axiomatics to further extensions of E2

The functional E2 involves the L2 norm of the local differences between u and u0, the difference
between the local variations of u and u0 and the homogeneity parameters 1

rN and 1
rN−1 in order

to compensate the homogeneity difference between the first and the second terms, and also with
the purpose in mind to study the asymptotic behavior of the functional as r → 0. Is there a more
suitable way to define the functional? Besides, regarding the numerical results of the previous
section, and in particular regarding the fact that E2 takes very close values for the shortest path
continuation and for the polygonal continuation, is there a way to modify its definition in order to
promote much more the smoother configuration, i.e. the polygonal continuation?

We will focus on a particular generalization of E2, namely

Ea,b,c
2 (u, T ) =

1

rN

∫

A+Br

∫

Br

|u(x + y) − u0(T (x) + ∇T (x) y)|ady dx

+
1

rN−1+b

∫

A+Br

[(

|Du|(Br(x)) − |Du0|(Br(T (x)))
)+ ]c

dx

We are interested in the values of a ≥ 1, b ∈ R and c > 0 for which either one or both following
properties are fulfilled:
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(H1) the minimizers of Ea,b,c
2 are stable with respect to any multiplicative contrast change, i.e.,

if (u, T ) is a minimizer of Ea,b,c
2 with respect to u0 then (λu, T ) is a minimizer of Ea,b,c

2 with
respect to λu0, for any λ > 0.

(H2) the minimizers of Ea,b,c
2 are stable with respect to joint rescalings of the image domain, the

inpainting domain and the reference patch Br.

We will also discuss the connexion between the values of a, b, c and the smoothness of a geometric
reconstruction. Let us first observe that if u0 is replaced with ũ0 = λu0 with λ > 0 then

Ea,b,c
2 (λu, T ) =

1

rN

∫

A+Br

∫

Br

|λu(x + y) − λu0(T (x) + ∇T (x) y)|ady dx

+
1

rN−1+b

∫

A+Br

[(

|D(λu)|(Br(x)) − |D(λu0)|(Br(T (x)))
)+]c

dx

=
1

rN
λa

∫

A+Br

∫

Br

|u(x + y) − u0(T (x) + ∇T (x) y)|ady dx

+
λc

rN−1+b

∫

A+Br

[(

|Du|(Br(x)) − |Du0|(Br(T (x)))
)+]c

dx.

Therefore, c = a is a sufficient condition for (H1) to be satisfied.
Let us now examine how the energy changes when the images, the domain, the patches and the

roto-translations are rescaled by a factor k:

Ea,b,c
2

(

u
( .

k

)

, T
( .

k

)

, kA, kr, u0

( .

k

))

=

1

(kr)N

∫

k(A+Br)

∫

Bkr

∣

∣

∣

∣

u

(

1

k
(x + y)

)

− u0

(

1

k

(

T
(x

k

)

+ ∇T
(x

k

)

y
)

)
∣

∣

∣

∣

a

dy dx

+
1

(kr)N−1+b

∫

k(A+Br)

[(

|D (ũ) | (Bkr (x)) − |D (ũ0) |
(

Bkr

(

T
(x

k

))))+]c

dx

=
1

rN

∫

k(A+Br)

∫

Br

∣

∣

∣

∣

u
(x

k
+ y

)

− u0

(

1

k
T

(x

k

)

+ ∇T
(x

k

)

y

)
∣

∣

∣

∣

a

dy dx

+
kN

(kr)N−1+b

∫

A+Br

[

kN−1
(

|Du| (Br (x)) − |Du0| (Br (T (x)))
)+]c

dx

=
kN

rN

∫

(A+Br)

∫

Br

|u (x + y) − u0 (T (x) + ∇T (x) y) |ady dx

+
k(N−1)c+1−b

rN−1+b

∫

A+Br

[(

|Du| (Br (x)) − |Du0| (Br (T (x)))
)+]c

dx

Thus, to be sure that (u( .
k
), T ( .

k
)) is a minimizer of Ea,b,c

2 with respect to kA, kr, u0(
.
k
), one should

have (N − 1)c + 1 − b = N , thus b = (N − 1)(c − 1). Let us examine the different consequences:

1. If, like for the original E2, a = 2, b = 0 and c = 1, then (H2) is satisfied but not (H1).

2. If a = c = 1 and b = 0 then both (H1) and (H2) are satisfied, and the corresponding energy
is a sort of L1-local TV version of exemplar-based inpainting.
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3. If a = c = 2 and b = N − 1 then both (H1) and (H2) are satisfied.

Remark that the existence of a minimizer can be proven for each triplet of parameters as an easy
adaptation of the proof of Theorem 6.1.

Experimental indications on the behavior of the different energies are obtained comparing the
energies of the three proposed configurations for the 2D toy example of the previous section. Observe
first that, u and u0 being characteristic functions in these configurations, the value of a has no
impact on the energy. Besides, taking into account that N = 2 now:

• For the shortest path continuation, the contributions to the energy Ea,b,c
2 are concentrated on

the balls of radius r centered at both ends of the connecting line. The term

I1
a =

1

r2

∫

A+Br

∫

Br

|u(x + y) − u0(T (x) + ∇T (x) y)|ady dx

is therefore a O(r2) whereas

I2
b,c =

1

r1+b

∫

A+Br

[(

|Du|(Br(x)) − |Du0|(Br(T (x)))
)+ ]c

dx = O(
r2+c

r1+b
).

• For the rectangular continuation, the contribution to the energy is localized in the ball of
radius r centered at the intersection point between both continuing segments. Again I1

a =

O(r2) and I2
b,c = O( r2+c

r1+b ).

• The polygonal continuation tends as r goes to zero to a continuation with an arc of circle of
radius R. Let us compute the energy of this limit continuation for a small patch size r. The
contribution to the energy is localized in a band of width 2r covering the arc of circle. If x
lies in this band, one can find an approximation of

∫

Br
|u(x+y)−u0(T (x)+∇T (x) y)|ady and

(

|Du|(Br(x))−|Du0|(Br(T (x)))
)+

. It is indeed sufficient to observe that, up to a translation

and rotation of the coordinates frame, these terms are obtained by comparing in Br(0) the
x-axis with the graph y = R −

√
R2 − x2 of the circle. For r small, the arc of circle can be

approximated by the parabola y = x2

2R
. Then

∫

Br
|u(x+y)−u0(T (x)+∇T (x) y)|ady coincides

with the area between the parabola and the x-axis whereas
(

|Du|(Br(x))−|Du0|(Br(T (x)))
)+

is approximately the length difference between the parabola on x ∈ [−r, r] and the segment

[−r, r] × {0}. It is easy to calculate that
∫

Br
|u(x + y) − u0(T (x) + ∇T (x) y)|ady = O

(

r3

R

)

while
(

|Du|(Br(x)) − |Du0|(Br(T (x)))
)+

= O

(

r3

R2

)

. Summing on a band of length O(R)

and width 2r yields I1
a = O(r2) and I2

b,c = O

(

r3c−b

R2c−1

)

.

For the particular choices of the parameters that we already examined, one gets in Figure 14 the
asymptotic behaviours of both energy terms for the three continuations under study.

Observe that, for the particular case of the polygonal approximation, the energies that we
obtained either depend on κ = 1

R
or on κ3 = 1

R3 where R is the radius of the arc of circle that the
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a = 2, b = 0, c = 1 a = c = 1, b = 0 a = c = 2, b = 1

Shortest path Term 1= O(r2), Term 2= O(r2)

Rectangle Term 1= O(r2), Term 2= O(r2)

Polygon Term 1= O(r2), Term 2= O
(

r3

R

)

Term 1= O(r2), Term 2= O
(

r5

R3

)

Figure 14: Asymptotics of Term 1=
1

r2

∫

A+Br

∫

Br

|u(x + y) − u0(T (x) + ∇T (x) y)|ady dx

and Term 2=
1

r1+b

∫

A+Br

[(

|Du|(Br(x)) − |Du0|(Br(T (x)))
)+ ]c

dx for each continuation

proposed as an interpolation of the toy example (see Figures 4 and 5). Remark that the
first term is always a O(r2).

polygon approximates. The same computation can be done in higher dimensions, in which case the
energies depend either on |H| or on |H|3 where H is the mean curvature of an interpolating sphere.

In view of the chart of Figure 14, the energy obtained with a = c = 2 and b = 1 is the only one
that makes a significant difference – asymptotically speaking – between the polygonal continuation
on the one hand, and the two other continuations on the other hand.
Turning back to the general case of dimension N , all these arguments lead us to the functional:

(

Model II bis
)

Ebis
2 (u, T ) =

1

rN

∫

A+Br

∫

Br

|u(x + y) − u0(T (x) + ∇T (x) y)|2dy dx

+
1

r2N−2

∫

A+Br

[(

|Du|(Br(x)) − |Du0|(Br(T (x)))
)+]2

dx

and to the following result:

Theorem 8.1 The functional Ebis
2 admits a minimizer (u, T ) in V2

Proof It is a trivial adaptation of the proof of Theorem 6.1.

Numerical computations similar to the previous sections yield the following charts for the values
taken by Ebis

2 on the three configurations under study for the two-dimensional toy example. These
charts confirm that Model II bis has a better behaviour with respect to the polygonal continuation.
In the first chart, we simply compute the energy of each configuration (r = 1, R = 10) and compare
with Models I and II.

Model I Model II Model II bis

Shortest path continuation 0.65 1.22 0.83

Rectangular continuation 0.76 1.53 1.31

Polygonal continuation 0.62 1.14 0.65

In the second chart, we focus on Model II bis and compute Ebis
2 /r2 for different values of r.

Coherently with the results of Figure 14, Ebis
2 /r2 is constant for the shortest path continuation and

the rectangular continuation and slowly decreases for the polygonal continuation.
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Values of Ebis
2 /r2

r Shortest path Rectangle Polygon

1.0000 0.8367 1.3068 0.6454
0.5000 ′′ ′′ 0.6325
0.2500 ′′ ′′ 0.6263
0.1250 ′′ ′′ 0.6233
0.0625 ′′ ′′ 0.6218
0.0312 ′′ ′′ 0.6211

Values of Ebis
2 /r2

r Shortest path Rectangle Polygon

0.0156 0.8367 1.3068 0.6207
0.0078 ′′ ′′ 0.6206
0.0039 ′′ ′′ 0.6205
0.0020 ′′ ′′ 0.6204
0.0010 ′′ ′′ 0.6204

Remark 8.2 We can easily adapt the previous considerations to model III so that the following
modification of E3 can be proposed:

(

Model III bis
)

Ebis
3 (u, ug, T ) =

1

rN

∫

A+Br

∫

Br

|u(x + y) − u0(T (x) + ∇T (x) y)|2dy dx

+
1

r2N−2

∫

A+Br

[(

|Dug|(Br(x)) − |Dug
0|(Br(T (x)))

)+]2
dx

and the existence of a minimizer in V3 (for a large enough value of C̃) can be proven. However, the

properties of the TV-L1 decomposition imply that Ebis
3 satisfies (H1) but not (H2).

We end this section with a remark on possible extensions of E1. It is inspired by a result of [24]
stating that, given a bounded set E ⊂ R

2 with C3 boundary, one has the equivalence for r small
∫

R2

inf
P⊂R

2

half plane

∣

∣(E∆P ) ∩ Br(x)
∣

∣

p
dx = Cpr

3p+1

∫

∂E

|κ∂E |pdH1 + ◦(r3p+1)

which measures how much E locally differs from patches of the form P ∩ Br(x) where P is a half-
plane. Therefore, it gives a link – very logical by the way – between the smoothness of ∂E and its
capacity to be recovered using straight patches. In our context, it is easy to change the formulation
of E1 so that the energy of the circle continuation depends on a power of the curvature.

Remark 8.3 Consider the modified energy

Ebis
1 (T ) =

∫

x∈A+Br

∣

∣

∣

∫

y∈Br

|u0(T (x + y)) − u0(T (x) + ∇T (x) y)|dy
∣

∣

∣

p

dx

If Tpoly is a generic piecewise rotation realizing the polygonal continuation of the previous section,
one easily gets from the calculations above that

Ebis
1 (Tpoly) = O

(

r3p+1

Rp−1

)

which is coherent with the result of [24]. Besides, remark that the existence of minimizers for Ebis
1

can be proven as soon as p > 0 by a simple application of the Dominated Convergence Theorem in
the last lines of the proof of Theorem 5.1.
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9 Conclusion

The contribution of this paper is a first step toward the understanding of global variational formu-
lations for exemplar-based methods in the continuous domain. We proved that there is a variety
of models for which a minimizer exists and that compare favorably with generic exemplar-based
algorithms for the reconstruction of geometric features. Future developments could be:

1. To understand more accurately the ability of Models I, II, II bis, III, III bis, and IV to
reconstruct non local geometric features without diminishing the capacity to restore correctly
the texture;

2. To derive globally minimizing discrete methods that could exploit this ability and hopefully
outperform the state of the art inpainting methods;

3. To understand more deeply the asymptotic behaviour of Models II, II bis, III, III bis, and
IV as the patch size r tends to 0. It is a well-known fact that, in practice, exemplar-based
methods are interesting only for not too small values of r. However, we think that it is a
valuable challenge trying to understand through a study of asymptotics whether our models
are non local extensions of local evolution models. This could help understanding better their
efficiency and their limitations, in particular regarding the recovery of geometry.

Acknowledgements

We warmly thank Luigi Ambrosio and Gian Paolo Leonardi for their help.

This work has been done with the support of the French ”Agence Nationale de la Recherche” (ANR),
under grant FREEDOM (ANR07-JCJC-0048-01), ”Films, REstauration Et DOnnées Manquantes”.

References

[1] S. Aliney. A property of the minimum vectors of a regularizing functional defined by means
of the absolute norm. IEEE Trans. Signal Proc., 45(4):913–917, 1997.

[2] L. Ambrosio, N. Fusco, and D. Pallara. Functions of Bounded Variation and Free Discontinuity
Problems. Oxford University Press, 2000.
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